劉 婧,王 威,李 驥,楊蔚蔚
(長(zhǎng)沙理工大學(xué)計(jì)算機(jī)與通信學(xué)院,湖南 長(zhǎng)沙 410114)
基于對(duì)偶樹復(fù)小波變換的模糊圖像質(zhì)量評(píng)價(jià)*
劉 婧,王 威,李 驥,楊蔚蔚
(長(zhǎng)沙理工大學(xué)計(jì)算機(jī)與通信學(xué)院,湖南 長(zhǎng)沙 410114)
小波域和結(jié)構(gòu)相似度SSIM的質(zhì)量評(píng)價(jià)方法已經(jīng)成為圖像處理領(lǐng)域的研究熱點(diǎn),然而都存在一定的缺陷:傳統(tǒng)的離散小波變換缺乏平移不變性,其方向選擇性也十分有限;對(duì)于嚴(yán)重模糊的圖像,SSIM評(píng)價(jià)結(jié)果并不十分準(zhǔn)確?;诖?,提出了一種適應(yīng)于模糊圖像質(zhì)量評(píng)價(jià)的新算法。該算法用對(duì)偶樹復(fù)小波變換DTCWT將圖像進(jìn)行分解來獲取復(fù)小波系數(shù),然后對(duì)所得到的六個(gè)方向的高頻子帶系數(shù)分別進(jìn)行平均梯度幅度值的結(jié)構(gòu)相似度 MGSIM測(cè)量,最后將所得到的全部 MGSIM的均值作為最終的原始模糊圖像的模糊值。仿真實(shí)驗(yàn)驗(yàn)證了本方法比結(jié)構(gòu)相似度更吻合人眼的視覺效果,與主觀評(píng)價(jià)方法具有很好的一致性,并且在各方面的性能都優(yōu)于目前有關(guān)文獻(xiàn)的方法。
小波域;對(duì)偶樹復(fù)小波變換;SSIM;平均梯度幅度值的結(jié)構(gòu)相似度(MGSIM)
在圖像處理過程中,如何對(duì)圖像處理結(jié)果進(jìn)行質(zhì)量評(píng)價(jià)是一個(gè)值得重點(diǎn)關(guān)注的問題。模糊性是圖像最常見的失真類型之一,導(dǎo)致圖像失真的原因有多種,如光學(xué)系統(tǒng)的像差、相機(jī)與物體間的相對(duì)機(jī)械運(yùn)動(dòng)等。由于模糊圖像的廣泛存在,所以對(duì)模糊圖像質(zhì)量評(píng)價(jià)算法的研究具有非常重要的意義。當(dāng)前經(jīng)常使用的評(píng)價(jià)方法可以分為主客觀這兩種常見的類型。其中可信度最高的評(píng)價(jià)方法是數(shù)字圖像的主觀評(píng)價(jià)DMOS(Different Mean Objective Score)方法[1],主觀評(píng)價(jià)方法通常會(huì)進(jìn)行大量重復(fù)實(shí)驗(yàn),不僅耗時(shí)多、費(fèi)用高,并且無法建立對(duì)應(yīng)的數(shù)學(xué)模型,脫離人工不能得到結(jié)果,因此不能應(yīng)用到實(shí)際的視頻和圖像處理系統(tǒng)當(dāng)中[2]。所以,圖像質(zhì)量的客觀評(píng)價(jià)方法目前已成為研究的熱點(diǎn)[3]。依據(jù)對(duì)原始圖像的參照程度,客觀圖像質(zhì)量評(píng)價(jià)可分為三類:全參考質(zhì)量評(píng)價(jià)、半(弱)參考質(zhì)量評(píng)價(jià)以及無參考質(zhì)量評(píng)價(jià)[4]。在許多環(huán)境下,參考圖像無法獲取,因此需要深入研究無參考質(zhì)量評(píng)價(jià)方法。
Feichtenhofer C H等人[5]根據(jù)人類視覺系統(tǒng)特性提取模糊圖像邊緣的梯度特征來建立 PSI (Perceptual Sharpness Index)指標(biāo),通過PSI指標(biāo)直接計(jì)算圖像質(zhì)量;Ferzli R等人[6]采用恰可察覺模型JNB(Just Noticeable Blur)對(duì)模糊圖像進(jìn)行質(zhì)量評(píng)價(jià);Marziliano P等人[7]利用圖像中的邊緣平均寬度作為圖像模糊測(cè)度,方法簡(jiǎn)單易行,可以取得更好的評(píng)估效果,Moorthy K A等人[8]提出先用分類算法求出失真概率,再單獨(dú)計(jì)算失真強(qiáng)度并加權(quán)和等。以上都是從一定角度出發(fā),構(gòu)造了模糊圖像質(zhì)量評(píng)價(jià)指標(biāo),取得了一定的成果。但是,評(píng)價(jià)結(jié)果存在一定的缺陷,還需要進(jìn)一步提高和改善,例如文獻(xiàn)[5]的方法要求一次性先定義大批參數(shù)來進(jìn)行失真概率的學(xué)習(xí)。
結(jié)合上述分析,本文提出了一種基于對(duì)偶樹復(fù)小波變換和平均梯度幅度值結(jié)構(gòu)相似度 MGSIM (Mean Gradient magnitude based structure SIM-milarity)相結(jié)合的模糊圖像質(zhì)量評(píng)估方法,先將圖像進(jìn)行對(duì)偶樹復(fù)小波變換分解,針對(duì)六個(gè)方向的高頻子帶系數(shù)進(jìn)行平均梯度幅度值的結(jié)構(gòu)相似度測(cè)量,然后將所得到的全部 MGSIM的均值作為最終的原模糊圖像的模糊值。
2.1 由模糊圖像得到參考圖像
原始無失真圖像在經(jīng)過高斯低通濾波器后可以得到一幅模糊圖像,所得到的圖像模糊程度是由低通濾波器的帶寬來決定的。經(jīng)過對(duì)原始無失真圖像、模糊圖像和濾波器使圖像模糊的研究,發(fā)現(xiàn)人類對(duì)模糊值變化較小的圖像之間的差異難以察覺。
自然圖像a在經(jīng)過11×11并且σ=1.5的高斯低通濾波器以后得到模糊圖像b,同樣的原理,把模糊圖像b也經(jīng)過相同高斯濾波器之后可以得到再模糊圖像c。全參考圖像質(zhì)量評(píng)價(jià)中,必須要有清晰圖像a作為參考,才能去評(píng)價(jià)模糊圖像b的好壞。根據(jù)前面分析,如果沒有清晰圖像作為參考圖像,那么可以用再模糊圖像c作為模糊圖像b的參考圖像。因此,對(duì)模糊圖像b的無參考圖像質(zhì)量評(píng)價(jià)問題,就轉(zhuǎn)化為以模糊圖像c作為參考圖像的全參考圖像質(zhì)量評(píng)價(jià)問題。與模糊圖像相比,清晰的圖像包含有更詳細(xì)的信息,即高頻分量,所以可以通過高斯低通濾波器構(gòu)造模糊圖像c。
2.2 SSIM計(jì)算
圖像與圖像之間的像素差異即圖像的高度結(jié)構(gòu)性,用人眼直接觀察時(shí)容易被忽略??紤]到多方面問題Zhou Wang等人[9]提出了一種新的結(jié)構(gòu)相似度SSIM(Structural SIMilarity)圖像質(zhì)量評(píng)價(jià)方法。
SSIM包含了自然圖像和失真圖像分別在亮度、對(duì)比度以及結(jié)構(gòu)信息各方面的對(duì)比,這三部分均可由單獨(dú)的函數(shù)來表示,通常使用的計(jì)算方法如下:
綜合以上計(jì)算結(jié)果,可以得到模型的評(píng)判方法[10]:
其中,x為自然圖像,y為質(zhì)降圖像,ux和uy為自然圖像與質(zhì)降圖像中局部像素塊的平均亮度值,σx和σy則表示為兩幅圖像中局部像素塊的量度標(biāo)準(zhǔn)差,σxy為兩幅圖像中對(duì)應(yīng)像素塊的亮度相關(guān)系數(shù)。參數(shù)α、β、γ均大于零,以調(diào)整三個(gè)部分所占的比重,一般都取1;C1、C2、C3用于增加計(jì)算結(jié)構(gòu)的穩(wěn)定性,C1、C2、C3為較小的值。MSSIM(Mean Structural SIMilarity)算法將一幅圖像劃分成M個(gè)圖像塊,每一個(gè)圖像子塊的大小統(tǒng)一為N×N。由此整幅圖像的MSSIM定義為:
2.3 MGSIM計(jì)算
雖然SSIM可以用來作為一種檢測(cè)圖像質(zhì)量好壞的指標(biāo),但是對(duì)于嚴(yán)重模糊圖像評(píng)估結(jié)果SSIM可靠 性 不 高[11,12]。人 類 對(duì) 圖 像 的 邊緣 信 息部分極度敏感,梯度能夠很好地顯示對(duì)比度和細(xì)節(jié)等不易察覺的圖像紋理特征的變化,能夠更好地評(píng)估圖像的質(zhì)量好壞,因此可以把梯度看成圖像的重要結(jié)構(gòu)信息,進(jìn)行基于梯度的結(jié)構(gòu)失真的圖像質(zhì)量評(píng)價(jià)方法[13]。
梯度幅值可以采用以下公式計(jì)算:
在圖像質(zhì)量評(píng)價(jià)中我們研究的是數(shù)字圖像,對(duì)于數(shù)字圖像一般可以用差分運(yùn)算代替微分運(yùn)算。公式(6)可借用差分公式來近似代替:
計(jì)算梯度的方法有很多,可用八鄰域絕對(duì)值和來代表圖像的梯度幅度值。圖像x和y的梯度相似度g為:
其中Gx(i,j)、Gy(i,j)分別表示圖像x和圖像y在 (i,j)點(diǎn)的梯度幅度值。
將式(4)中的s(x,y)用梯度相似度g(x,y)代替,就可以得到GSIM。那么整個(gè)圖像的梯度結(jié)構(gòu)相似度可以由每一個(gè)子圖塊的GSIM的均值來求得:
設(shè)兩幅圖像x、y,xi、yi表示圖像的子塊,i∈[1,M],整個(gè)圖像分塊數(shù)為M,則:
MGSIM著重于圖像之間細(xì)節(jié)上的相似度,因此更符合人眼視覺系統(tǒng)。
自離散小波變換DWT(Discrete Wavelet Transform)出現(xiàn)以來,它作為信號(hào)和圖像處理的工具已經(jīng)得到了一定的肯定,但是傳統(tǒng)的離散小波變換存在缺少平移不變性和有限的方向選擇性兩個(gè)方面的弊端。
為了進(jìn)一步克服離散小波變換所帶來的弊端,Kingsbury N G在1998年提出對(duì)偶樹復(fù)小波變換DTCWT((Dual Tree Complex Wavelet Transform)[14]這一新的小波變換,它是以離散小波變換為基礎(chǔ)的一種新型小波變換模型,是二叉樹算法的一種,不僅保留了DWT和CWT(Complex Wavelet Transform)的優(yōu)點(diǎn),而且還解決了其他小波變換的缺點(diǎn),并且還具有更多比較好的優(yōu)點(diǎn),它有平移不變性和多方向性。
對(duì)偶樹復(fù)小波變換是兩個(gè)實(shí)值離散小波變換的和,它會(huì)得到±15°、±45°和±75°六個(gè)方向的子帶,但是傳統(tǒng)的離散小波變換只能夠產(chǎn)生三個(gè)方向子帶,分別是0°、45°和90°。一維的對(duì)偶樹復(fù)小波變換分解公式如下:
其中,ζ表示一維向量,w(ζ)是尺度函數(shù),φ(ζ)是擴(kuò)散母小波,N是自然數(shù)集合,j和l分別是平移和擴(kuò)散指數(shù),Sj0,l是尺度系數(shù),cj,l為復(fù)小波系數(shù)。
與一維對(duì)偶樹復(fù)小波變換類似,二維對(duì)偶樹復(fù)小波變換把二維圖像Zα,β進(jìn)行分解,分解如下:
Figure 1 Principle diagram of the dual tree complex wavelet transform圖1 對(duì)偶樹復(fù)小波變換原理圖
其中,θ∈Θ={±15°,±45°,±75°}是復(fù)小波函數(shù)的方向,這樣就可以把Zα,β分解成一個(gè)復(fù)數(shù)的低通子帶和六個(gè)復(fù)數(shù)值高通子帶。
圖1是DTCWT的詳細(xì)圖[15],該圖給出了兩個(gè)互相平行的小波樹,即樹A和樹B。濾波器H0b和H1b與濾波器H0a和H1a之間的延遲恰好是一個(gè)采樣值的間隔,那么就可以確保Tree B中的第一層的向下采樣取到Tree B中因隔點(diǎn)采樣運(yùn)算而舍棄的不能保留的采樣值。
在實(shí)現(xiàn)對(duì)偶樹復(fù)小波變換的正變換后,還要實(shí)現(xiàn)其逆變換。為了實(shí)現(xiàn)其逆變換,我們?cè)诿靠脴渲卸际褂昧穗p正交濾波器,這也是因?yàn)樵摓V波器的完全重構(gòu)特性,同時(shí)為了達(dá)到整個(gè)系統(tǒng)近似的平移不變性,必須對(duì)最后兩棵樹所得到的結(jié)果求平均。經(jīng)過二維對(duì)偶樹復(fù)小波變換后,得到一個(gè)低頻子帶和六個(gè)方向的高頻子帶,方向分別是±15°、±45°和±75°,這么多的方向可以更好地描述圖像紋理、邊界等特征,可更好地用于圖像后期處理。
4.1 實(shí)驗(yàn)流程
基于上述分析,模糊指標(biāo)計(jì)算的具體步驟如下:
(1)為原圖像構(gòu)造參考圖像。將原始模糊圖像經(jīng)過大小為11×11,σ=1.5的高斯低通濾波器得到再次模糊圖像,作為參考圖像。經(jīng)過這一步就把原有的無參考圖像質(zhì)量評(píng)價(jià)轉(zhuǎn)換成了全參考圖像質(zhì)量評(píng)價(jià)。
(2)提取對(duì)偶樹復(fù)小波系數(shù)。將原始模糊圖像和再模糊圖像分別進(jìn)行對(duì)偶樹復(fù)小波變換得到± 15°、±45°和±75°的六個(gè)方向的子頻帶。
(3)MGSIM計(jì)算。把兩幅圖像得到的第i個(gè)系數(shù)分別進(jìn)行平均梯度幅度值的結(jié)構(gòu)相似度計(jì)算MGSIM(xi,yi)。
(4)對(duì)每一個(gè)頻帶的MGSIM求取平均值,獲得整幅圖像的平均梯度幅度值的結(jié)構(gòu)相似度。最后將所得到的全部MGSIM的平均值等同于最后的評(píng)價(jià)圖像的模糊值blur:
其中,N表示子頻帶個(gè)數(shù);MGSIM表示每個(gè)子頻帶的平均梯度幅度值的結(jié)構(gòu)相似度。MGSIM越大,所求的blur值越大,表示原始圖模糊圖像的質(zhì)量越差,反之則質(zhì)量越好。
本文方法的流程圖如圖2所示。
Figure 2 System flowchart圖2 系統(tǒng)流程圖
4.2 實(shí)驗(yàn)結(jié)果分析
實(shí)驗(yàn)選用LIVE實(shí)驗(yàn)室提供的blur圖片庫來驗(yàn)證本文方法的有效性(軟硬件平臺(tái):PC;OS:Windows XP;CPU:2.71 GHz;RAM:2 GB;Software:Matlab 7.0)。選用兩個(gè)客觀參量作為評(píng)價(jià)指標(biāo),即經(jīng)過非線性回歸之后的皮爾遜相關(guān)系數(shù)CC(Correlation Coefficent)和斯皮爾曼等級(jí)相關(guān)系數(shù)SROCC(Spearman Rank Order Correlation Coefficient)。SROCC與CC是0到1的值,它們值越接近1,代表其性能越好。
為了對(duì)小波變換與對(duì)偶樹復(fù)小波變換做深入比較,用Lena圖進(jìn)行了實(shí)驗(yàn)。圖3為小波變換結(jié)果,圖3a~圖3c分別是90°、0°和高頻結(jié)果圖。圖4為對(duì)偶樹復(fù)小波變換結(jié)果圖,圖4a~圖4f分別表示在方向—15°、—45°、—75°、75°、45°、15°的圖像。對(duì)比兩個(gè)變換后的結(jié)果,我們可以看出具有更多方向圖像的對(duì)偶樹復(fù)小波變換可以更好地描述圖像在各個(gè)方向上的紋理特征。
圖5a表示原圖像,圖5b~圖5g分別是高頻上方向?yàn)椤?5°、—45°、—75°、75°、45°、15°的變換結(jié)果。其中圖5h是低頻圖像,因?yàn)榈皖l圖像很容易受到噪聲、光照等因素的干擾與影響,所以它一般不用于圖像質(zhì)量評(píng)價(jià)中。
為了進(jìn)一步評(píng)價(jià)本文方法的性能,本文算法與目前已有算法[5~7]的對(duì)比如表1所示。
Figure 3 Results after the wavelet transform圖3 小波變換后結(jié)果
Figure 4 Results 1 after the dual tree complex wavelet transform圖4 對(duì)偶樹復(fù)小波變換后結(jié)果1
Table 1 Per formance comparison of different evaluation algorithms表1 不同評(píng)價(jià)算法的性能比較
由表1可見,與JNB算法、分類算法中的方法比較,本文算法的結(jié)果和主觀評(píng)價(jià)方法的一致性、準(zhǔn)確性都有比較明顯的提升,相對(duì)于分類算法在CC評(píng)價(jià)值上提升了將近2個(gè)百分點(diǎn),在SROCC上提升了5個(gè)百分點(diǎn)。把CC和SROCC這兩個(gè)重要質(zhì)量衡量指標(biāo)結(jié)合起來思考,發(fā)現(xiàn)本文算法在一定程度上能夠獲得比較好的性能。
總之,由表1中的比較可以看出,本文中提出的方法預(yù)測(cè)的圖像客觀質(zhì)量評(píng)價(jià)與圖像主觀評(píng)價(jià)更加一致,更加符合人眼視覺系統(tǒng),而且計(jì)算復(fù)雜度低。因此,本文所提出的新方法可以用于對(duì)無參考模糊圖像進(jìn)行質(zhì)量評(píng)價(jià)。
Figure 5 Results 2 after the dual tree complex wavelet transform圖5 對(duì)偶樹復(fù)小波變換后結(jié)果2
針對(duì)模糊失真圖像,本文提出了一種基于對(duì)偶樹復(fù)小波變換和平均梯度幅度值結(jié)構(gòu)相似度相結(jié)合的模糊圖像質(zhì)量評(píng)估方法,通過高斯低通濾波將原始圖像再模糊,對(duì)原始圖像和模糊圖像經(jīng)過對(duì)偶樹復(fù)小波變換和MGSIM等步驟,最終得到原始圖像模糊值。實(shí)驗(yàn)結(jié)果表明,本方法是一種較準(zhǔn)確可靠的無參考模糊圖像評(píng)價(jià)方法。怎樣把這種構(gòu)造參考圖像的評(píng)價(jià)方法應(yīng)用到其他各種失真類型的無參考圖像質(zhì)量評(píng)價(jià)中將是以后工作的研究重心。
[1] Sheikh H R,Sabir M F,Bovik A C.A statistical evaluation of recent full reference in image quality assessment algorithms[J].IEEE Transactions on Image Processing,2006,15(11):3440-3451.
[2] Wang Hong-jiao.Research and implementation of the image quality assessment method[D].Xi'an:Xi'an University of E-lectronic Science and Techology,2014.(in Chinese)
[3] Lu W,Gao X B,Li X L,et al An image quality assessment metric based Contourlet[C]∥Proc of IEEE International Conference on Image Processing,2008:1172-1175.
[4] Wang Zheng-you,Li Zhen-xing,Lin Wei-si,et al.Improved image quality assessment model incorporating H VS and FSIM[J].Chinese Journal of Scientific,2013,33(7):1606-1612.(in Chinese)
[5] Feichtenhofer C H,Schallauer F H.A perceptual sharpness metric based on local edge gradient analysis[J].IEEE Signal Processing Letters,2013,20(4):379-382.
[6] Ferzli R,Karam L J.A no-reference object image sharpness metric based on just-noticeable blur[J].IEEE Transactions on Image Processing,2009,18(4):717-728.
[7] Marziliano P,Dufaux F.Winkler S,et al.Perceptual blur and ringing metrics:Application to JPEG 2000[J].Signal Processing:Image Communication,2004,19(2):163-172.
[8] Moorthy K A,Bovik A C.A two-step framework for constructing blind image quality indices[J].IEEE Signal Processing Letters,2010,17(5):513-516.
[9] Zhou Wang,Conrad Bovik.Image quality assessment:From error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.
[10] Li Ling-ling,Wang Hui,Yan Cheng-xin.Study on regional segmentation image fusion technique based on improved structure similarity[J].Application Research of Computers,2014(6):1914-1917.(in Chinese)
[11] Liu An-min,Lin Wei-si,Narwaria Manish.Image quality assessment based on gradient similarity[J].IEEE Transactions on Image Processing,2012,47(17):962-963.
[12] Gu Shan-bo,Shao Feng,Jiang Gang-yi,et al.An objective quality assessment metric for stereoscopic images based on just noticeable distortion[J].Journal of Optoelectronics Laser,2012,23(5):999-1004.(in Chinese)
[13] Yang Chun-ling,Kuang Kai-zhi,et al.Gradient based structural similarity for image quality assessment[J].Journal of South University of Technology,2006,34(9):22-25.(in Chinese)
[14] Kingsbury N G.Image processing with complex wavelets [J].Philosophical Transactions:Mathematical,Physical and Engineering Science(S1364-503x),1999,357(1760):2543-2560.
[15] Kingsbury N.Image processing with complex wavelets[EB/ OL].[2000-11-08].www-sigproc.eng.cam.ac.uk/publication/ngk/ngk99a.ps.gz.
附中文參考文獻(xiàn):
[2] 王洪嬌.圖像質(zhì)量評(píng)價(jià)方法的研究及實(shí)現(xiàn)[D].西安:西安電子科技大學(xué),2014.
[4] 王正友,李振興,林維斯,等.結(jié)合 HVS和相似特征的圖像質(zhì)量評(píng)價(jià)方法[J].儀器儀表學(xué)報(bào),2013,33,(7):1606-1612.
[10] 李玲玲,王蕙,閆成新.基于改進(jìn)結(jié)構(gòu)相似度的區(qū)域劃分圖像融合技術(shù)研究[J],計(jì)算機(jī)應(yīng)用研究,2014(6):1914-1917.
[12] 顧珊波,邵楓,蔣剛毅,等.失真的立體圖像質(zhì)量客觀評(píng)價(jià)方法[J].光電子·激光,2012,23(5):999-1004.
[13] 楊春玲,曠開智,陳冠豪,等.基于梯度的結(jié)構(gòu)相似度的圖像質(zhì)量評(píng)價(jià)[J].華南理工大學(xué)學(xué)報(bào),2006,34(9):22-25.
劉婧(1991 ),女,湖南益陽人,碩士生,研究方向?yàn)橹悄苄畔⑻幚?。E-mail:123410932@qq.com
LIU Jing,born in 1991,MS candidate,her research interest includes intelligent signal processing.
王威(1974),男,山東青島人,博士,教授,研究方向?yàn)橹悄苄畔⑻幚?。E-mail:wangwei@csust.edu.cn
WANG Wei,born in 1974,PhD,professor,his research interest includes intelligent signal processing.
李驥(1981),男,湖南婁底人,博士,講師,研究方向?yàn)樾盘?hào)處理和電磁散射。E-mail:hangliji@163.com
LI Ji,born in 1981,PhD,lecturer,his research interests include signal processing,and electromagnetic scattering.
楊蔚蔚(1988 ),女,湖南常德人,碩士生,研究方向?yàn)橹悄苄畔⑻幚?。E-mail:1732648392@qq.com
YANG Wei-wei,born in 1988,MS candidate,her research interest includes intelligent signal processing.
Blur image quality assessment based on DTCWT
LIU Jing,WANG Wei,LI Ji,YANG Wei-wei
(School of Computer and Communication Engineering,Changsha University of Science&Technology,Changsha 410114,China)
Wavelet domain and structural similarity(SSIM)quality assessment method have become hotspots in the field of image processing,however,both of them have some flaws:the traditional discrete wavelet transform lacks of translational invariance and its direction selectivity is also highly limited;for severe blurred images,the results of the SSIM are not very accurate.Therefore,we propose a new algorithm for blur image quality evaluation.This algorithm uses dual tree complex wavelet transform(DTCWT)image decomposition to obtain the complex wavelet coefficients and the high frequency sub band coefficients of all the six directions.Then the structural similarity of the average gradient amplitude is measured.Finally all the mean gradient-magnitude-based structural similarity(MGSIM)average is calculated as the final fuzzy values of the original blur images.Experimental results show that the proposed method fits the visual characteristics of human eyes better in contrast with the structural similarity method,and well matches the results of subjective evaluation methods.The assessment results are better than the current literature in terms of overall performance.
wavelet domain;dual-tree complex wavelet transform;SSIM;mean gradient magnitude based structural similarity
TP391.4
A
10.3969/j.issn.1007-130X.2015.08.023
1007-130X(2015)08-1573-06
2014-09-05;
2014-12-16
博士后基金資助項(xiàng)目(2013M542467);國防973基金資助項(xiàng)目
通信地址:410114湖南省長(zhǎng)沙市長(zhǎng)沙理工大學(xué)計(jì)算機(jī)與通信學(xué)院
Address:School of Computer and Communication Engineering,Changsha University of Science&Technology,Changsha 410114,Hunan,P.R.China