張利霞,趙西卿,郭瑞,許宏鑫
(延安大學數(shù)學與計算機科學學院,陜西延安716000)
關于數(shù)論函數(shù)方程S(SL(n))=φ(n)的可解性
張利霞,趙西卿,郭瑞,許宏鑫
(延安大學數(shù)學與計算機科學學院,陜西延安716000)
對于任意正整數(shù)n,S(n),SL(n),φ(n)分別為Smarandache函數(shù),Smarandache LCM函數(shù)和Euler函數(shù).本文利用S(n),SL(n),φ(n)的基本性質(zhì)結(jié)合初等方法推廣了方程S(n)=φ(n)和SL(n)=φ(n),研究了方程S(SL(n))=φ(n)的可解性,給出并證明了該方程僅有正整數(shù)解n=1,8,9,12,18.
Smarandache函數(shù);Smarandache LCM函數(shù);Euler函數(shù);正整數(shù)解
對于任意正整數(shù)n,著名的F.Smarandache函數(shù)S(n)定義為最小的正整數(shù)m使得n|m!,即S(n)=min{m:m∈N,n|m?。?].Smarandache LCM函數(shù)定義為最小的正整數(shù)k使得n|[1,2,···,k],即SL(n)=min{k:k∈N,n|[1,2,···,k]}[2].Euler函數(shù)φ(n)定義為小于n且與n互素的正整數(shù)的個數(shù).關于Smarandache函數(shù)的有關方程問題的研究,有許多學者已經(jīng)取得了一些重要的結(jié)果,例如文獻[3]給出了S(n)=φ(n)的所有正整數(shù)解為n=1,8,9,12,18.文獻[4]研究了方程SL(n)=φ(n),并給出它有且僅有n=1和形如n=3·2α(α≥2)的解.文獻[5]研究了函數(shù)方程Z(n)+S?(n)=n,得出它僅有偶數(shù)解n=6和奇數(shù)解n=pk,其中p為奇素數(shù),k為任意正整數(shù).
本文在前人關于Smarandache函數(shù)的有關方程問題的研究成果的基礎上,主要研究Smarandache函數(shù)S(n)和Smarandache LCM函數(shù)SL(n)的復合函數(shù)與Euler函數(shù)φ(n)之間的關系,即意在探討方程S(SL(n))=φ(n)的可解性,具體結(jié)果有
定理1.1方程S(SL(n))=φ(n)有且僅有n=1,8,9,12,18的解.
引理2.1[6]對任意正整數(shù)n,其中為素數(shù),特別地SL(pα)=pα.
引理2.2[7]如果p為某一素數(shù),那么S(pα)≤kp.如果k<p,那么S(pk)=kp,其中k為任意給定的正整數(shù).
引理2.3[8]Euler函數(shù)是積性函數(shù).即對任意互素的正整數(shù)a和b,有φ(ab)=φ(a)φ(b).
引理2.4對于正整數(shù)n,(1)方程φ(n)=1,僅有整數(shù)解n=1,2;(2)方程φ(n)=2,僅有整數(shù)解n=3,4,6.
證明(1)當n=1,2時,顯然φ(n)=1.
當n>2時,由文獻[2]第6-1節(jié)得φ(n)=2k(k=1,2,3,···),顯然φ(n)≠1.綜上方程φ(n)=1,僅有整數(shù)解n=1,2.
(2)證明參照文獻[9].
[1]張文鵬.關于F.Smarandache函數(shù)的兩個問題[J].西北大學學報:自然科學版,2008,38(2):173-176.
[2]張文鵬.初等數(shù)論[M].西安:陜西師范大學出版社,2007.
[3]Ma Jinping.An equation involving the Smarandache function[J].Journal of Scientia Magna,2005,1(2):89-90.
[4]趙教練.包含Euler函數(shù)的方程的可解性[J].唐山師范學院學報,2010,32(5):33-35.
[5]李梵蓓.一個與Smarandache函數(shù)有關的函數(shù)方程及其正整數(shù)解[J].西北大學學報:自然科學版,2008,38(6):892-893.
[6]Liu Yn,Li L,Liu B L.Smarandache Unsolved Problems and New Progress[M].Ann Arbor,MI:High American Press,2008.
[7]Mark F,Patrick M.Bounding the Smarandache Function[C].Washington D C:American Research Press,2002:37-42.
[8]Tom M Apostol.Introduction to Analytic Number Theory[M].New York:Spring-Verlag,1976.
[9]多布杰.關于歐拉函數(shù)方程?(?(x))=2t的可解性[J].純粹數(shù)學與應用數(shù)學,2014,30(6):564-568.
Solvability of arithmetic function equation S(SL(n))=φ(n)
Zhang Lixia,Zhao Xiqing,Guo Rui,Xu Hongxin
(College of Mathematics and Computer Science,Yan′an University,Yan′an716000,China)
For any positive integer n,S(n),SL(n),φ(n)is Smarandache function,Smarandache LCM function and Euler function.In the present paper,the equation S(n)=φ(n)and SL(n)=φ(n)were promoted,and the solvability of equation S(SL(n))=φ(n)was studied and all the positive integer solutions n=1,8,9,12,18 of the equation were given by using the property of S(n),SL(n),φ(n)and elementary method.
Smarandache function,Smarandache LCM function,Euler function,positive integer solutions
O156.4
A
1008-5513(2015)05-0533-04
10.3969/j.issn.1008-5513.2015.05.014
2015-03-25.
陜西省教育廳科研計劃資助項目(2013JK0557);延安大學研究生教育創(chuàng)新計劃項目.
張利霞(1989-),碩士生,研究方向:數(shù)論.
趙西卿(1965-),副教授,碩士生導師,研究方向:解析數(shù)論.
2010 MSC:11A99