袁 淋,李曉平,劉盼盼
油氣田開(kāi)發(fā)
氣頂?shù)姿筒厮骄R界產(chǎn)量計(jì)算方法
袁淋1,李曉平1,劉盼盼2
(1.西南石油大學(xué)油氣藏地質(zhì)及開(kāi)發(fā)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,成都610500;2.中國(guó)石油長(zhǎng)慶油田分公司采氣一廠,陜西榆林718500)
氣頂?shù)姿筒厮骄R界產(chǎn)量是衡量水平井井筒是否過(guò)早水錐和氣錐的一個(gè)重要因素,準(zhǔn)確計(jì)算其大小對(duì)氣頂?shù)姿筒亻_(kāi)發(fā)至關(guān)重要。基于水平井井筒周?chē)鷼忭斉c底水錐進(jìn)原理,考慮水平井井筒周?chē)鷻E圓形等壓面,并將該等壓面等效為發(fā)展矩形族,利用橢圓滲流原理推導(dǎo)了氣頂?shù)姿筒厮骄R界產(chǎn)量計(jì)算模型。通過(guò)實(shí)例計(jì)算與對(duì)比,本文模型計(jì)算結(jié)果與數(shù)值模擬方法臨界產(chǎn)量計(jì)算結(jié)果相對(duì)誤差為9.08%,且油層厚度較大時(shí),兩者之間的誤差更小,說(shuō)明本文模型準(zhǔn)確性較好,實(shí)用性較強(qiáng)。敏感性分析表明,隨著水平井無(wú)因次井筒位置的增大,臨界產(chǎn)量呈現(xiàn)先增大后減小的趨勢(shì),且由于氣水物性差異,臨界產(chǎn)量在無(wú)因次井筒位置為0.4時(shí)取得最大值。因此,在利用水平井開(kāi)發(fā)氣頂?shù)姿筒氐倪^(guò)程中,應(yīng)優(yōu)選水平井井筒位置以保持較大臨界產(chǎn)量。
氣頂?shù)姿?;水平井;臨界產(chǎn)量;橢圓流;發(fā)展矩形族
TE328
A
1673-8926(2015)01-0122-05
同時(shí)含有氣頂與底水的邊際油藏一直是油氣藏工程中的開(kāi)發(fā)難點(diǎn)[1-2],而利用水平井能夠很好地解決這個(gè)難題,因?yàn)樗骄哂袧B流面積大、生產(chǎn)壓差小等特點(diǎn),既能提高油氣井產(chǎn)量,又能很好地延緩氣錐與水錐。目前,已有諸多學(xué)者對(duì)底水油藏和氣頂?shù)姿筒厮骄疂B流理論及參數(shù)優(yōu)化進(jìn)行了深入研究[3-11],但是對(duì)氣頂?shù)姿筒厮骄R界產(chǎn)量的研究尚存在不足,國(guó)內(nèi)僅有陳元千在文獻(xiàn)[12]中提出了氣頂?shù)姿筒厮骄R界產(chǎn)量的計(jì)算模型。筆者基于水平井橢圓滲流理論,將一簇簇橢圓形等壓線等效為發(fā)展矩形族,利用達(dá)西定律推導(dǎo)計(jì)算氣頂?shù)姿筒厮骄R界產(chǎn)量的新模型,并利用實(shí)例對(duì)比新模型臨界產(chǎn)量計(jì)算結(jié)果與數(shù)值模擬方法臨界產(chǎn)量預(yù)測(cè)結(jié)果,以驗(yàn)證新模型的準(zhǔn)確性,同時(shí)分析油層厚度以及無(wú)因次井筒位置對(duì)氣頂?shù)姿筒厮骄R界產(chǎn)量的影響,以期為氣頂?shù)姿筒厮骄R界產(chǎn)量的計(jì)算以及水平井井筒位置優(yōu)化提供新的思路及方法。
在不考慮水平井井筒壓降條件下,將水平井看成一線源。呂勁[13]通過(guò)建立并求解三維Laplace方程證明了水平井生產(chǎn)時(shí)井筒周?chē)葔壕€為一簇簇旋轉(zhuǎn)橢球體,那么在x-y平面內(nèi),等壓線為一簇簇共焦橢圓,且焦點(diǎn)為水平井井筒趾端與跟端。建立如圖1所示的橢圓坐標(biāo)系。
圖1 橢圓坐標(biāo)系Fig.1 Ellipse coordinate
在x-y平面內(nèi),將流體在水平井井筒周?chē)臐B流看成是橢圓流,選取任一橢圓形等壓線ξ,則橢圓坐標(biāo)與直角坐標(biāo)的關(guān)系為
其中
式(1)~(3)中:a為任一橢圓形等壓線的長(zhǎng)半軸,m;b為任一橢圓形等壓線的短半軸,m;L為水平段長(zhǎng)度,m;C為與水平井井筒有關(guān)的常數(shù),對(duì)于固定的水平井井筒,C為固定值。
目前橢圓流的描述通常借助發(fā)展矩形族[14-15],則有
對(duì)式(4)求導(dǎo),有
在橢圓形滲流場(chǎng)中,任一位置處滲流速度為
式中:v為橢圓形滲流場(chǎng)中任一點(diǎn)滲流速度,m/d;Kh為油藏水平滲透率,mD;μo為地下原油黏度,mPa·s。
將式(5)代入式(6)得
在y-z平面內(nèi),底水與氣頂錐進(jìn)示意圖如圖2所示。
圖2 氣頂?shù)姿筒貧忮F與水錐Fig.2 Gas and water coning in gas cap and bottom water reservoirs
由圖2可以看出,任一橢圓形等壓線處水平井滲流面積可以簡(jiǎn)化為一等高橢圓柱的面積,即
式中:h為油層厚度,m;z1為任一位置處的底水錐進(jìn)高度,m;z2為任一位置處的氣頂錐進(jìn)高度,m。
根據(jù)流量公式得
式中:qo為任一位置處的產(chǎn)量,m3/d;Bo為原油體積系數(shù),m3/m3。
當(dāng)?shù)姿F進(jìn)高度為z1,氣頂錐進(jìn)距離為z2時(shí),微元段驅(qū)動(dòng)壓差dp可以表示為
式中:Δρwo為油水密度差,g/cm3;Δρog為油氣密度差,g/cm3;g為重力加速度,本文取9.8 m/s2。
將式(10)代入式(9)得
當(dāng)水平井以臨界產(chǎn)量qc生產(chǎn)時(shí),井筒處水脊高度為d1,氣頂錐進(jìn)距離為d2,式(11)等號(hào)兩邊同時(shí)在對(duì)應(yīng)區(qū)間上積分得到
由于z1與z2存在對(duì)應(yīng)函數(shù)關(guān)系,但是二者關(guān)系式不清楚,因此式(12)的積分項(xiàng)只能利用數(shù)值積分方法求得,因此氣頂?shù)姿筒厮骄R界產(chǎn)量qc可以表示為
式中:qc為水平井臨界產(chǎn)量,m3/d;d1為井筒距離底水的高度,m;d2為井筒距離氣頂?shù)母叨?,m。
由橢圓坐標(biāo)系與直角坐標(biāo)系的關(guān)系得[15]
式(14)~(15)中:re為氣藏驅(qū)動(dòng)半徑,m;rw為水平井井筒半徑,m。
若水平井井筒在油層中的位置為Zw,則d1和d2分別可以表示為
式中:Zw為井筒在油層中的位置,m。
若考慮地層各向異性的影響,則臨界產(chǎn)量qc可以修正為
式中:Kv為油藏垂直滲透率,mD。
某氣頂?shù)姿筒匾凰骄緟?shù)如下:地下原油密度為0.65 g/cm3,地層水密度為1.06 g/cm3,地下氣體折算密度為0.065 g/cm3,地下原油黏度為0.29 mPa·s,原油體積系數(shù)為1.615 m3/m3,水平滲透率為164 mD,垂直滲透率為20.2 mD,井筒距油層底部距離為10 m,井筒半徑為0.11 m,驅(qū)動(dòng)半徑為300 m,油層厚度為30 m,水平段長(zhǎng)度為444.4 m。
將上述實(shí)例數(shù)據(jù)代入式(18)中計(jì)算得到氣頂?shù)姿筒厮骄R界產(chǎn)量為142.09 m3/d,而在實(shí)際油田開(kāi)發(fā)中,通過(guò)油井生產(chǎn)歷史擬合,并利用數(shù)值模擬方法計(jì)算得到實(shí)際臨界產(chǎn)量為130.26 m3/d,兩者相差11.83 m3/d,即本文模型與數(shù)值模擬方法計(jì)算結(jié)果的相對(duì)誤差為9.08%,因此,利用本文模型計(jì)算氣頂?shù)姿筒嘏R界產(chǎn)量具有較好的實(shí)用性。
油層厚度為影響氣頂?shù)姿筒厮骄R界產(chǎn)量的一個(gè)重要因素。圖3對(duì)比了本文模型與數(shù)值模擬方法計(jì)算臨界產(chǎn)量結(jié)果隨油層厚度變化的關(guān)系曲線。由圖3可以看出:一方面2種方法得到的臨界產(chǎn)量均隨油層厚度的增大而增大,且油層厚度較大時(shí)臨界產(chǎn)量增加更明顯;另一方面,對(duì)于不同厚度的油層,2種方法計(jì)算的臨界產(chǎn)量相差較小,且油層厚度較大時(shí)相差更小。因此,本文臨界產(chǎn)量計(jì)算模型與數(shù)值模擬方法始終保持較小誤差,在氣頂?shù)姿筒亻_(kāi)發(fā)過(guò)程中具有較高實(shí)用性。
圖3 不同油層厚度下本文模型與數(shù)值模擬方法臨界產(chǎn)量計(jì)算結(jié)果對(duì)比Fig.3 Contrast of critical rate calculated by new model and numerical simulation method under different reservoir thicknesses
除了油層厚度外,無(wú)因次井筒位置(Zw/h)也是影響氣頂?shù)姿筒厮骄R界產(chǎn)量的一個(gè)重要因素。圖4對(duì)比了不同油層厚度下氣頂?shù)姿筒厮骄R界產(chǎn)量隨無(wú)因次井筒位置變化的關(guān)系曲線。由圖4可看出,隨著無(wú)因次井筒位置的逐漸增大,水平井臨界產(chǎn)量呈現(xiàn)先增大后減小的趨勢(shì),當(dāng)油層厚度較大時(shí)該趨勢(shì)更加明顯,且當(dāng)無(wú)因次井筒位置達(dá)到0.4左右時(shí),水平井臨界產(chǎn)量最大。這是因?yàn)楫?dāng)無(wú)因次井筒位置較小時(shí),井筒離底水較近,若以較大產(chǎn)量生產(chǎn)容易產(chǎn)生底水錐進(jìn),而增大無(wú)因次井筒位置則有利于增加臨界產(chǎn)量,但是當(dāng)無(wú)因次井筒位置增大到一定程度后,井筒距氣頂?shù)木嚯x逐漸減小,使井筒距氣頂較近,井底容易產(chǎn)生氣錐,然而考慮到氣水物性差異,即氣相比水相更容易錐進(jìn),若要保持水平井有較大的臨界產(chǎn)量,相比之下,應(yīng)盡量使水平井井筒靠近底水,因此最優(yōu)無(wú)因次井筒位置為0.4。
圖4 無(wú)因次井筒位置對(duì)臨界產(chǎn)量的影響Fig.4 Effect of dimensionless wellbore location on critical rate
(1)在不考慮水平井井筒壓降條件下,基于水平井周?chē)鷻E圓形滲流,利用橢圓流達(dá)西定律,推導(dǎo)了氣頂?shù)姿筒厮骄R界產(chǎn)量計(jì)算的新模型。實(shí)例計(jì)算與對(duì)比表明,利用本文模型與數(shù)值模擬方法分別計(jì)算水平井臨界產(chǎn)量結(jié)果相差較小,且油層厚度較大時(shí)兩者之間的誤差更小。
(2)敏感性分析表明,隨著油層厚度的增大,氣頂?shù)姿筒厮骄R界產(chǎn)量不斷增大,而隨著無(wú)因次井筒位置的增大,水平井臨界產(chǎn)量呈現(xiàn)先增大后減小的趨勢(shì),但由于氣水物性差異,當(dāng)水平井無(wú)因次井筒位置為0.4時(shí),氣頂?shù)姿筒厮骄R界產(chǎn)量達(dá)到最大。
(References):
[1]喻高明,凌建軍,王家宏,等.氣頂?shù)姿筒亻_(kāi)采特征及開(kāi)發(fā)策略——以塔中402油藏為例[J].石油天然氣學(xué)報(bào)(江漢石油學(xué)院學(xué)報(bào)),2007,29(6):142-145.
Yu Gaoming,Ling Jianjun,Wang Jiahong,et al.The exploitation characteristics and development strategy in gas cap and bottom water reservoir—Taking Tazhong 402 reservoir as an example[J].Journal of Oil and Gas Technology(Journal of Jianghan Petroleum Institute),2007,29(6):142-145.
[2]趙良金,王軍.衛(wèi)2塊氣頂?shù)姿蜌獠厥S嘤头植佳芯浚跩].西南石油大學(xué)學(xué)報(bào):自然科學(xué)版,2008,30(1):93-95.
Zhao Liangjin,Wang Jun.Remaining oil distribution in bottom water oil reservoir with gas cap of Wei 2 block[J].Journal of Southwest Petroleum University:Science&Technology Edition,2008,30(1):93-95.
[3]范子菲,傅秀娟,方宏長(zhǎng).氣頂?shù)姿筒厮骄F進(jìn)的油藏工程研究[J].大慶石油地質(zhì)與開(kāi)發(fā),1995,14(3):38-43.
Fan Zifei,F(xiàn)u Xiujuan,F(xiàn)ang Hongchang.Reservoir engineering study of coning in horizontal well in a reservoir with gas cap and bottom water drive[J].Petroleum Geology&Oilfield Development in Daqing,1995,14(3):38-43.
[4]范子菲,傅秀娟.氣頂?shù)姿筒厮骄a(chǎn)能公式和見(jiàn)水時(shí)間研究[J].中國(guó)海上油氣(地質(zhì)),1995,9(6):406-413.
Fan Zifei,F(xiàn)u Xiujuan.Study of productivity and breakthrough time of horizontal well in a reservoir with gas-cap and bottom-water drive[J].China Offshore Oil and Gas(Geology),1995,9(6):406-413.
[5]范子菲.氣頂?shù)姿筒厮骄嚲忉尫椒ㄑ芯浚跩].油氣井測(cè)試,1996,5(4):25-32. Fan Zifei.Study on well test interpretation of horizontal well in a reservoir with gas-cap and bottom-water drive[J].Well Test,1996,5(4):25-32.
[6]王德龍,凌建軍,鄭雙進(jìn),等.氣頂?shù)姿筒厮骄顑?yōu)垂向位置研究[J].斷塊油氣田,2008,15(4):76-79.
Wang Delong,Peng Jianjun,Zheng Shuangjin,et al.Study on optimum vertical location of horizontal wells in reservoir with bottom water and gas cap[J].Fault-block Oil&Gas Field,2008,15(4):76-79.
[7]伍增貴,孫新民.氣頂?shù)姿筒刂兴骄p向脊進(jìn)研究[J].新疆石油地質(zhì),2008,29(5):622-625.
Wu Zenggui,Sun Xinmin.A study of dual cresting of horizontal wells in reservoirs with gas cap and bottom water[J].Xinjiang Petroleum Geology,2008,29(5):622-625.
[8]時(shí)宇,楊正明,張訓(xùn)華.氣頂?shù)姿筒厮骄g干擾研究[J].大慶石油地質(zhì)與開(kāi)發(fā),2008,27(5):62-66.
Shi Yu,Yang Zhengming,Zhang Xunhua.Interwell interference study on horizontal well in gas-cap oil reservoir with bottom water[J].Petroleum Geology&Oilfield Development in Daqing,2008,27(5):62-66.
[9]陸燕妮,鄧勇,陳剛.塔河油田縫洞型底水油藏臨界產(chǎn)量計(jì)算研究[J].巖性油氣藏,2009,21(4):108-110.
Lu Yanni,Deng Yong,Chen Gang.Calculation method of critical production rate for fractured-vuggy reservoir with bottom water[J].Lithologic Reservoirs,2009,21(4):108-110.
[10]王慶,劉慧卿,曹立迎.非均質(zhì)底水油藏水平井水淹規(guī)律研究[J].巖性油氣藏,2010,22(1):122-125.
Wang Qing,Liu Huiqing,Cao Liying.Water flooding law of horizontal well in heterogeneous bottom water reservoir[J].Lithologic Reservoirs,2010,22(1):122-125.
[11]王濤,趙進(jìn)義.底水油藏水平井含水變化影響因素分析[J].巖性油氣藏,2012,24(3):103-107.
Wang Tao,Zhao Jinyi.Influencing factors of water cut for horizontal wells in bottom water reservoir[J].Lithologic Reservoirs,2012,24(3):103-107.
[12]陳元千.預(yù)測(cè)水錐和氣錐水平井臨界產(chǎn)量的新方法[J].中國(guó)海上油氣,2010,22(1):22-26.
Chen Yuanqian.New methods to predict critical production retes in horizontal wells with water and gas coning[J].China Offshore Oil and Gas,2010,22(1):22-26.
[13]呂勁.水平井穩(wěn)態(tài)產(chǎn)油量解析公式及討論[J].石油勘探與開(kāi)發(fā),1994,20(6):135-140.
Lü Jin.An analytical solution of steady-state flow equation for the productivity of a horizontal well[J].Petroleum Exploration and Development,1994,20(6):135-140.
[14]熊健,曾山,王紹平.低滲透油藏變導(dǎo)流垂直裂縫井產(chǎn)能模型[J].巖性油氣藏,2013,25(6):122-126.
Xiong Jian,Zeng Shan,Wang Shaoshan.A productivity model of vertically fractured well with varying conductivity for low permeability reservoirs[J].Lithologic Reservoirs,2013,25(6):122-126.
[15]張烈輝,張?zhí)K,熊燕莉,等.低滲透氣藏水平井產(chǎn)能分析[J].天然氣工業(yè),2010,30(1):49-51.
Zhang Liehui,Zhang Su,Xiong Yanli,et al.Productivity analysis of horizontal gas wells for low permeability gas reservoirs[J]. Natural Gas Industry,2010,30(1):49-51.
(本文編輯:于惠宇)
New method for determining critical rate of horizontal well in gas cap and bottom water reservoirs
YUAN Lin1,LI Xiaoping1,LIU Panpan2
(1.State Key Laboratory of Oil&Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China;2.No.1 Gas Production Plant,PetroChina Changqing Oilfield Company,Yulin 718500,Shannxi,China)
Critical rate of horizontal well in gas cap and bottom water reservoirs is an important factor to measure whether the water and gas had breaked through oil-well earlier or not,so calculating its value accurately is of great significance during developing the gas cap and bottom water reservoirs.Based on the cresting mechanism of bottom water and gas cap around bore hole of horizontal well,this paper considered the ellipsoid constant pressure surfaces as family of the rectangles,used the principle of elliptical flow to deduct a new model for calculating the critical rate of horizontal well in gas cap and bottom water reservoirs.Through actual calculation and contrast,the result calculated by new model only has a small relative error with that calculated by numerical simulation method,only 9.08%.Moreover,when the reservoir thickness is big enough,the error will become smaller,which demonstrates that the new model has higher accuracy and practicability.Sensitivity analysis shows that with the increasing of dimensionless wellbore location,the critical rate presents increasing early,but decreasing when the dimensionless wellbore location has reached a high value.The critical rate gets maximum value when the dimensionless wellbore position is 0.4 because of thephysical character differences between gas and water.So during developing the gas cap and bottom water reservoirs with horizontal well,it would be best to prefer the horizontal wellbore location so as to keep higher critical rate.
gas cap and bottomwater;horizontal well;critical rate;elliptical flow;familyofthe rectangles
2014-05-17;
2014-07-05
國(guó)家杰出青年科學(xué)基金項(xiàng)目“油氣滲流力學(xué)”(編號(hào):51125019)資助
袁淋(1990-),男,西南石油大學(xué)在讀碩士研究生,研究方向?yàn)橛蜌獠毓こ膛c滲流力學(xué)。地址:(610500)四川省成都市新都區(qū)西南石油大學(xué)油氣藏地質(zhì)及開(kāi)發(fā)工程國(guó)家重點(diǎn)實(shí)驗(yàn)室B403室。E-mail:yuanlin343@163.com
李曉平(1963-),男,教授,博士生導(dǎo)師,主要從事滲流力學(xué)、試井分析及油氣藏工程領(lǐng)域的教學(xué)和科研工作。E-mail:nclxphm@126.com。