菊軒 許崇濤*
快眼動(dòng)睡眠剝奪及腺苷受體拮抗劑對(duì)抑郁模型大鼠自發(fā)活動(dòng)的影響
菊軒許崇濤*
目的 研究快眼動(dòng)睡眠剝奪(REMSD)抗抑郁機(jī)制中腺苷及其受體對(duì)抑郁模型大鼠自發(fā)活動(dòng)的影響。方法 成年雄性SD大鼠56只,隨機(jī)分為正常對(duì)照組(8只)和應(yīng)激模型組(48只),應(yīng)激模型組經(jīng)21d慢性不可預(yù)見性應(yīng)激(CUS)和單籠孤養(yǎng)建立抑郁模型,再隨機(jī)分為抑郁模型組、睡眠剝奪組、水環(huán)境對(duì)照組、生理鹽水對(duì)照組、腺苷A1受體拮抗劑組、腺苷A2A受體拮抗劑組,每組各8只;行72h REMSD觀察大鼠自發(fā)活動(dòng)路程的變化。結(jié)果 72h REMSD后,睡眠剝奪組總路程、中央路程、周邊路程大于水環(huán)境對(duì)照組,差異有統(tǒng)計(jì)學(xué)意義(P<0.05);72h REMSD后,腺苷A1受體拮抗劑組總路程和周邊路程較前明顯增加,差異有統(tǒng)計(jì)學(xué)意義(P<0.01),中央路程無(wú)明顯變化,差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05);72 h REMSD后,腺苷A2A受體拮抗劑組總路程和周邊路程較前顯著增加,差異有統(tǒng)計(jì)學(xué)意義(P<0.01),中央路程增加,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。結(jié)論 72h REMSD可使抑郁模型大鼠的自發(fā)活動(dòng)增加,在72h REMSD過(guò)程中腺苷A1受體或A2A受體失活時(shí)也可使抑郁模型大鼠的自發(fā)活動(dòng)增加。
睡眠剝奪 腺苷 抑郁 自發(fā)活動(dòng)
文獻(xiàn)提示,睡眠剝奪可以快速發(fā)揮抗抑郁作用,而且無(wú)明確的禁忌證和副反應(yīng)[1]。部分睡眠剝奪可使約60%的患者抑郁癥狀得以緩解[2],整夜的睡眠剝奪可使抑郁癥患者漢密爾頓抑郁量表的總分下降50%[3]。睡眠剝奪可使腺苷水平明顯升高,腺苷受體也會(huì)發(fā)生一系列的改變[4]。腺苷受體有4種亞型,其中A1和A2A受體在腦中含量最多,且在睡眠調(diào)節(jié)、情緒改變中起重要作用。本實(shí)驗(yàn)通過(guò)對(duì)慢性不可預(yù)見性應(yīng)激(CUS)模型大鼠進(jìn)行72h快眼動(dòng)睡眠剝奪(REMSD)并結(jié)合腺苷受體拮抗劑,觀察對(duì)大鼠自發(fā)活動(dòng)的影響,以探討睡眠剝奪抗抑郁機(jī)制中腺苷及其受體可能發(fā)揮的作用。
1.1實(shí)驗(yàn)動(dòng)物 成年雄性SD大鼠(汕頭大學(xué)醫(yī)學(xué)院實(shí)驗(yàn)動(dòng)物中心提供)56只,體質(zhì)量220~260g。實(shí)驗(yàn)前1周開始晝夜交替各喂養(yǎng)12 h,環(huán)境溫度22℃,大鼠自由進(jìn)食、進(jìn)水。
1.2實(shí)驗(yàn)儀器與試劑 DigBehv自發(fā)活動(dòng)視頻分析系統(tǒng),大鼠睡眠剝奪箱:32cm×30cm×36cm,腺苷A1、A2A受體拮抗劑(Tocris公司,美國(guó))。
1.3動(dòng)物分組 大鼠隨機(jī)分為正常對(duì)照組(8只)和應(yīng)激模型組(48 只),并對(duì)其進(jìn)行第1次行為學(xué)測(cè)試。應(yīng)激模型組進(jìn)行21d CUS,并進(jìn)行第2次行為學(xué)測(cè)試。隨后再將應(yīng)激模型組分為抑郁模型組、睡眠剝奪組、水環(huán)境對(duì)照組、生理鹽水對(duì)照組、腺苷A1受體拮抗劑(DPCPX)組、腺苷A2A受體拮抗劑(ZM241385)組,每組各8只。第2次行為學(xué)測(cè)試完成后對(duì)睡眠剝奪組、水環(huán)境對(duì)照組、生理鹽水對(duì)照組、腺苷A1受體拮抗劑組、腺苷A2A受體拮抗劑組分別進(jìn)行72h REMSD,并在72h REMSD過(guò)程中分別對(duì)生理鹽水對(duì)照組,腺苷A1、A2A受體拮抗劑組注射生理鹽水(1ml/kg)、腺苷A1受體拮抗劑(DPCPX 2mg/kg)、腺苷A2A受體拮抗劑(ZM241385 1mg/kg)[1]。72h REMSD后對(duì)上述5組進(jìn)行第3次行為學(xué)測(cè)試。
1.4實(shí)驗(yàn)方法 (1)抑郁模型的建立:本實(shí)驗(yàn)選用21d CUS和單籠孤養(yǎng)兩種模式建立抑郁模型[1],將行為束縛2h,4℃冰水游泳5min,禁食24h,禁水24h,明暗顛倒24h,夾尾1min,點(diǎn)擊足底10min(10次/ min,1s/次),鼠籠傾斜45°24h,潮濕墊料10h,空瓶放置5h和45℃高溫5min,11種刺激隨機(jī)安排在21d 內(nèi),1種/d。在整個(gè)過(guò)程中刺激平均出現(xiàn)2~3次/種,同種刺激不能連續(xù)出現(xiàn),使動(dòng)物不能預(yù)料刺激的發(fā)生。(2)REMSD模型的建立[5]:本實(shí)驗(yàn)采用改良小平臺(tái)睡眠剝奪法建立72h REMSD大鼠模型。在睡眠剝奪箱中央放置1個(gè)直徑6.3 cm的平臺(tái),平臺(tái)高8.0 cm,底部固定于水箱中央,在平臺(tái)周邊注滿水,水溫保持在22℃左右,水面距平臺(tái)面約1.0 cm,大鼠站在平臺(tái)上可自行飲食、飲水。當(dāng)大鼠進(jìn)入REM睡眠時(shí),由于全身肌張力降低,節(jié)律性地垂頭觸水或落入水中而覺醒,從而使動(dòng)物始終不能進(jìn)入REM睡眠期。睡眠剝奪期間燈光持續(xù)照射,水箱中的水每天更換。水環(huán)境對(duì)照組采用與睡眠剝奪組尺寸相同的水箱,但在其底部則放置直徑為18 cm的大平臺(tái),使大鼠可以在臺(tái)上睡眠,其他條件均與睡眠剝奪組相同。各組處理時(shí)間均持續(xù)72h。(3)行為學(xué)測(cè)試:應(yīng)用DigBehv動(dòng)物自發(fā)活動(dòng)視頻跟蹤分析系統(tǒng)檢測(cè)大鼠的總路程、中央?yún)^(qū)路程、周邊路程。在應(yīng)激前、應(yīng)激后及72 h REMSD后分別測(cè)定大鼠的自發(fā)活動(dòng)。
1.5統(tǒng)計(jì)學(xué)方法 采用SPSS16.0統(tǒng)計(jì)軟件。計(jì)量資料以(x±s)表示。多組比較采用單因素方差分析,自身前后比較采用配對(duì)樣本t檢驗(yàn),兩樣本均數(shù)比較采用獨(dú)立樣本t檢驗(yàn)。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2.1REMSD對(duì)抑郁模型大鼠自發(fā)活動(dòng)的影響 見表1。
表1 REMSD對(duì)抑郁模型大鼠自發(fā)活動(dòng)的影響[cm,(x±s)]
2.2腺苷A1、A2A受體拮抗劑對(duì)睡眠剝奪改善大鼠抑郁樣行為的影響 見表2。
表2 各種處理方式對(duì)抑郁模型大鼠自發(fā)活動(dòng)的影響[cm,(x±s)]
抑郁癥的藥物治療需要長(zhǎng)時(shí)間才能起效,而睡眠剝奪則可快速發(fā)揮抗抑郁作用,此特點(diǎn)明顯優(yōu)于抗抑郁藥物[1]。本實(shí)驗(yàn)對(duì)抑郁模型大鼠進(jìn)行72h REMSD,發(fā)現(xiàn)睡眠剝奪后抑郁組大鼠的活動(dòng)路程明顯增加。為排除水環(huán)境在方法上的干擾,本實(shí)驗(yàn)設(shè)置水環(huán)境對(duì)照組;結(jié)果發(fā)現(xiàn)睡眠剝奪組大鼠的活動(dòng)路程相比水環(huán)境組有明顯增加。所以72h REMSD可以逆轉(zhuǎn)抑郁模型大鼠的抑郁樣行為。睡眠剝奪后大鼠腦內(nèi)能量代謝增加,ATP消耗增多,胞內(nèi)腺苷含量隨之增加,通過(guò)非濃度依賴型腺苷轉(zhuǎn)運(yùn)體將腺苷從胞內(nèi)轉(zhuǎn)移到胞外,進(jìn)而作用于腺苷受體。通過(guò)特異性受體拮抗劑,可證明腺苷的抗抑郁作用是通過(guò)A1R和A2AR的激活來(lái)實(shí)現(xiàn)的[6]。電休克、睡眠剝奪和抗抑郁藥物等多種抗抑郁治療均可引起A1R上調(diào)[3],24h睡眠剝奪可以模擬SSRIs類藥物的作用降低強(qiáng)迫游泳實(shí)驗(yàn)中大鼠的不動(dòng)時(shí)間[7]。故作者推測(cè)睡眠剝奪的抗抑郁機(jī)制與腺苷及其受體有著密切的關(guān)系。
在持續(xù)覺醒狀態(tài)下,細(xì)胞外腺苷水平會(huì)明顯升高,腺苷本身對(duì)于記憶、認(rèn)知、睡眠周期、焦慮和攻擊行為都發(fā)揮重要的作用[8]。本項(xiàng)目在72h REMSD過(guò)程中對(duì)抑郁模型大鼠分別腹腔注射腺苷A1及 A2A受體拮抗劑。結(jié)果發(fā)現(xiàn)腺苷A1受體拮抗劑組前后比較總路程、周邊路程明顯增加,提示A1受體被選擇性拮抗、A2A受體發(fā)揮主導(dǎo)作用時(shí)睡眠剝奪可以使抑郁模型大鼠的自發(fā)活動(dòng)增加,發(fā)揮抗抑郁作用;腺苷A2A受體拮抗劑組前后比較,總路程、中央路程和周邊路程顯著增加,提示A2A受體被選擇性拮抗、A1受體發(fā)揮主導(dǎo)作用時(shí)睡眠剝奪也可使抑郁模型大鼠的自發(fā)活動(dòng)增加,發(fā)揮抗抑郁作用。本實(shí)驗(yàn)設(shè)立生理鹽水對(duì)照組以排除腹腔注射的干擾,結(jié)果提示試驗(yàn)中單純腺苷受體拮抗劑發(fā)揮作用。本實(shí)驗(yàn)發(fā)現(xiàn)72h REMSD過(guò)程中,腺苷A1和A2A受體分別失活時(shí)均可以發(fā)揮抗抑郁的效果。
腺苷作為神經(jīng)調(diào)質(zhì)在突觸水平上影響其它神經(jīng)遞質(zhì)的功能,當(dāng)腺苷A1受體發(fā)揮主要作用時(shí),抑郁模型大鼠經(jīng)72h REMSD表現(xiàn)出抗抑郁作用。A1受體對(duì)于睡眠剝奪的抗抑郁作用是必須的,而且該受體的激活可持續(xù)維持抗抑郁作用[9]。腺苷A1受體可通過(guò)抑制興奮性神經(jīng)元的釋放、降低細(xì)胞的興奮性來(lái)保護(hù)細(xì)胞。腺苷與A1受體結(jié)合抑制5-HT的釋放,而5-HT系統(tǒng)與抑郁癥密切相關(guān);有實(shí)驗(yàn)發(fā)現(xiàn)正常大鼠72h睡眠剝奪后,由于負(fù)反饋調(diào)節(jié)機(jī)制,海馬及中腦腺苷A1受體mRNA表達(dá)明顯降低[10],故可以推測(cè)72h睡眠剝奪抑制A1受體的表達(dá),進(jìn)而使腺苷抑制5-HT釋放的作用減弱,使細(xì)胞間5-HT的含量增加發(fā)揮抗抑郁作用。也有實(shí)驗(yàn)證明睡眠剝奪改變星形膠質(zhì)細(xì)胞介導(dǎo)的信號(hào)通路產(chǎn)生抗抑郁作用[9],而星形膠質(zhì)細(xì)胞的作用通過(guò)A1受體的介導(dǎo)[11];A1受體可刺激星形膠質(zhì)細(xì)胞釋放神經(jīng)保護(hù)因子,而且可通過(guò)PI3/ERK1/2/MAPK通路減少膠質(zhì)細(xì)胞凋亡[12],所以可推測(cè)A1受體通過(guò)影響星形膠質(zhì)細(xì)胞從而產(chǎn)生的抗抑郁效應(yīng)。
當(dāng)腺苷A2A受體發(fā)揮主要的作用時(shí),抑郁模型大鼠經(jīng)72h REMSD仍表現(xiàn)出抗抑郁作用。腦室內(nèi)注射A2A受體激動(dòng)劑可以促進(jìn)視前核及腹外側(cè)視前區(qū)GABA神經(jīng)元的激活[13],同時(shí)A2A受體可影響紋狀體GABA的釋放[14];而GABA濃度的上升可產(chǎn)生明確的抗抑郁作用。腺苷A2A受體激動(dòng)劑還可增強(qiáng)海馬、紋狀體單胺類神經(jīng)遞質(zhì)的釋放從而發(fā)揮抗抑郁作用[14]。內(nèi)源性腺苷所介導(dǎo)的A2A受體激活,促進(jìn)神經(jīng)元的可塑性從而發(fā)揮抗抑郁作用[15]。故可推測(cè)睡眠剝奪可通過(guò)激活A(yù)2A受體產(chǎn)生抗抑郁作用。不過(guò)有實(shí)驗(yàn)提示睡眠剝奪可使嗅球、蒼白核、尾狀核3個(gè)實(shí)驗(yàn)?zāi)X區(qū)的腺苷A2A受體密度降低,與本實(shí)驗(yàn)的推測(cè)并不一致[16],其原因可能是由A2A受體與多巴胺受體形成的二聚體相互作用造成的[17]。
1Baghai TC,Moller HJ,Rupprecht R,et al.Recent Progress in pharmacological and non-pharmacological treatment options of major depression .Current Pharmaceutical Design,2006,12(4):503~515.
2Ellen T,Kahn-Greene,Desiree B,et al.The effects of sleep deprivation on symptoms of psychopathology in healthy adults.Sleep Medicine, 2007,8(8):215~221.
3Francesco Benedetti,Cristina Colombo.Sleep Deprivation in Mood Disorders. Neuropsychobiology,2011,64(3):141~151.
4Chapman D P,Perry G S,Strine T W.The vital link between chronic disease and depressive disorders .Prev Chronic Dis,2005,2(1): A14.
5Allard J S,Tiazbi Y,Shaffery J P,et al.Effects of rapid eye movement deep deprivation on hypocretin neurons in the hypothalamus of a rat model of depression.Neuropeptides,2007,41(5):329~337.
6Kaster MP,Rosa A,Rosso MM,et al.Adenosine administration produces an antidepressant like effect in mice: evidence for the involvement of A1 and A2A receptors.Neurosci Lett,2004,355(1~2):21~24.
7Hua-Cheng YAN, Xiong CAO, Manas Das, et al. Behavioral animal models of depression . Neurosci Bull,2010,26(4): 327~337.
8J.A. Ribeiro,A.M. Sebastia,A. de Mendonc,et al. Adenosine receptors in the nervous system: pathophysiological implications .Prog Neurobiol,2003,26(8):377~392.
9DJ Hines,LI Schmitt,RM Hines,et al.Antidepressant effects of sleep deprivation require astrocyte-dependent adenosine mediated signaling. Transl Psychiatry,2013,3:e212.
10張金玲,張印南,唐建軍,等.睡眠剝奪對(duì)大鼠自發(fā)活動(dòng)及各腦區(qū)腺苷A1受體表達(dá)的影響.汕頭大學(xué)醫(yī)學(xué)院學(xué)報(bào),2012,25(4):202~205.
11L.Ian Schmitt,Robert E. Sims,Nicholas Dale,et al.Wakefulness Affects Synaptic and Network Activity by Increasing Extracellular Astrocyte-Derived Adenosine. The Journal of Neuroscience,2012, 32(13):4417~4425.
12Dalimontel,Ballerinip,Nargie,et al.Staurosporine-induced apoptosis in astrocytes is prevented by A1 adenosine receptor activation .Neuroscilett, 2007,418(1):66~71.
13Sunil Kumar,Seema Rai,Kung-Chiao Hsieh,et al.Adenosine A2A receptors regulate the activity of sleep regulatory GABAergic neurons in the preoptic hypothalamus. Am J Physiol Regul Integr Comp Physiol,2013,305:31~41.
14Sebasti?o AM, Assaife-Lopes N,Diógenes MJ,et al. Modulation of brain-derived neurotrophic factor (BDNF) actions in the nervous system by adenosine A(2A) receptors and the role of lipid rafts.Biochim Biophys Acta,2011, 1808(5):1340~1349.
15Emily Urry,Hans Peter Landolt. Adenosine,Caffeine,and Performance From Cognitive Neuroscience of Sleep to Sleep Pharmacogenetic.Curr Top Behav Neurosci,2015,25:331~366.
16Youngsoo KimDavid,Elmenhorst Angela,Weisshaupt,et al. Chronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain. Journal of Sleep Research,2015,4. Epub ahead of print.
17Lazarus M,Chen J F,Urade Y et al.Role of the basal ganglia in the control of sleep and wakefulness.Curr Opin eurobiol,2013,23(5):780~785.
Objective To investigate the effects of adenosine and its receptors for spontaneous activities of depression-model rats in antidepressive mechanism of Rapid-Eye-Movement sleep deprivation (REMSD). Methods 56 adult males Sprague-Dawley rats were randomly divided into two groups: normal control group (n=8) and stress-model group (n=48). The stress-model group used chronic unpredicted stress(CUS) and Single cage solitary raise way to establish depression model. The stress-model group were divided into six groups in randomized method:the depression-model group (n=8),sleep deprivation group(n=8),water control group(n=8),adenosine A1 receptor antagonist group(n=8),adenosine A2A receptor antagonist group(n=8),saline group(n=8). The function of the 72h REMSD was to observe the changes of rats spontaneous activities of the distance. Results After 72 hours sleep deprivation,the total distance the central distance and the around distance in sleep deprivation group was longer than that in water control group(P<0.05); After 72h REMSD,the total distance and the around distance in A1 receptor antagonist group increased significantly compared with that before perform(P<0.01),the central distance had no significant difference(P>0.05). After 72 h REMSD,the total distance and the around distance in A2A receptor antagonist group increased significantly compared with that before perform(P<0.01),the central distance increased compared with that before perform(P<0.05).Conclusion The spontaneous activities of depression-model rats can be increased by 72h REMSD. In the process of 72h REMSD,the spontaneous activities of depression-model rats can be also increased when the A1 receptor antagonist or A2A receptor antagonist were inactivated.
Sleep deprivation Adenosine Depression Spontaneous activity
國(guó)家自然科學(xué)基金資助項(xiàng)目(30670756)
310013杭州市第七人民醫(yī)院(菊軒)515065汕頭大學(xué)精神衛(wèi)生中心(許崇濤)