詹曉靜,向 壘,2,李彥文,2*,莫測輝,鄧哲深,黃繽慧,溫宏飛,蔡全英,趙海明,2(.暨南大學(xué)環(huán)境學(xué)院,廣東省高校水土環(huán)境毒害性污染物防治與生物修復(fù)重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 50632;2.暨南大學(xué)生態(tài)學(xué)系,廣東廣州 50632)
農(nóng)田土壤中微囊藻毒素污染特征及風(fēng)險(xiǎn)評(píng)價(jià)
詹曉靜1,向壘1,2,李彥文1,2*,莫測輝1,鄧哲深1,黃繽慧1,溫宏飛1,蔡全英1,趙海明1,2(1.暨南大學(xué)環(huán)境
學(xué)院,廣東省高校水土環(huán)境毒害性污染物防治與生物修復(fù)重點(diǎn)實(shí)驗(yàn)室,廣東 廣州 510632;2.暨南大學(xué)生態(tài)學(xué)系,廣東廣州 510632)
藍(lán)藻水華釋放的微囊藻毒素(MCs)通過灌溉、堆肥漚田等途徑進(jìn)入農(nóng)田土壤造成污染.采用固相萃取-高效液相色譜串聯(lián)質(zhì)譜方法(HPLC-MS/MS)研究了滇池周邊35個(gè)代表性農(nóng)田土壤樣品中3種典型微囊藻毒素(MC-LR、MC-RR、MC-YR)的含量、分布特征及風(fēng)險(xiǎn)水平.結(jié)果表明,MCs檢出率為85.7%,總含量為n.d.~7.8μg/kg,平均含量為1.6 μg/kg,其中MC-RR檢出率(82.9%)和含量(n.d.~5.3μg/kg)最高. 3 種MCs的健康風(fēng)險(xiǎn)和生態(tài)風(fēng)險(xiǎn)均在可接受范圍內(nèi),健康風(fēng)險(xiǎn)以MC-YR最大,生態(tài)風(fēng)險(xiǎn)以MC-LR最大.兒童以口腔暴露MCs為主,成人以皮膚暴露MCs為主,兒童暴露MCs的健康風(fēng)險(xiǎn)高于成人.
微囊藻毒素(MCs);農(nóng)田土壤;污染特征;風(fēng)險(xiǎn)評(píng)價(jià);滇池
水體富營養(yǎng)化所引發(fā)的藍(lán)藻水華污染日趨嚴(yán)重,藍(lán)藻水華向水體中釋放各種藻毒素,其中微囊藻毒素(MCs)分布最廣、毒性最大,其毒性與有機(jī)磷農(nóng)藥毒性相當(dāng)[1-2].目前已發(fā)現(xiàn)微囊藻毒素異構(gòu)體約80余種,其中MC- RR、MC-YR 和MC-LR檢出最普遍、危害最嚴(yán)重[3],是公認(rèn)的肝毒素和促癌劑[1-2].據(jù)報(bào)道,我國幾乎所有重要河流、湖泊、水庫甚至城鎮(zhèn)及農(nóng)村地區(qū)的湖塘、河港內(nèi)都普遍檢出微囊藻毒素,含量高達(dá)數(shù)百μg/L或數(shù)千 μg/L[4-5].目前對(duì)MCs在水環(huán)境中的污染特征、環(huán)境行為等已開展了大量研究,但國內(nèi)外關(guān)于農(nóng)田土壤中微囊藻毒素污染問題的研究還鮮見報(bào)道.
在藍(lán)藻水華頻發(fā)水域,微囊藻毒素往往通過灌溉、溢流、打撈堆放、堆漚還田等途徑進(jìn)入農(nóng)田土壤,特別是一些地方在治理藍(lán)藻水華時(shí)將其打撈出來作為有機(jī)肥施入農(nóng)田[6],水中的藻細(xì)胞破裂釋放高濃度微囊藻毒素污染農(nóng)田土壤,微囊藻毒素水溶性高,易被農(nóng)作物吸收積累,影響農(nóng)作物生長和農(nóng)產(chǎn)品質(zhì)量安全,進(jìn)而通過食物鏈對(duì)人體健康產(chǎn)生危害[7-9].
滇池是我國典型的重度富營養(yǎng)化湖泊之一,藍(lán)藻水華常年爆發(fā),水體中微囊藻毒素普遍檢出[10-11],湖水是周邊農(nóng)田灌溉的主要水源,藍(lán)藻水華也常常被打撈堆置于農(nóng)田土壤用作有機(jī)肥,因此存在微囊藻毒素污染農(nóng)田土壤問題.本研究采用高效液相色譜-串聯(lián)質(zhì)譜分析方法對(duì)滇池周邊35個(gè)農(nóng)田土壤樣品中典型微囊藻毒素(MC-LR、MC-RR和 MC-YR)的含量和污染特征進(jìn)行了分析,并對(duì)其進(jìn)行了健康風(fēng)險(xiǎn)和生態(tài)風(fēng)險(xiǎn)評(píng)價(jià),以期為土壤中微囊藻毒素污染控制與農(nóng)產(chǎn)品安全提供科學(xué)依據(jù).
1.1樣品采集
2012年8月在滇池周邊35個(gè)自然村選取了35個(gè)蔬菜種植地塊(每個(gè)地塊約 300~600m2)采集土壤樣品(圖1),其中30個(gè)地塊常年采用滇池湖水灌溉,4個(gè)地塊采用井水灌溉,1個(gè)地塊采用雨水和井水灌溉.根據(jù)采樣點(diǎn)農(nóng)田面積,用不銹鋼取土器在每塊菜地耕作層(0~20cm)按蛇形采樣法布點(diǎn),避開菜地邊緣、作物根部和剛施肥的樣點(diǎn),采集9~12個(gè)耕作層土壤樣品組成1個(gè)混合樣,除去石塊等雜質(zhì),用鐵鏟將上述土壤樣品混合均勻后,按四分法取1kg左右,裝入棕色瓶中,封口運(yùn)回實(shí)驗(yàn)室,冷凍干燥后于 4℃冰箱中保存?zhèn)錅y,同時(shí)測定土壤理化性質(zhì).
1.2樣品預(yù)處理
土樣基本理化性質(zhì)按照相關(guān)方法[12]進(jìn)行測定.所采土樣其pH值、有機(jī)質(zhì)含量及陽離子交換量分別為 6.1~7.35、11.72~131.57g/kg及 3.33~32.13cmol/kg,除采樣點(diǎn)12、31、32、35樣品(壤質(zhì)砂土)外,其余樣品均為粉砂壤土(表1).
圖1 土壤采樣點(diǎn)Fig.1 Sampling sites
土樣中 MCs的預(yù)處理與分析參考李彥文等[13]報(bào)道的方法進(jìn)行.準(zhǔn)確稱取 2.00g土壤樣品(過 60目篩)于 50mL離心管中,加入 10mL 0.1mol/L EDTA-Na4P2O7溶液,靜置 10min,渦旋振蕩5min后超聲30min(300W),8000r/min離心5min,收集上清液.重復(fù)上述步驟2次,合并上清液,過C18固相萃取小柱富集(使用前依次用 5mL甲醇和 10mL水進(jìn)行活化),控制過柱速度為1mL/min,收集濾出液,再次過柱,用10mL高純水清洗小柱,真空干燥5min,用5mL酸化甲醇洗脫小柱,收集洗脫液.洗脫液氮吹(40℃)濃縮至近干,以甲醇定容至1mL,過0.22μm濾膜,置于進(jìn)樣瓶中,于4℃冰箱中保存?zhèn)錅y.
1.3MCs測定與質(zhì)量控制
采用 Agilent Eclipse Plus C18柱(150mm× 2.1mm,5μm)進(jìn)行色譜分離,流動(dòng)相為 0.2%甲酸(A)和乙腈(B),流動(dòng)相梯度淋洗程序?yàn)椋?~2.0min,80% A+20%B;2.0~6.5min,20% A+80%B;6.6~16min,80% A+20%B,流速為300μL/min;進(jìn)樣量為5μL.
表1 滇池周邊農(nóng)田土壤樣品理化性質(zhì)Table 1 Physical and chemical properties of soil around Dianchi Lake
質(zhì)譜分析采用正離子掃描,多離子反應(yīng)檢測(MRM)模式,氣簾氣25kPa;噴霧電壓5500V,霧化溫度為 450℃,霧化氣壓力 55kPa,加熱輔助氣壓力 50kPa,碰撞氣 CAD為 high.在上述條件下MC-LR、MC-RR和MC-YR的保留時(shí)間分別為:5.53min,5.22min和5.48min.為控制實(shí)驗(yàn)質(zhì)量,保證操作過程準(zhǔn)確,每測定7個(gè)樣品間隔設(shè)置空白樣、樣品平行樣、樣品加標(biāo)樣.空白樣中均未檢出MCs,平行樣標(biāo)準(zhǔn)偏差低于1%,3種MCs的檢出限量(LOQ)分別為 0.25μg/kg(MC-LR),0.25μg/kg(MC-RR)和 0.5μg/kg(MC-YR);樣品加標(biāo)(5μg/kg)回收率分別為 64%~86%(MC-LR),62%~79%(MC-RR)和61% ~84%(MC-YR).
1.4風(fēng)險(xiǎn)評(píng)價(jià)方法
1.4.1健康風(fēng)險(xiǎn)評(píng)價(jià)根據(jù)美國環(huán)保局(US EPA)推薦方法[14],評(píng)價(jià)土壤中 MCs對(duì)周邊居民不同暴露途徑的健康風(fēng)險(xiǎn).以 TCRo、TCRd和TCRi分別代表口腔暴露量、皮膚暴露量和呼吸暴露量[μg/(kg·d)],分別按式(1)~式(3)進(jìn)行計(jì)算.
式中:Cs為土壤MCs濃度,μg/kg; ED為暴露期,a,成人和兒童分別取值30和10[15]; EF為暴露頻率,d/a,取值為365[15]; SIR為土壤攝入率,mg/d,成人和兒童分別取值100和200[15]; BW為體重,kg,成人和兒童分別取值70和16[15];AT為暴露時(shí)間,d,成人和兒童分別取值10950和3650[15]; SA為皮膚面積,cm2,成人、兒童分別取值 4317和1593[16]; ABS為皮膚吸收因子,無量綱,取值0.13[14]; AF為皮膚黏附密度,mg/cm2,取值為0.2[14]; AIR為空氣呼吸率,m3/d,成人和兒童分別取值20和10[17]; PEF為土壤顆粒擴(kuò)散因子,m3/kg,取值為1.61×109[14].
采用風(fēng)險(xiǎn)指數(shù)(HI)對(duì)MCs的非致癌風(fēng)險(xiǎn)進(jìn)行評(píng)價(jià),表征其風(fēng)險(xiǎn)大小. HI按式(4)進(jìn)行計(jì)算,若其值小于1,認(rèn)為MCs健康風(fēng)險(xiǎn)可以接受;反之,則認(rèn)為存在MCs健康風(fēng)險(xiǎn)[18].
式中:TCR為MCs暴露量,μg/(kg·d),分別為口腔暴露量(TCRo)、皮膚暴露量(TCRd)和呼吸暴露量(TCRi);RfD為MCs參考攝入量,μg/(kg·d).
世界衛(wèi)生組織推薦 MC-LR的可耐受劑量值(TDI)為0.04μg/(kg·d)[19].根據(jù)US EPA規(guī)定,在未規(guī)定RfD值情況下,其值可用TDI值代替[18].因此,本文以0.04μg/(kg·d)作為MC-LR的RfD值進(jìn)行健康風(fēng)險(xiǎn)評(píng)價(jià).采用 Wolf等[20]的研究結(jié)果,根據(jù)MC-RR和MC-YR與MC-LR的等效毒性關(guān)系,得到MC-RR和MC-YR的RfD值分別為0.4μg/(kg·d)和0.04μg/(kg·d).
1.4.2生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)采用歐洲化學(xué)管理局
(ECB)推薦方法評(píng)價(jià)土壤中MCs的生態(tài)風(fēng)險(xiǎn)[21-22].該方法以預(yù)測環(huán)境無效應(yīng)濃度(PNEC)為基礎(chǔ),以環(huán)境暴露濃度(MEC)與PNEC之商(RQs)作為評(píng)價(jià)標(biāo)準(zhǔn),見式(5).當(dāng)RQs值小于1時(shí),認(rèn)為生態(tài)風(fēng)險(xiǎn)可接受,反之則認(rèn)為存在生態(tài)風(fēng)險(xiǎn),需采取相應(yīng)防范措施. PNEC值可通過環(huán)境敏感生物的急性毒性數(shù)據(jù)(半數(shù)效應(yīng)濃度)與評(píng)估因子之商求得,見式(6).鑒于目前尚缺乏土壤中 MCs的毒性數(shù)據(jù),因此PNEC土值按照平衡分配法,并根據(jù)水中敏感生物急性毒性數(shù)據(jù),按式(7)計(jì)算.
式中:EC50為MCs敏感生物半數(shù)效應(yīng)濃度;AF為評(píng)估因子,無量綱;PNEC水為 MCs土壤預(yù)測無效應(yīng)濃度,μg/L;Kd為MCs的土水分配系數(shù),L/kg.
1.5數(shù)據(jù)處理
采用Excel2007和Spass17.0軟件進(jìn)行數(shù)據(jù)統(tǒng)計(jì),以皮爾遜相關(guān)分析法(Pearson)進(jìn)行相關(guān)性分析.
2.1農(nóng)田土壤MCs含量水平與分布特征
滇池周邊大部分農(nóng)田土壤樣品均不同程度檢出MCs(圖2),只有采用雨水(采樣點(diǎn)5)或地下水灌溉(采樣點(diǎn)20、29、30、34)的樣品,其MCs含量低于檢出限(LOD).MCs的檢出率為85.7%,其中14.3%的樣品同時(shí)檢出3種MCs,25.7%的樣品同時(shí)檢出 2種 MCs. MCs的總含量為0~7.8μg/kg,平均含量為 1.6μg/kg,與太湖周邊農(nóng)田土壤中MCs含量水平相當(dāng)(2.1~6.6μg/kg)[7].在3種藻毒素中 MC-RR檢出率(82.9%)和含量(n.d.~5.3μg/kg,平均 1.1μg/kg)均為最高,其次為MC-LR和MC-YR,前者檢出率為31.43%,含量在n.d.~1.5μg/kg之間,平均為0.2μg/kg,后者檢出率為 25.7%,含量在 n.d.~1.7μg/kg之間,平均為0.3μg/kg.這與滇池水體中 MCs化合物的含量特征基本吻合[23-24].滇池草海周邊農(nóng)田土壤(采樣點(diǎn) 1~4)中 MCs的檢出率(100%)和平均含量(2.4μg/kg)均高于滇池外海周邊農(nóng)田土壤(采樣點(diǎn) 5~35)的檢出率(83.9%)和平均含量(1.5μg/kg),這與滇池草海毗鄰昆明市區(qū),水體富營養(yǎng)化及藍(lán)藻水華污染程度更高有關(guān)[25].滇池外海東部、東北部農(nóng)田土壤(采樣點(diǎn) 6~22)中 MCs含量(ND ~7.8μg/kg,平均含量2.0μg/kg)高于滇池西部和東南部,可能因?yàn)榈岢氐貐^(qū)常年盛行西南季風(fēng)[9],造成水體表面藻體向東岸、東北岸聚集,使得MCs污染更嚴(yán)重.
圖2 滇池周邊農(nóng)田土壤中3種MCs的含量水平和空間分布Fig.2 Concentrations and space distributions of three microcystins in agricultural soils around Dianchi Lake
表2 MCs含量與土壤理化性質(zhì)的相關(guān)性Table 2 Correlations between microcystins and soilphysic-chemical properties
采用雨水或地下水進(jìn)行灌溉的農(nóng)田未檢出MCs,說明土壤中的 MCs來源于灌溉水.相關(guān)性分析結(jié)果顯示(表2),土壤中3種MCs含量之間存在顯著正相關(guān)關(guān)系,指示其同源性. MC-LR和MC-YR含量與土壤陽離子交換量之間呈顯著負(fù)相關(guān)關(guān)系,這與土壤pH值為6.1~7.35之間時(shí)MC-LR和MC-YR帶負(fù)電[26],易富集于陽離子交換量低的土壤中有關(guān).除此之外,生物(微生物和植物)降解可能也是影響土壤MCs污染分布的重要因素,土壤中MCs降解速率與土壤組成、有機(jī)質(zhì)含量、pH值等因素有關(guān)[27].
2.2農(nóng)田土壤中MCs健康風(fēng)險(xiǎn)評(píng)價(jià)
表3 滇池周邊居民對(duì)農(nóng)田土壤中3種MCs的暴露量[×10-7μg/(kg·d)]Table 3 Residents exposure to the microcystins around Dianchi Lake region[×10-7μg/(kg·d)]
滇池周邊居民可通過口腔攝入、呼吸攝入和皮膚接觸等3種途徑暴露MCs. 根據(jù)美國環(huán)境保護(hù)局(US EPA)推薦方法[14],分別評(píng)價(jià)滇池周邊農(nóng)田土壤中 MCs對(duì)居民不同暴露途徑的暴露量及健康風(fēng)險(xiǎn).結(jié)果表明(表3),滇池周邊土壤中MCs對(duì)人體的暴露量以MC-RR為最大,MC-YR和MC-LR大體相當(dāng),兒童的暴露量高于成人,前者以口腔暴露為主,其次為皮膚暴露,后者皮膚暴露和口腔暴露大體相當(dāng),呼吸暴露對(duì)兩者均可忽略.
據(jù)此,按式(4)可計(jì)算出農(nóng)田土壤MCs對(duì)滇池周邊兒童及成人不同暴露途徑的健康風(fēng)險(xiǎn)(表4).MC-YR的健康風(fēng)險(xiǎn)最大,其次為 MC-LR,MC-RR最小.兒童的健康風(fēng)險(xiǎn)高于成人,前者口腔暴露風(fēng)險(xiǎn)遠(yuǎn)大于皮膚暴露風(fēng)險(xiǎn),后者皮膚暴露風(fēng)險(xiǎn)略大于口腔暴露風(fēng)險(xiǎn).比較而言呼吸暴露風(fēng)險(xiǎn)可忽略不計(jì).
表4 滇池周邊居民對(duì)土壤3種MCs的暴露風(fēng)險(xiǎn)指數(shù)(×10-7)Table 4 Exposure risk index to the microcystins of residents around Dianchi Lake region (×10-7)
2.3農(nóng)田土壤中MCs生態(tài)風(fēng)險(xiǎn)評(píng)價(jià)
文獻(xiàn)報(bào)道了水中MC-LR對(duì)7種植物幼苗、6種低等水生生物以及2種高等水生生物的急性毒性[28-41],其中泥鰍幼體對(duì)MC-LR最為敏感,其7d孵化率的EC50值為164.3μg/L.上述毒性數(shù)據(jù)覆蓋了植物、低等水生生物和高等水生生物 3個(gè)營養(yǎng)級(jí),按照歐洲化學(xué)管理局標(biāo)準(zhǔn)規(guī)定[21-22],評(píng)估因子AF值取10,按式(6)可求得MC-LR的PNEC水值為16.43μg/L,同時(shí)根據(jù)MC-LR的Kd值[42](0.84L/kg),并按式(7),可求得其PNEC土值為13.7μg/kg.與 MC-LR相比,水中 MC-RR及MC-YR的毒性數(shù)據(jù)較少報(bào)道,因此其PNEC水值參考Wolf等[20]建立的MCs等效毒性關(guān)系求得(MC-LR與 MC-YR毒性相當(dāng),二者毒性為MC-RR的10倍),分別為16.43μg/L(MC-YR)和164.3μg/L(MC-RR),同時(shí)根據(jù)MC-YR(1.55L/kg)及 MC-RR(4.01L/kg)的 Kd值[42],可求出二者的PNEC土值分別為25.5μg/kg(MC-YR)和658.8μg/ kg(MC-RR).據(jù)此,按式(5)可計(jì)算出滇池周邊農(nóng)田土壤MCs的生態(tài)風(fēng)險(xiǎn)(表5).MC-LR的生態(tài)風(fēng)險(xiǎn)商(RQs)在0~0.112之間,平均為0.015;MC-RR的RQs值在0~0.008之間,平均為0.002;MC-YR 的RQs值在0~0.0065之間,平均值為0.010.可見,滇池周邊土壤 3種 MCs化合物的生態(tài)風(fēng)險(xiǎn)以MC-LR最高,其次為MC-YR,MC- RR最低,均在可接受范圍內(nèi).
表5 滇池周邊農(nóng)田土壤中3種MCs的生態(tài)風(fēng)險(xiǎn)商Table 5 Ecological risk quotients of three microcystins in agricultural soils around Dianchi Lake
相比水環(huán)境,土壤環(huán)境中微囊藻毒素污染水平、環(huán)境行為等基礎(chǔ)研究只有零星報(bào)道,微囊藻毒素各異構(gòu)體在土壤環(huán)境中的基礎(chǔ)數(shù)據(jù)非常有限.在滇池地區(qū),使用藍(lán)藻水華污染水體灌溉的農(nóng)田土壤中普遍檢出微囊藻毒素,盡管經(jīng)土壤顆粒暴露微囊藻毒素的健康風(fēng)險(xiǎn)處于可以接受水平,相對(duì)小于飲用水、水體接觸、食用水產(chǎn)品等暴露途徑引起的健康風(fēng)險(xiǎn)[1,6,31-32,36],但對(duì)于周邊居民,特別是長期農(nóng)田勞作人群,土壤低劑量長期微囊藻毒素暴露引起的慢性健康風(fēng)險(xiǎn),以及不同微囊藻毒素異構(gòu)體同時(shí)存在的聯(lián)合毒性效應(yīng)等生態(tài)風(fēng)險(xiǎn)不容忽視;另外前期調(diào)查發(fā)現(xiàn),污染土壤上種植的農(nóng)作物(蔬菜)會(huì)吸收累積微囊藻毒素[7],并通過食物鏈引起健康風(fēng)險(xiǎn).因此,土壤微囊藻毒素污染應(yīng)引起關(guān)注,其所造成的健康和生態(tài)風(fēng)險(xiǎn)需要深入研究.
3.1采用滇池湖水灌溉的農(nóng)田土壤中,85.7%的土壤樣品檢出微囊藻毒素,總含量為 n.d.~7.8μg/kg,平均含量為1.6μg/kg,其中以MC-RR檢出率(82.9%)和含量(n.d.~5.3μg/kg)最高.
3.2農(nóng)田土壤中3種典型微囊藻毒素的生態(tài)風(fēng)險(xiǎn)以MC-LR最大,MC-YR對(duì)人類的健康風(fēng)險(xiǎn)最大,兒童暴露MCs的健康風(fēng)險(xiǎn)高于成人,前者以口腔暴露為主,后者以皮膚暴露為主.MCs的健康風(fēng)險(xiǎn)及生態(tài)風(fēng)險(xiǎn)在可接受范圍內(nèi),但MCs的長期低劑量暴露引起的慢性健康風(fēng)險(xiǎn)以及不同微囊藻毒素異構(gòu)體的聯(lián)合毒性效應(yīng)等問題需要引起關(guān)注和深入研究.
[1] Hernández J M,López-Rodas V,Costas E,et al. Microcystins from tap water could be a risk factor for liver and colorectal cancer: A risk intensified by global change [J]. Medical Hypotheses,2009,72(5):539-540.
[2] 王偉琴,金永堂,吳斌,等.水源水中微囊藻毒素的遺傳毒性與健康風(fēng)險(xiǎn)評(píng)價(jià) [J]. 中國環(huán)境科學(xué),2010,30(4):468-476.
[3] Song L R,Chen W,Peng L,et al. Distribution and bioaccumulation of microcystins in water columns: A systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay,Lake Taihu [J]. Water Research,2007,41(13):2853-2864.
[4] Wood S A.,Holland S A,Stirling L R,et al. Survey of cyanotoxins in New Zealand water bodies between 2001and 2004 [J]. New Zealand Journal of Marine and Freshwater Research,2006,40(4):585-597.
[5] Chen W,Peng ,Wan N,et al. Mechanism study on the frequent variations of cell-bound microcystins in cyanobacterial blooms in Lake Taihu: Implications for water quality monitoring and assessments [J]. Chemosphere,2009,77(11):1585-1593.
[6] Chen W,Jia Y L,Li E H,et al. Soil-based treatments of mechanically collected cyanobacterial blooms from Lake Taihu: Efficiencies and potential risks [J]. Environmental Science and Technology,2012,46(11):13370-13376.
[7] Li Y W,Zhan X J,Xiang L,et al. Analysis of trace Microcystins in vegetables using solid-phase extraction followed by high performance liquid chromatography triple-quadrupole mass spectrometry [J]. Journal of Agricultural and Food Chemistry,2014,62(11):11831-11839.
[8] Mohamed Z A,Al Shehri A M. Microcystins in groundwater wells and their accumulation in vegetable plants irrigated with contaminated waters in Saudi Arabia [J]. Journal of Hazardous Materials,2009,172(1):310-315.
[9] Crush J R,Briggs L R,Sprosen J M,et al. Effect of irrigation with lake water containing microcystins on microcystin content and growth of ryegrass,clover,rape,and lettuce [J]. Environmental Toxicology,2008,23(2):246-252.
[10] 潘曉潔,常鋒毅,沈銀武,等.滇池水體中微囊藻毒素含量變化與環(huán)境因子的相關(guān)性研究 [J]. 湖泊科學(xué),2006,18(6):572-578.
[11] 鮑忠祥.滇池浮游植物和微囊藻毒素的時(shí)空分布及細(xì)菌去除毒素研究 [D]. 昆明:云南大學(xué),2012.
[12] 魯如坤.土壤農(nóng)業(yè)化學(xué)分析方法 [M]. 北京:中國農(nóng)業(yè)科技出版社,2000.
[13] 李彥文,黃獻(xiàn)培,吳小蓮,等.固相萃取-高效液相色譜串聯(lián)質(zhì)譜法同時(shí)測定土壤中 3種微囊藻毒素 [J]. 分析化學(xué),2013,41(1):88-92.
[14] USEPA. Soil screening guidance: user's guide [C]. Office of Solid Waste and Emergency Response United States Environmental Protection Agency,Washington DC,1996.
[15] 李良忠,楊彥,蔡慧敏,等.太湖流域某農(nóng)業(yè)活動(dòng)區(qū)農(nóng)田土壤重金屬污染的風(fēng)險(xiǎn)評(píng)價(jià) [J]. 中國環(huán)境科學(xué),2013,33(S1):60-65.
[16] State environmental protection administration of China. Introduction of deriving industrial soil environmental quality criteria based on risk assessment [S]. 1998.
[17] CCME. Canadian soil quality guidelines for contaminated sites human health effects: Benzo [a] pyrene(final report) [R]. Canadian Council of Ministers of the Environment,1996.
[18] 楊曉紅,蒲朝文,張仁平,等.水體微囊藻毒素污染對(duì)人群的非致癌健康風(fēng)險(xiǎn) [J]. 中國環(huán)境科學(xué),2013,33(1):181-185.
[19] Chorus I,Bartram J. Toxic cyanobacteria in water: A guide to their public health consequences,monitoring,and management[M]. Taylor & Francis: 1999.
[20] Wolf H U,F(xiàn)rank C. Toxicity assessment of cyanobacterial toxin mixtures [J]. Environmental Toxicology,2002,17(4):395-399.
[21] USEPA. Framework for Ecological Risk Assessment [R]. U.S. Environmental Protection Agency,Washington,DC.1992,EPA/630/R-92/001.
[22] 張亞輝,曹瑩,周騰耀,等.我國環(huán)境中 PFOS的預(yù)測無效應(yīng)濃度 [J]. 中國環(huán)境科學(xué),2013,33(9):1670-1677.
[23] 毛敬英.典型富營養(yǎng)化湖泊微囊藻毒素分布特征及主要影響因子差異性分析 [D]. 成都:西南交通大學(xué),2012.
[24] Peng L,Liu Y M,Chen W,et al . Health risks associated with consumption of microcystin-contaminated fish and shellfish in three Chinese lakes: Significance for freshwater aquacultures [J]. Ecotoxicology and Environmental Safety,2010,73(7):1804-1811.
[25] 史靜,俎曉靜,張乃明,等.滇池草海沉積物磷形態(tài)、空間分布特征及影響因素 [J]. 中國環(huán)境科學(xué),2013,33(10):1808-1813.
[26] Maagd G,Hendriks J,Sijm D,et al. pH-dependent hydrop Hobicity of the cyanobacteria toxin microcystin LR [J]. Water Research,1999,33(5):677-680.
[27] Bottcher G,Grutzmacher G,Chorus I,et al. Degradation of microcystins: scaling up from test-tube to natural conditions. Geochemical processes in soil and groundwater: measurement,modelling,upscaling [C]// GeoProc 2002Conference,Bremen,Germany,2003,524-538.
[28] 李彥文,向壘,莫測輝,等.典型微囊藻毒素對(duì)白菜種子發(fā)芽的生態(tài)毒性 [J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2012,31(10):1879-1883.
[29] 詹曉靜,向壘,李彥文,等.微囊藻毒素(MC-LR)和重金屬鉻復(fù)合污染對(duì)白菜種子發(fā)芽的影響 [J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2013,32(1):203-204.
[30] 耿志明,顧迎迎,王澎.微囊藻毒素對(duì)小白菜、番茄生長發(fā)育影響及其在它們體內(nèi)積累的研究 [J]. 江西農(nóng)業(yè)學(xué)報(bào),2011,23(9):21-24.
[31] 李慧明,干曉宇,鄧?yán)?,?微囊藻毒素(MC-LR)在黑麥草幼苗體內(nèi)的積累及對(duì)其生長的影響 [J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2010,29(1):49-53.
[32] El Khalloufi F,Oufdou K,Lahrouni M,et al. Allelopatic effects of cyanobacteria extracts containing microcystins on Medicago sativa-Rhizobia symbiosis [J]. Ecotoxicology and Environmental Safety,2011,74(3):431-438.
[33] Pflugmacher S,Aulhorn M,Grimm B. Influence of a cyanobacterial crude extract containing microcystin-LR on the physiology and antioxidative defence systems of different spinach variants [J]. New Phytologist,2007,175(3):482-489.
[34] Chen J,Song L,Dai J,et al. Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape( Brassica napus L.) and rice (Oryza sativa L.) [J]. Toxicon,2004,43(4):393-400.
[35] Prieto A,Campos A,Cameán A,et al. Effects on growth and oxidative stress status of rice plants (Oryza sativa) exposed to two extracts of toxin-producing cyanobacteria (Aphanizomenon ovalisporum and Microcystis aeruginosa) [J]. Ecotoxicology and Environmental Safety,2011,74(7):1973-1980.
[36] 胡正宏,李玉成,郝家勝.微囊藻毒素-LR對(duì)大乳頭水螅的急性毒性研究 [J]. 安徽農(nóng)業(yè)科學(xué),2011,39(29):17937-17938,17941.
[37] Lindsay J,Metcalf J S,Codd G A. Protection against the toxicity of microcystin-LR andcylindrospermopsin in Artemia salina and Daphnia spp. Bypre-treatment with cyanobacterial lipopolysaccharide (LPS) [J]. Toxicon,2006,48(8):995-1001.
[38] 陳艷,王金秋,王陽,等.微囊藻毒素對(duì)褶皺臂尾輪蟲的毒性效應(yīng)和種群增長影響 [J]. 中國環(huán)境科學(xué),2002,22(3):198-201.
[39] Ward C J,Codd G A. Comparative toxicity of four microcystins of different hydrophobicities to the protozoan,Tetrahymena pyriformis [J]. Journal of Applied Microbiology,1999,86(2):874-882.
[40] Liu Y D,Song L R,Li X Y,et al. The toxic effects of microcystin-LR on embryo-larval and juvenile development of loach,Misguruns mizolepis Gunthe [J]. Toxicon,2002,40(5):395-399.
[41] Li X Y,Wang J,Liang J B,et al. Toxicity of microcystins in the isolated hepatocytes of common carp (Cyprinus carpio L.) [J]. Ecotoxicology and Environmental Safety,2007,67(11):447-451.
[42] Chen W,Song L R,Gan N Q,et al. Sorption,degradation and mobility of microcystins in Chinese agriculture soils: Risk assessment for groundwater protection [J]. Environmental Pollution,2006,144(3):752-758.
致謝:樣品采集得到云南省環(huán)境監(jiān)測中心站金玉、鐵程、李愛軍等大力幫助,在此表示感謝.
Investigation and risk evaluation of microcystins in agricultural soils.
ZHAN Xiao-jing1,XIANG Lei1,2,LI Yan-wen1,2*,MO Ce-hui1,DENG Zhe-shen1,HUANG Bin-hui1,WEN Hong-fei1,CAI Quan-ying1,ZHAO Hai-ming1,2(1.Key Laboratory of Water/Soil Toxic Pollutants Control and Bioremediation of Guangdong Higher Education Institutions,School of Environment,Jinan University,Guangzhou 510632,China;2.Department of Ecology,Jinan University,Guangzhou 510632,China).
China Environmental Science,2015,35(7):2129~2136
Microcystins (MCs) released from cyanobacterial blooms may be transferred to agricultural soil via irrigation water and cyanobacterial compost. Concentration distribution and risk evaluation of three commonly found MCs(including MC-LR,MC-RR,and MC-YR) in 35 soil samples from vegetable fields around heavy eutrophic Dianchi Lake were studied using solid phase extraction and liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Results indicated that MCs were detected in 85.7% of the samples and the total concentrations of MCs ranged from n.d. (below LOQ) to 7.8μg/kg with the average concentration of 1.6μg/kg. MC-RR appeared the highest detection rate (82.9%) and concentration (n.d.~5.3μg/kg),followed by MC-LR and MC-YR. Both the health and ecological risks of the three MCs were acceptable. MC-YR displayed the highest health ecological risk,while MC-LR showed the highest ecological risk. Oral intake and dermal contact were primary exposure pathway of MCs to children and adults,respectively. Children suffered higher health risk than adults.
microcystins;agricultural soils;pollution characterization;risk evaluation;Dianchi Lake
X82
A
1000-6923(2015)07-2129-08
2014-12-08
國家自然科學(xué)基金項(xiàng)目(41301337,41173101);中央高?;究蒲袠I(yè)務(wù)專項(xiàng)基金項(xiàng)目(21612103);廣東省科技計(jì)劃省部產(chǎn)學(xué)研項(xiàng)目(2013B090600143);廣東省自然科學(xué)基金項(xiàng)目(2011020003196);廣東省高校高層次人才項(xiàng)目;東莞市科技計(jì)劃項(xiàng)目(201210815000399);暨南大學(xué)2014級(jí)優(yōu)秀本科推免生科研創(chuàng)新培育計(jì)劃項(xiàng)目
* 責(zé)任作者,高級(jí)工程師,edou6033@163.com
詹曉靜(1989-),女,廣東潮州人,暨南大學(xué)碩士研究生,從事土壤污染與農(nóng)產(chǎn)品安全研究.發(fā)表論文4篇.