劉江紅 董 靜 邢 怡
首都醫(yī)科大學(xué)宣武醫(yī)院神經(jīng)內(nèi)科,北京100053
與阿爾茨海默病相關(guān)的主觀認(rèn)知減退及生物標(biāo)志物的研究進(jìn)展
劉江紅 董 靜 邢 怡
首都醫(yī)科大學(xué)宣武醫(yī)院神經(jīng)內(nèi)科,北京100053
阿爾茨海默病是發(fā)生在老年人群中的常見(jiàn)癡呆類(lèi)型,其進(jìn)程是連續(xù)性的,包括臨床前期、輕度認(rèn)知障礙期和癡呆期。癡呆期的患者其日程生活能力受損,藥物治療效果不理想,因此早期診斷和干預(yù)是至關(guān)重要的。利用生物標(biāo)志物在臨床前期即主觀認(rèn)知減退期的研究取得了一些進(jìn)展,本文對(duì)于主觀認(rèn)知減退及其生物標(biāo)志物的研究進(jìn)行綜述。
主觀認(rèn)知減退;阿爾茨海默??;生物標(biāo)志物;多模態(tài)磁共振
阿爾茨海默?。ˋlzheimer's disease,AD)是常見(jiàn)的中樞神經(jīng)系統(tǒng)變性病。最初確診AD需要病理診斷結(jié)果。近年來(lái),科學(xué)的發(fā)展推動(dòng)著AD相關(guān)研究的進(jìn)展,學(xué)者們對(duì)于生物標(biāo)志物(biomarker)有了更多的研究和理解,并引入到AD的診斷之中,這使得AD的診斷不僅僅局限于病理診斷,而是能夠在生前結(jié)合生物標(biāo)志物來(lái)診斷。更為重要的是,使得AD在癥狀前期就可以被診斷,甚至是在主觀認(rèn)知減退(subjective cognitive decline,SCD)期即可被識(shí)別,因而能夠推動(dòng)早期干預(yù)和治療。
早在1982年,Reisberg等[1]將認(rèn)知狀態(tài)共分為7個(gè)臨床階段,包括了從正常至極重度癡呆的整個(gè)過(guò)程。其中,第二階段是指患者有記憶障礙的主訴而不存在相應(yīng)的客觀臨床表現(xiàn),這個(gè)階段即是所指的SCD階段。在大量關(guān)于AD、MCI和正常人的病理、影像、腦脊液的橫斷面和縱向研究的基礎(chǔ)上,2010年Jack等[2]提出AD的生物標(biāo)志物和認(rèn)知障礙隨時(shí)間動(dòng)態(tài)變化的發(fā)展模式,認(rèn)為當(dāng)AD患者尚無(wú)認(rèn)知障礙的臨床表現(xiàn)時(shí),即可出現(xiàn)具有AD特征的生物標(biāo)志物異常,且這些AD早期的生物標(biāo)志物是隨著AD病變的進(jìn)展依次出現(xiàn)的。目前,與AD早期診斷有關(guān)的生物標(biāo)志物包括影像學(xué)和腦脊液指標(biāo)兩方面[3-4]。本文就從這兩方面介紹有關(guān)SCD與AD關(guān)系的研究,以探討生物標(biāo)志物對(duì)SCD發(fā)展成為AD的預(yù)測(cè)價(jià)值。
1.1 結(jié)構(gòu)磁共振(structuralMRI,sMRI)
病理研究提示,由于多種機(jī)制的作用,AD患者可出現(xiàn)神經(jīng)元及突起的數(shù)量下降、突觸減少,從而導(dǎo)致皮層體積縮小,甚至萎縮,且皮層萎縮具有特定的空間分布特征和發(fā)展順序[5]。利用sMRI檢查技術(shù)對(duì)AD患者進(jìn)行動(dòng)態(tài)觀察,有研究發(fā)現(xiàn):AD患者某些部位皮層萎縮的程度和速度與認(rèn)知障礙的嚴(yán)重程度和發(fā)展速度存在相關(guān)性[6]。因此,我們有必要研究SCD患者的皮層萎縮情況,以尋找AD早期診斷的線(xiàn)索。目前,sMRI主要用于測(cè)量患者皮層的體積和厚度。研究者綜合采用多種算法和影像分析工具,在T1像上提取出皮層所占圖像區(qū)域并測(cè)量其厚度和體積;還可重建出皮層的三維結(jié)構(gòu)圖,更加直觀地顯示皮層萎縮的分布范圍和程度;此外,通過(guò)與其他影像檢查手段(如功能MRI、PET等)進(jìn)行整合,可進(jìn)一步探討皮層萎縮與腦代謝及功能之間的關(guān)系。利用基于體素的空間統(tǒng)計(jì)學(xué)方法(VBSS),可比較各組患者間任意像素點(diǎn)代表的皮層體積和厚度的差異,從而可比較各組患者間皮層任意部位的萎縮情況[7]。自2004年以來(lái),研究者開(kāi)始利用sMRI研究SCD患者皮層不同部位的體積和厚度[8]。研究表明,與正常老年人相比,SCD患者的海馬、內(nèi)嗅皮層、顳葉內(nèi)側(cè)、扣帶回后部、楔前葉皮層可出現(xiàn)體積下降或厚度減小;與輕度認(rèn)知功能損害(mild cognitive impairment,MCI)或AD患者相比,SCD患者皮層萎縮的空間分布存在相似性,只是萎縮程度較輕[7,9-12]。SCD患者的皮層萎縮程度與其認(rèn)知障礙主訴的嚴(yán)重程度存在相關(guān)性[8]。這些研究提示,雖然SCD患者不存在客觀認(rèn)知障礙,但可能已經(jīng)出現(xiàn)皮層萎縮的病理變化,且與AD患者的皮層萎縮表現(xiàn)相似。有研究對(duì)SCD患者進(jìn)行了3.75~4年的隨訪觀察[7,13],結(jié)果表明伴有海馬體積下降或與AD相似的皮層萎縮模式的SCD患者更易出現(xiàn)客觀認(rèn)知損害。這就提示某些結(jié)構(gòu)影像學(xué)特征可能有助于預(yù)測(cè)SCD患者向AD的轉(zhuǎn)化。
1.2 彌散張量成像(diffusion tensor imaging,DTI)
除了皮層萎縮之外,白質(zhì)纖維束的改變也引起了研究者的關(guān)注。研究發(fā)現(xiàn),AD和MCI患者多個(gè)部位的白質(zhì)體積下降且纖維束的完整性受到破壞,特別是海馬旁纖維束、扣帶、胼胝體以及下縱束、鉤束、穿通通路(perforant pathway)等[14]。這可能是由于神經(jīng)元變性壞死繼發(fā)軸索華勒變性所致,也可能是AD病變直接損害軸索和髓鞘引起的病理表現(xiàn),其機(jī)制目前尚不明確[14-15]。目前DTI的主要測(cè)量指標(biāo)包括分?jǐn)?shù)各向異性(fractional anisotropy,F(xiàn)A)、平均擴(kuò)散率(mean diffusivity,MD)、軸向擴(kuò)散系數(shù)(axialdiffusivity,AD或DA)、徑向擴(kuò)散系數(shù)(radial diffusivity,RD或DR),其中軸向擴(kuò)散系數(shù)與軸索即纖維束的走向有關(guān),徑向擴(kuò)散系數(shù)與髓鞘有關(guān),通過(guò)測(cè)量這些指標(biāo)可了解纖維束的顯微結(jié)構(gòu),即軸索和髓鞘的受損情況,而不僅僅是白質(zhì)纖維束的體積和信號(hào)強(qiáng)度。采用圖像處理軟件,DTI可同時(shí)顯示所有白質(zhì)纖維束的走行和分布。近年來(lái),采用基于纖維束的空間統(tǒng)計(jì)學(xué)方法(TBSS),研究者可進(jìn)一步分析不同患者在各纖維束彌散指標(biāo)上的差異[16]。研究表明,相對(duì)于正常人,SCD患者的海馬旁纖維束、扣帶后部纖維可出現(xiàn)FA下降、DR升高,提示SCD患者這些部位已出現(xiàn)纖維束損害[16-17]。2013年Selnes等[18]對(duì)SCD患者進(jìn)行了2~3年的隨訪觀察,發(fā)現(xiàn)進(jìn)展為客觀認(rèn)知損害的SCD患者更易出現(xiàn)各部位(包括內(nèi)嗅皮層、海馬旁、胼胝體壓部、扣帶后部、楔前葉、緣上回附近)纖維束完整性的破壞,MD、RD升高及FA下降皆可預(yù)測(cè)SCD患者是否將出現(xiàn)客觀認(rèn)知損害。然而,這項(xiàng)研究并沒(méi)有將SCD和MCI患者完全區(qū)分開(kāi),因此還需針對(duì)SCD患者的研究進(jìn)一步探討纖維束完整性對(duì)SCD患者預(yù)后的預(yù)測(cè)價(jià)值。此外,另有研究認(rèn)為某些纖維束完整性的破壞情況不能完全與其聯(lián)絡(luò)的皮層萎縮情況相對(duì)應(yīng)[19-20],提示白質(zhì)損害與皮層萎縮可能是AD病理表現(xiàn)的兩個(gè)方面,因此,針對(duì)SCD患者的DTI研究與sMRI研究具有互補(bǔ)作用。
1.3 靜息態(tài)功能核磁(resting state functional MR I,rsfMR I或R-fMRI)
靜息態(tài)功能核磁是研究清醒安靜閉目狀態(tài)(即無(wú)外界刺激狀態(tài))下腦功能活動(dòng)的磁共振技術(shù)。大量研究表明,人腦在靜息狀態(tài)下部分腦區(qū)的功能活動(dòng)并不減少,反而較執(zhí)行任務(wù)時(shí)有所增加,且這部分腦區(qū)存在同步的低頻振蕩,因此統(tǒng)稱(chēng)為腦默認(rèn)模式網(wǎng)絡(luò)(defaultmode network,DMN)[21]。由于DMN的存在具有時(shí)間上的穩(wěn)定性,在休息、執(zhí)行任務(wù)、睡眠、甚至麻醉狀態(tài)下皆可觀察到,因此它很可能反映了神經(jīng)元的自發(fā)活動(dòng)[22];DMN包括扣帶回后部、楔前葉、前額葉腹內(nèi)側(cè)、頂葉外側(cè)、顳葉內(nèi)側(cè),與AD的特征病理表現(xiàn)部位存在重疊;此外,靜息態(tài)功能核磁操作簡(jiǎn)便、無(wú)創(chuàng)、患者易于配合,因此,靜息態(tài)核磁技術(shù)適用于研究AD患者的腦功能活動(dòng)。近年來(lái),針對(duì)AD和MCI患者的研究發(fā)現(xiàn),其DMN功能聯(lián)系的完整性受損,特別是胼胝體后部、楔前葉和海馬之間的功能聯(lián)系減少,甚至在腦萎縮之前已經(jīng)出現(xiàn)[23-24]。此外,伴有ApoEε4基因突變或AD家族史的正常人也可出現(xiàn)DMN功能聯(lián)系受損[25-26]。這些研究提示AD確實(shí)可損害腦的功能聯(lián)系,尤其是在結(jié)構(gòu)影像學(xué)表現(xiàn)不明顯時(shí)即可出現(xiàn)。然而,目前針對(duì)SCD患者的DMN研究較少,2013年Wang等[27]對(duì)23例SCD患者進(jìn)行觀察,結(jié)果發(fā)現(xiàn)與正常老年人相比,SCD患者右側(cè)海馬區(qū)的功能聯(lián)系受損,但受損程度輕于MCI患者,提示SCD患者的部分神經(jīng)元可能已出現(xiàn)功能損害,然而這還需要進(jìn)一步研究加以驗(yàn)證。
1.4 碳11標(biāo)記的匹茲堡化合物B正電子放射斷層攝影術(shù)(11C-PIB PET或PIB PET)
病理檢查提示老年斑和神經(jīng)元纖維纏結(jié)是AD的兩大特征表現(xiàn),而β淀粉樣蛋白(amyloid beta protein,Aβ)則是老年斑的主要成分;家族性AD的常見(jiàn)基因突變APP、PSEN1、PSEN2皆與Aβ的代謝通路密切相關(guān),說(shuō)明Aβ沉積是AD發(fā)病機(jī)制中的重要環(huán)節(jié)[28]。不僅如此,有研究對(duì)認(rèn)知功能正常的老年人和SCD患者進(jìn)行尸檢,結(jié)果表明即使是認(rèn)知功能正常的老年人或SCD患者也存在腦內(nèi)Aβ沉積[29-30],提示當(dāng)AD患者認(rèn)知功能尚未受損時(shí),可能已出現(xiàn)腦內(nèi)Aβ代謝異常。2004年,Klunk等[31]首次將PIB-PET用于研究AD患者,使活體顯示患者腦內(nèi)Aβ沉積情況成為可能。PIB-PET不僅直觀,而且能進(jìn)行定量統(tǒng)計(jì)分析,比較不同患者間不同腦區(qū)Aβ的沉積情況。采用這一技術(shù),研究者針對(duì)AD和MCI患者開(kāi)展了大量研究。許多研究[32-35]認(rèn)為,AD患者認(rèn)知障礙進(jìn)展的快慢與腦內(nèi)Aβ沉積的速度不相一致,提示AD患者腦內(nèi)的Aβ沉積可能已進(jìn)入平臺(tái)期,而MCI患者的認(rèn)知功能受損程度與Aβ沉積量存在相關(guān)性[36],提示研究AD臨床前期Aβ的沉積情況應(yīng)更有意義。2010年,Chetelat等[37]的研究發(fā)現(xiàn)SCD患者的Aβ沉積與某些部位的皮層萎縮存在相關(guān)性,包括眶額皮質(zhì)內(nèi)側(cè)部、扣帶回、楔前葉,而對(duì)無(wú)認(rèn)知障礙主訴的正常人并不存在這種相關(guān)性。此后有研究進(jìn)一步提示SCD患者的認(rèn)知障礙主訴嚴(yán)重程度與PIB造影劑的滯留情況存在相關(guān)性[38]。2013年Dore等[7]對(duì)認(rèn)知功能正常的老年人進(jìn)行隨訪觀察,結(jié)果表明伴有Aβ沉積的老年人海馬和顳葉皮層萎縮的速度快于不伴Aβ沉積者。然而,這項(xiàng)研究并非完全針對(duì)SCD患者,因此,SCD患者的腦內(nèi)Aβ沉積情況與認(rèn)知功能障礙進(jìn)展之間的關(guān)系還有待研究。
1998年,AD分子和生化標(biāo)志物工作組(Working Group on Molecular and Biochemical Markers of Alzheimer's Disease)提出了三個(gè)輔助AD診斷的腦脊液生化指標(biāo)[39]:Aβ42、總tau蛋白(T-tau)、磷酸化tau蛋白(P-tau)。研究表明,病理確診的AD患者生前腦脊液中Aβ42含量下降,T-tau、P-tau含量升高,且這些指標(biāo)的變化程度與腦內(nèi)淀粉樣斑塊和神經(jīng)元纏結(jié)的數(shù)量存在相關(guān)性[40-41],提示腦脊液中的這三項(xiàng)指標(biāo)能夠間接反映AD患者腦部病變程度。腦脊液Aβ42水平下降可能是由于Aβ42易聚集成斑塊,使溶于腦脊液的Aβ42含量相應(yīng)減少,而T-tau、P-tau水平升高可能與軸索、神經(jīng)元受損導(dǎo)致tau蛋白進(jìn)入細(xì)胞外液有關(guān),其機(jī)制目前尚不明確[42]。有研究分析Aβ42、tau蛋白診斷AD的敏感性和特異性[42-43],結(jié)果表明這三項(xiàng)指標(biāo)能較好地區(qū)分AD患者和正常人,而P-tau最有助于鑒別AD和其他類(lèi)型的癡呆。研究還發(fā)現(xiàn)進(jìn)展為AD的MCI患者和AD患者腦脊液中的Aβ42和T-tau水平相似[43],這不僅說(shuō)明AD臨床早期即可出現(xiàn)腦脊液生化指標(biāo)的異常,而且提示AD患者早期已有明顯的AD病理特征的腦脊液表現(xiàn)。因此,研究AD臨床前期的腦脊液生化指標(biāo)異常具有重要意義。2008年,Mosconi等[44]對(duì)攜帶有ApoEε4基因的SCD患者和非SCD正常人進(jìn)行比較,發(fā)現(xiàn)腦脊液P-tau/Aβ42比值與腦代謝指標(biāo)結(jié)合有助于區(qū)分二者。此后,DESCRIPA(development of screening guidelines and clinical criteria for predementia AD,DESCRIPA)研究[45]也發(fā)現(xiàn)SCD患者比非SCD正常人更易出現(xiàn)腦脊液結(jié)合型指標(biāo)異常[Aβ42/(240+18×T-tau)<1為結(jié)合型指標(biāo)異常](52%比31%),然而,研究對(duì)SCD患者進(jìn)行平均2.8年的隨訪后并未發(fā)現(xiàn)這一指標(biāo)能夠預(yù)測(cè)SCD向AD發(fā)展。于是研究者對(duì)更多的SCD患者進(jìn)行了平均4年的隨訪,結(jié)果表明腦脊液Aβ42水平下降能夠增加SCD患者進(jìn)展出現(xiàn)客觀認(rèn)知損害的風(fēng)險(xiǎn),且Aβ42優(yōu)于其他結(jié)合型的指標(biāo)[如Aβ42/(240+18×T-tau)][46]。這些研究表明,SCD患者腦脊液已有AD相關(guān)的表現(xiàn),且Aβ42可能比tau蛋白或結(jié)合型指標(biāo)更能預(yù)測(cè)SCD患者向AD進(jìn)展,提示SCD患者Aβ代謝異??赡茉缬谏窠?jīng)元損傷出現(xiàn),但仍需更多研究加以證實(shí)。
上述研究從不同角度對(duì)SCD患者的腦結(jié)構(gòu)、功能以及Aβ代謝進(jìn)行了研究,提示AD的生物標(biāo)志物對(duì)探討SCD與AD的關(guān)系有重要作用。隨著研究的深入,我們有必要綜合采用多種影像學(xué)和生物學(xué)手段來(lái)分析SCD患者,以探討各種AD生物標(biāo)志物的優(yōu)劣和互補(bǔ)作用,更好地預(yù)測(cè)SCD患者向AD的轉(zhuǎn)化。通過(guò)多模態(tài)影像學(xué)和腦脊液研究,了解SCD患者的腦結(jié)構(gòu)、功能及Aβ淀粉樣蛋白代謝特征,并通過(guò)對(duì)SCD患者的隨訪觀察,分析進(jìn)展為客觀認(rèn)知損害患者和未進(jìn)展者上述特征的差異,運(yùn)用模式識(shí)別技術(shù)建立SCD向AD轉(zhuǎn)化的預(yù)測(cè)模型,使臨床上能夠更有針對(duì)性地對(duì)SCD患者進(jìn)行干預(yù),以促進(jìn)AD的早期診斷和治療。
[1]Reisberg B,F(xiàn)erris SH,de Leon MJ,et al.The Global Deterioration Scale for assessment of primary degenerative dementia[J].The American Journal of Psychiatry,1982,139(9):1136-1139.
[2]Jack CR Jr,Knopman DS,Jagust WJ,et al.Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade[J].The Lancet Neurology,2010,9(1):119-128.
[3]Dubois B,F(xiàn)eldman HH,Jacova C,et al.Research criteria for the diagnosis of Alzheimer's disease:revising the NINCDS-ADRDA criteria[J].The LancetNeurology,2007,6(8):734-746.
[4]Dubois B,F(xiàn)eldman HH,Jacova C,etal.Advancing research diagnostic criteria for Alzheimer's disease:the IWG-2 criteria[J].The Lancet Neurology,2014,13(6):614-629.
[5]Braak H,Braak E.Frequency of stages of Alzheimer-related lesions in different age categories[J].Neurobiology of Aging,1997,18(4):351-357.
[6]Ridha BH,Anderson VM,Barnes J,et al.Volumetric MRI and cognitivemeasures in Alzheimer disease:comparison ofmarkers of progression[J].Journal of neurology,2008,255(4):567-574.
[7]Dore V,Villemagne VL,Bourgeat P,et al.Cross-sectional and longitudinal analysis of the relationship between Abeta deposition,cortical thickness,andmemory in cognitively unimpaired individuals and in Alzheimer disease[J]. JAMA Neurology,2013,70(7):903-911.
[8]van der Flier WM,van Buchem MA,Weverling-Rijnsburger AW,et al.Memory complaints in patients with normal cognition are associated with smaller hippocampal volumes[J].Journal of Neurology,2004,251(6):671-675.
[9]Scheef L,Spottke A,Daerr M,et al.Glucosemetabolism,gray matter structure,and memory decline in subjective memory impairment[J].Neurology,2012,79(13):1332-1339.
[10]Chao LL,Mueller SG,Buckley ST,et al.Evidence of neurodegeneration in brains of older adults who do not yet fulfill MCI criteria[J].Neurobiology of Aging,2010,31(3):368-377.
[11]Jessen F,F(xiàn)eyen L,F(xiàn)reymann K,et al.Volume reduction of theentorhinalcortex insubjectivememory impairment[J]. Neurobiology of aging,2006,27(12):1751-1756.
[12]Saykin AJ,Wishart HA,Rabin LA,et al.Older adultswith cognitive complaints show brain atrophy similar to that of amnestic MCI[J].Neurology,2006,67(5):834-842.
[13]Stewart R,Godin O,Crivello F,et al.Longitudinal neuroimaging correlates of subjective memory impairment:4-year prospective community study[J].The British Journal of Psychiatry:the Journal of Mental Science,2011,198(3):199-205.
[14]Radanovic M,Pereira FR,Stella F,et al.White matter abnormalities associated with Alzheimer's disease and mild cognitive impairment:a critical review of MRI studies[J].Expert review of Neurotherapeutics,2013,13(5):483-493.
[15]Amlien IK,F(xiàn)jell AM.Diffusion tensor imaging of white matter degeneration in Alzheimer's disease and mild cognitive impairment[J].Neuroscience,2014,276(C):206-215.
[16]Wang Y,West JD,F(xiàn)lashman LA,et al.Selective changes in white matter integrity in MCI and older adults with cognitive complaints[J].Biochimica et Biophysica Acta,2012,1822(3):423-430.
[17]Stenset V,Bjornerud A,F(xiàn)jell AM,et al.Cingulum fiber diffusivity and CSF T-tau in patientswith subjective and mild cognitive impairment[J].Neurobiology of Aging,2011,32(4):581-589.
[18]Selnes P,Aarsland D,Bjornerud A,et al.Diffusion tensor imaging surpasses cerebrospinal fluid as predictor of cognitive decline and medial temporal lobe atrophy in subjective cognitive impairment and mild cognitive impairment[J].Journal of Alzheimer's Disease:JAD,2013,33(3):723-736.
[19]Xie S,Xiao JX,Gong GL,et al.Voxel-based detection of whitematter abnormalities in mild Alzheimer disease[J]. Neurology,2006,66(12):1845-1849.
[20]Salat DH,Tuch DS,van der Kouwe AJ,et al.Whitematter pathology isolates the hippocampal formation in Alzheimer's disease[J].Neurobiology of Aging,2010,31(2):244-256.
[21]Fox MD,Raichle ME.Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging[J].Nature Reviews Neuroscience,2007,8(9):700-711.
[22]Scholvinck ML,Maier A,Ye FQ,et al.Neural basis of global resting-state fMRIactivity[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(22):10238-10243.
[23]Greicius MD,Srivastava G,Reiss AL,et al.Default-mode network activity distinguishes Alzheimer's disease fromhealthy aging:evidence from functionalMRI[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(13):4637-4642.
[24]Sorg C,Riedl V,Muhlau M,et al.Selective changes of resting-state networks in individuals at risk for Alzheimer'sdisease[J].Proceedingsof theNationalAcademy of Sciences of the United States of America,2007,104(47):18760-18765.
[25]Westlye ET,Lundervold A,Rootwelt H,et al.Increased hippocampal defaultmode synchronization during rest in middle-aged and elderly APOE epsilon4 carriers:rela tionships with memory performance[J].The Journal of Neuroscience:the Official Journal of the Society for Neuroscience,2011,31(21):7775-7783.
[26]Fleisher AS,Sherzai A,Taylor C,et al.Resting-state BOLD networks versus task-associated functional MRI for distinguishing Alzheimer's disease risk groups[J]. NeuroImage,2009,47(4):1678-1690.
[27]Wang Y,Risacher SL,West JD,et al.Altered default mode network connectivity in older adults with cognitive complaints and amnestic mild cognitive impairment[J]. Journal of Alzheimer's Disease:JAD,2013,35(4):751-760.
[28]Hardy JA,Higgins GA.Alzheimer's disease:the amyloid cascade hypothesis[J].Science,1992,256(5054):184-185.
[29]Knopman DS,Parisi JE,Salviati A,et al.Neuropathology of cognitively normal elderly[J].Journal of Neuropathology and Experimental Neurology,2003,62(11):1087-1095.
[30]Barnes LL,Schneider JA,Boyle PA,et al.Memory complaints are related to Alzheimer disease pathology in older persons[J].Neurology,2006,67(9):1581-1585.
[31]Klunk WE,Engler H,Nordberg A,et al.Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B[J].Annals of neurology,2004,55(3):306-319.
[32]Engler H,F(xiàn)orsberg A,Almkvist O,et al.Two-year follow-up of amyloid deposition in patientswith Alzheimer's disease[J].Brain:a JournalofNeurology,2006,129(Pt11):2856-2866.
[33]Jack CR,Jr.,Lowe VJ,Weigand SD,et al.Serial PIB and MRI in normal,mild cognitive impairmentand Alzheimer's disease:implications for sequence of pathological events in Alzheimer's disease[J].Brain:a Journal of Neurology,2009,132(Pt 5):1355-1365.
[34]Furst AJ,Rabinovici GD,Rostomian AH,et al.Cognition,glucose metabolism and amyloid burden in Alzheimer's disease[J].Neurobiology of Aging,2012,33(2):215-225.
[35]Chetelat G,Villemagne VL,Pike KE,et al.Relationship between memory performance and beta-amyloid deposition at different stages of Alzheimer's disease[J].Neuro-Degenerative Diseases,2012,10(1-4):141-144.
[36]Quigley H,Colloby SJ,O'Brien JT.PET imaging of brain amyloid in dementia:a review[J].International Journal of Geriatric Psychiatry,2011,26(10):991-999.
[37]Chetelat G,Villemagne VL,Pike KE,et al.Larger temporal volume in elderly with high versus low beta-amyloid deposition[J].Brain:a Journal of Neurology,2010,133(11):3349-3358.
[38]Amariglio RE,Becker JA,Carmasin J,et al.Subjective cognitive complaints and amyloid burden in cognitively normal older individuals[J].Neuropsychologia,2012,50(12):2880-2886.
[39]No Authors.Consensus report of the Working Group on:"Molecular and Biochemical Markers of Alzheimer's Disease".The Ronald and Nancy Reagan Research Institute of the Alzheimer's Association and the National Institute on Aging Working Group[J].Neurobiology of aging,1998,19(2):109-116.
[40]Strozyk D,Blennow K,White LR,et al.CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study[J].Neurology,2003,60(4):652-656.
[41]Buerger K,Ewers M,Pirttila T,et al.CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer's disease[J].Brain:a Journal of Neurology,2006,129(Pt 11):3035-3041.
[42]Blennow K,Hampel H.CSF markers for incipient Alzheimer's disease[J].The Lancet Neurology,2003,2(10):605-613.
[43]Diniz BS,Pinto Junior JA,F(xiàn)orlenza OV.Do CSF total tau,phosphorylated tau,and beta-amyloid 42 help to predict progression of mild cognitive impairment to Alzheimer's disease?A systematic review and metaanalysis of the literature[J].The World Journal of Biological Psychiatry:the Official Journal of theWorld Federation of Societies of Biological Psychiatry,2008,9(3):172-182.
[44]Mosconi L,De Santi S,Brys M,et al.Hypometabolism and altered cerebrospinal fluid markers in normal apolipoprotein E E4 carriers with subjective memory complaints[J].Biological Psychiatry,2008,63(6):609-618.
[45]Visser PJ,Verhey F,Knol DL,et al.Prevalence and prognostic value of CSF markers of Alzheimer's disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study:a prospective cohort study[J].The Lancet Neurology,2009,8(7):619-627.
[46]van Harten AC,Visser PJ,Pijnenburg YA,et al.Cerebrospinal fluid Abeta42 is the best predictor of clinical progression in patients with subjective complaints[J]. Alzheimer's&Dementia:the Journal of the Alzheimer's Association,2013,9(5):481-487.
The research progression of the subject cognitive decline associated w ith A lzheimer's disease and its biomarkers
LIU Jianghong DONG Jing XING Yi
Department of Neurology,Xuanwu Hospital,Beijing Capital Medical University,Beijing 100053,China
Alzheimer's disease is a common dementia among aged population.The course of Alzheimer's disease is continuous which includes preclinical phase,mild cognitive impairment phase and dementia phase.If the patients are in dementia phase,their daily activity impaired,and the effects ofmedicine treatment are not obvious.It is important to diagnose and postpone the course of Alzheimer's disease.There are some progression of the biomarker in subjective cognitive decline.We reviewed the subject cognitive decline and its biomarkers in this article.
Subjective cognitive decline;Alzheimer's disease;Biomarker;Multi-modalmagnetic resonance imaging
R749.16
A[文獻(xiàn)標(biāo)識(shí)碼]1673-7210(2015)06(c)-0030-06
2015-03-19本文編輯:蘇暢)
國(guó)家自然科學(xué)基金資助項(xiàng)目(81301208);教育部高等學(xué)校博士學(xué)科點(diǎn)專(zhuān)項(xiàng)科研基金(20131107120002);首都醫(yī)科大學(xué)基礎(chǔ)臨床合作項(xiàng)目(13JL70)。