李冰石,薛 山,宋國麗
1)深圳大學(xué)化學(xué)與環(huán)境工程學(xué)院,深圳518060;2)深圳大學(xué)生命與海洋科學(xué)學(xué)院,深圳518060
蛋白質(zhì)是生命的基本物質(zhì),參與生物體代謝的各個(gè)環(huán)節(jié),執(zhí)行多種生物化學(xué)功能.當(dāng)?shù)鞍状x異常,在細(xì)胞內(nèi)或細(xì)胞周圍發(fā)生聚集,甚至纖維化時(shí),就會(huì)引發(fā)多種疾病[1].例如,類淀粉蛋白的纖維化,會(huì)導(dǎo)致阿爾茨海默癥(Alzheimer's disease,AD)、帕金森癥和亨廷頓癥等多種神經(jīng)性疾?。?].其中,AD又稱原發(fā)性老年癡呆癥,是一種致死性的神經(jīng)系統(tǒng)退行性疾病,折磨著全球數(shù)千萬人,目前還沒有精確的診斷工具和有效的治療手段,臨床表現(xiàn)為認(rèn)知和記憶功能不斷惡化,并伴隨各種神經(jīng)性的癥狀和行為障礙[3-4].導(dǎo)致這一疾病的主要因素是β-類淀粉蛋白(amyloid-β,Aβ)在大腦皮層發(fā)生錯(cuò)誤聚集,生成了難溶的類淀粉纖維,纖維進(jìn)而聚集成斑塊,引起一系列的神經(jīng)系統(tǒng)功能紊亂[2].其中,Aβ聚集形成的β-折疊狀中間體也可能具有神經(jīng)毒性[5].
Aβ一般含有36~43個(gè)氨基酸殘基[6],由它的前體蛋白——類淀粉前體蛋白(amyloid precursor protein)通過水解酶水解得到[7].類淀粉蛋白的纖維化過程極為類似,即都包括成核和生長延伸階段[8-9],并且形成 β 片層折疊結(jié)構(gòu)[10].兩個(gè) Aβ 肽鏈分子的疏水部分結(jié)合在一起,形成三明治狀的β-交叉結(jié)構(gòu),多個(gè)三明治狀結(jié)構(gòu)進(jìn)一步通過疏水作用疊在一起,形成一個(gè)含有疏水核心及表面的膠束狀寡聚體[11-13];寡聚體作為纖維核心,通過疏水作用、氫鍵和芳香基團(tuán)間的堆疊等相互作用[14-15],進(jìn)一步聚集和延伸,形成較穩(wěn)定具有反向平行螺旋結(jié)構(gòu)的原纖維;原纖維進(jìn)而生長和纏繞形成成熟的更粗的纖維[16-17].Aβ1-40比 Aβ1-42更為常見,但 A-β1-42相對(duì) A-β1-40更容易纖維化,毒性更強(qiáng)[12,18-19].
揭示Aβ在分子水平上的識(shí)別和自我組裝原理是有效控制Aβ聚集和纖維化的關(guān)鍵,而抑制Aβ的聚集,溶解已形成的Aβ聚集體則被認(rèn)為是一種治療AD的潛在方法.正因如此,對(duì)Aβ的纖維化聚集的影響因素研究日益引起關(guān)注.研究表明,Aβ的聚集除了受溶液pH值、蛋白濃度、培養(yǎng)時(shí)間和溫度變化等因素的影響外[17,20-21],納米粒子也對(duì)Aβ的聚集具有重要影響.納米粒子因其獨(dú)特的物理、化學(xué)、電學(xué)和生物相容等性能,已成為生物和生物化學(xué)領(lǐng)域內(nèi)不可或缺的工具[22-24].本文綜述了金、金屬復(fù)合物、金屬氧化物及有機(jī)-無機(jī)等納米粒子對(duì)Aβ的聚集影響的最新研究進(jìn)展.
金納米粒子在生物醫(yī)學(xué)方面的應(yīng)用廣泛[22,25].Liao等[26]通過Aβ1-40單體和預(yù)先培育的Aβ纖維與不同濃度的金納米粒子共同培育,研究金納米粒子對(duì)Aβ聚集的影響.結(jié)果顯示,未經(jīng)修飾的金納米粒子能抑制Aβ纖維的形成,且改變?cè)w維的狀態(tài),使其生成片狀纖維和球形寡聚體,如圖1(a)所示;金納米粒子還能影響已生成的Aβ成熟纖維,將其變成短的無定形狀態(tài),并且金納米粒子會(huì)優(yōu)先結(jié)合Aβ纖維而不是無定形的聚集體,如圖1(b)所示.通過表面修飾共軛的羧基和氨基后金納米粒子分別帶負(fù)電荷和正電荷,只有未經(jīng)修飾和羧基修飾帶負(fù)電荷的金納米粒子才能抑制Aβ聚集,這說明負(fù)電勢(shì)是影響Aβ聚集的關(guān)鍵.疏水金納米粒子與Aβ間的疏水作用只能影響纖維形成的成核階段,而隨后的延長生長階段則是通過帶電納米粒子的靜電作用來調(diào)節(jié).Majzik等[27]通過金納米粒子與Aβ1-42共同培育發(fā)現(xiàn)Aβ1-42分子能包裹在金納米粒子的表面,使金納米粒子無法團(tuán)聚成簇,這與Liao等[26]的實(shí)驗(yàn)結(jié)果一致.Lee等[28]利用大腦內(nèi)脂質(zhì)雙分子層作為基底,研究金納米粒子對(duì)Aβ聚集的影響,結(jié)果發(fā)現(xiàn),當(dāng)金納米粒子存在時(shí),流動(dòng)的大腦脂質(zhì)雙分子層可以為金納米粒子和Aβ提供結(jié)合位點(diǎn),金納米粒子能促進(jìn)大尺寸的Aβ聚集體快速形成,更奇特的是Aβ斑塊形成前并未形成Aβ纖維結(jié)構(gòu);當(dāng)沒有金納米粒子時(shí),則沒有形成大尺寸的Aβ聚集體.這一結(jié)果說明金納米粒子能夠改變?cè)谥|(zhì)雙分子層上的Aβ的2級(jí)結(jié)構(gòu)及組裝路徑.
圖1 不同形態(tài)下的Aβ在加入不同濃度未經(jīng)修飾的金納米粒子情況下培育后的TEM圖[26]Fig.1 Morphologies of the Aβ species respectively with different concentration AuNPs monitored by TEM[26]
有機(jī)分子姜黃素能在體外和體內(nèi)抑制Aβ的聚集[29],且有效地抑制由金屬離子(如 Cu2+和Zn2+)誘導(dǎo)引起的Aβ的纖維化聚集[30].Palmal等[31]用羧基修飾的姜黃素和伯胺封端的氧化硅包覆的金納米粒子通過共價(jià)鍵結(jié)合得到了水溶性的姜黃素修飾的金納米粒子.研究發(fā)現(xiàn)該復(fù)合粒子不僅能有效抑制Aβ的纖維化,還能分解已聚集的Aβ纖維,其效果超過單獨(dú)作用的金納米粒子、姜黃素或兩者的混合物.這可能是因?yàn)榻?姜黃素復(fù)合納米粒子具有很好的水溶性及金納米粒子表面結(jié)合了更多的姜黃素基團(tuán).通過對(duì)小鼠神經(jīng)瘤細(xì)胞的毒性測(cè)試發(fā)現(xiàn),在姜黃素修飾后的金納米粒子的存在條件下,細(xì)胞的存活率由只有Aβ纖維存在時(shí)的50%提高到90%.實(shí)驗(yàn)顯示被分解后的Aβ纖維片段和寡聚體對(duì)小鼠神經(jīng)瘤細(xì)胞毒性很低,基本不影響其存活率.這一結(jié)果說明,這種抑制Aβ纖維化和分解Aβ纖維的方法對(duì)治療AD癥極具潛力.
有研究表明,一些金屬離子如 Cu2+、Zn2+、Fe3+和Al3+能影響Aβ的聚集[32-41],而且是老年斑形成過程中的生長因子,在老年斑和AD病人的大腦皮質(zhì)組織中也發(fā)現(xiàn)了高濃度的上述金屬離子[42-43].
在過渡金屬復(fù)合物中,2價(jià)的銅、鉑和釕的復(fù)合粒子能夠結(jié)合和抑制 Aβ的聚集[44-46].Streltsov等[47]使用X射線吸收光譜、動(dòng)態(tài)光散射及密度泛函理論等手段研究了鉑金屬復(fù)合物與Aβ1-16和Aβ1-40蛋白之間的相互作用,發(fā)現(xiàn)含有1,10-鄰二氮雜菲的2價(jià)鉑復(fù)合物(L-PtCl2)能與Aβ側(cè)鏈的組氨酸咪唑相互結(jié)合,改變蛋白的生化和生理性質(zhì).他們認(rèn)為芳香分子1,10-鄰二氮雜菲使鉑復(fù)合物能夠優(yōu)先與Aβ上的組氨酸結(jié)合.Man等[48]利用3組3價(jià)銥和3價(jià)銠的復(fù)合物(圖2)來抑制Aβ1-40蛋白的聚集,并研究了幾種不同的平面芳香性碳氮共配體對(duì)配合物抑制作用的影響.圖2顯示,可溶金屬配合物都有不穩(wěn)定的配體,可以被Aβ1-40蛋白中組氨酸的N端取代.通過熒光測(cè)試,當(dāng)配合物的中心金屬是銠,碳氮共配為2-苯基吡啶,配合物濃度為5 μmol/L時(shí)抑制效果最好,幾乎完全抑制,這一結(jié)果可能與大的平面碳氮共配體的空間效應(yīng)有關(guān).
圖2 三組承載不同金屬中心和碳氮共配體的可溶金屬復(fù)合物的化學(xué)結(jié)構(gòu)[48]Fig.2 Chemical structures of the solvato complexes bearing different metal centers and C/N ligands[48]
金屬復(fù)合物結(jié)合了無機(jī)金屬和有機(jī)多功能性基團(tuán)的優(yōu)點(diǎn),通過無機(jī)物的官能團(tuán)與Aβ中的氨基酸形成配體來抑制Aβ纖維的生成,這比選擇單一的無機(jī)金屬粒子或有機(jī)化合物作為抑制劑更有應(yīng)用前景.
關(guān)于金屬氧化物對(duì)Aβ纖維化過程的影響研究,目前開展得較少,已報(bào)道的研究主要是在金屬氧化物粒子表面包裹帶電的有機(jī)物,通過納米粒子的表面吸附,增大局部蛋白濃度及有機(jī)基團(tuán)與Aβ單體或者寡聚體之間的相互作用,從而影響Aβ的聚集纖維化過程.
Wu 等[49]研究了 TiO2、SiO2、ZrO2和CeO2等氧化物納米粒子對(duì) Aβ聚集的影響,研究發(fā)現(xiàn),TiO2能縮短纖維生成的成核階段,促進(jìn)Aβ纖維的生成,而其他氧化物粒子對(duì)其幾乎沒有影響.Wu等認(rèn)為這一結(jié)果證明納米粒子對(duì)Aβ聚集的影響取決于粒子的表面吸附能,而不是粒徑大小.TiO2將Aβ吸附到表面,使其在溶液和粒子表面達(dá)到一個(gè)平衡,吸附到粒子表面的Aβ局部濃度升高,從而加快了低聚物的形成.
超順磁氧化鐵納米粒子具有較好的生物相容性和特有的磁性,是具有應(yīng)用前景的生物醫(yī)學(xué)材料[50].Mahmoudi等[51]用氨基和羧基修飾、葡萄聚糖包裹的超順磁Fe2O3納米粒子,并研究了其包裹層的厚度和帶電情況對(duì)Aβ聚集的影響.他們發(fā)現(xiàn)帶正電的雙層包覆的磁性Fe2O3納米粒子對(duì)Aβ的聚集有雙重影響,如圖3,低粒子濃度時(shí),抑制其聚集;而高濃度時(shí),通過縮短其成核時(shí)間促進(jìn)其纖維化.Cabaleiro-Lago等[52]研究的由氨基修飾的聚苯乙烯納米粒子對(duì)Aβ的聚集影響實(shí)驗(yàn)中也有相似的發(fā)現(xiàn).納米粒子表面的正電荷可能與Aβ帶負(fù)電荷的部分相互作用,改變Aβ低聚物的構(gòu)象使其更容易聚集.但是由羧基修飾的葡萄聚糖包裹的帶負(fù)電的磁性Fe2O3納米粒子,不論單層還是雙層,在很低的粒子濃度條件下都會(huì)延遲或抑制Aβ的纖維化過程,其影響隨粒子濃度增大無明顯變化.一個(gè)可能的機(jī)理是,磁性Fe2O3納米粒子的表面負(fù)電荷和Aβ的疏水核心中的氨基骨架結(jié)構(gòu)相互作用,改變了疏水核心的結(jié)構(gòu)從而抑制蛋白聚集.另外,磁性Fe2O3的粒子尺寸也是重要的影響因素:當(dāng)減少葡萄聚糖包裹層的厚度而減少磁性Fe2O3粒子的尺寸時(shí),粒子對(duì)Aβ纖維化過程的抑制更明顯.
圖3 Aβ單體(0.5 μmol/L)和雙層帶負(fù)電、不帶電、帶正電的由葡萄聚糖包裹的超順磁Fe2O3納米粒子(100 μg/mL)共同培育2 400 min后,兩種不同放大倍率的TEM圖[51].當(dāng)帶正電的葡萄聚糖包裹的超順磁Fe2O3納米粒子存在時(shí),只發(fā)現(xiàn)了很短的纖維(圖中箭頭標(biāo)出)Fig.3 (Color online)TEM images of Aβ fibrils after 2 400 min incubation of A β monomers(0.5 μmol/L)with double layer negative(left),plain(middle),and positive(right)dextran-coated superparamagnetic iron oxide nanoparticles(SPIONs)(100 μg/mL)[51].only very small fibrils are observed in the case of the positively charged dextran-coated SPIONs(as arrows indicated)
有機(jī)聚合物因具有很大的表面積及有可作為反應(yīng)的結(jié)合位點(diǎn)的多官能團(tuán),對(duì)Aβ的聚集有顯著影響.Cabaleiro-Lago等[53]剛開始發(fā)現(xiàn)異丙基丙烯酰胺納米粒子能與Aβ單體和寡聚體相互作用,抑制其成核過程進(jìn)而延長其纖維化進(jìn)程.在不同濃度氨基改良的聚苯乙烯納米粒子存在下Aβ纖維化的動(dòng)力學(xué)顯示,蛋白濃度一定時(shí),隨著納米粒子總表面積的變化會(huì)產(chǎn)生不同的效果:當(dāng)納米粒子單位表面積上蛋白濃度較大時(shí),可促進(jìn)Aβ纖維化進(jìn)程;當(dāng)納米粒子單位表面積上蛋白濃度較小時(shí),則抑制Aβ 纖維化[52].Cabaleiro-Lago等[52]提出當(dāng)Aβ 和納米粒子共存時(shí),至少存在兩個(gè)不同的聚集路徑.路徑1:Aβ單體在溶液中能自由聚集形成纖維,聚集速率v=vsolution;路徑2:Aβ單體吸附在粒子表面發(fā)生聚集,聚集速率v=vparticle(圖4).整個(gè)纖維化過程取決于這兩種不同路徑的貢獻(xiàn)作用大小.未加入顆粒時(shí),Aβ單體在溶液中能自由結(jié)合形成纖維;當(dāng)加入納米顆粒且濃度較低時(shí),除溶液中自由形成纖維外,顆粒表面也會(huì)吸附Aβ單體,形成纖維核心,并進(jìn)一步生成Aβ纖維.纖維生成的總速率大于未加入顆粒時(shí)的速率;當(dāng)顆粒濃度高到某一定值時(shí),由于比表面積較大,溶液中的大部分Aβ單體被吸附到粒子表面,導(dǎo)致溶液中的Aβ濃度很小,溶液中形成纖維的速率大大降低,而單個(gè)粒子表面所吸附的Aβ單體也很少,粒子表面的Aβ纖維化也很難進(jìn)行,這樣粒子對(duì)纖維生成具有抑制作用,如圖4.
圖4 不同濃度的納米顆粒對(duì)Aβ聚集的不同影響效果示意圖,其中橢圓小顆粒代表Aβ單體,圓球代表納米粒子[52]Fig.4 (Color online)Schematic illustration of the effect of nanoparticles with different concentrations on Aβ aggregation.Ellipses representing Aβ monomers and circles representing nanoparticles[52]
丙炔苯丙胺是一種單胺氧化酶的抑制劑.有研究表明,單胺氧化酶抑制劑能夠減少神經(jīng)損害[54],且可能抑制 Aβ 纖維的形成[55].Baysal等[56]用水-油-水乳化液蒸發(fā)法制備了一種裝載了丙炔苯丙胺的聚乳酸-b-聚乙二醇有機(jī)納米聚合粒子,并研究了該納米粒子對(duì)Aβ纖維的去穩(wěn)定化影響.研究發(fā)現(xiàn),隨著負(fù)載物丙炔苯丙胺量的增加,其對(duì)Aβ纖維生成的抑制效果越好,且在前6 h內(nèi),隨著培養(yǎng)時(shí)間的延長抑制效果也增加,6 h后達(dá)到最好效果.在前2 h內(nèi),聚乳酸-b-聚乙二醇納米粒子上負(fù)載的丙炔苯丙胺的釋放率約為70%,這種井噴式的釋放是由于粒子上負(fù)載的丙炔苯丙胺快速溶解;丙炔苯丙胺的釋放在2~10 h達(dá)到平衡,可持續(xù)72 h.其對(duì)Aβ纖維形成的主要影響階段還需要進(jìn)一步實(shí)驗(yàn)來確定.
已有文獻(xiàn)報(bào)道表沒食子兒茶素沒食子酸酯(epigallocatechin-3-gallate,EGCG)能與Aβ相互作用,改變其聚集路徑,促進(jìn)其組裝成低毒的聚合結(jié)構(gòu)[57].另外,硒蛋白具有抗氧化和神經(jīng)保護(hù)作用,能夠預(yù)防阿爾茨海默癥的發(fā)生[58].Zhang等[59]合成了一種由多肽四環(huán)素-1(Tet-1)包裹的表沒食子兒茶素沒食子酸酯穩(wěn)定的硒納米粒子(Tet-1-EGCG@Se)并研究了該有機(jī)-無機(jī)復(fù)合納米粒子對(duì)Aβ聚集的影響.結(jié)果發(fā)現(xiàn)該納米粒子對(duì)Aβ有很強(qiáng)的吸引.Tet-1-EGCG@Se和表沒食子兒茶素沒食子酸酯穩(wěn)定的硒納米粒子(EGCG@Se)都能有效抑制Aβ的聚集使其生成小的寡聚體,如圖5.其中,前者比后者抑制效果更好,可能原因是Tet-1-EGCG@Se粒子帶正電,且Tet-1能與Aβ發(fā)生疏水性相互作用.不僅如此,Tet-1-EGCG@Se復(fù)合粒子還能有效地將成熟的Aβ纖維分解,使其轉(zhuǎn)化成隨機(jī)盤繞的無定形結(jié)構(gòu).該有機(jī)/無機(jī)復(fù)合納米粒子在抑制和分解Aβ纖維方面作用顯著,是一種潛在的治療劑.但它與Aβ和纖維的具體作用機(jī)理還需進(jìn)一步研究,并進(jìn)行更多的體外和體內(nèi)研究來驗(yàn)證其在治療阿爾茨海默癥方面的效果以及在其他蛋白類疾病上的應(yīng)用.
有機(jī)納米聚合物粒子具有獨(dú)特的尺寸效應(yīng),可以穿透生物屏障(如腦-血屏障),將藥物分子更準(zhǔn)確的運(yùn)送到目標(biāo)區(qū)域;并且能傳送不溶性藥物分子,運(yùn)送完成后在體內(nèi)被分解清除,具有低毒性等優(yōu)點(diǎn),因而在新的藥物傳送系統(tǒng)中具有重要應(yīng)用前景[60-61].這些優(yōu)點(diǎn)對(duì)于設(shè)計(jì)可作為Aβ纖維抗體載體的納米粒子用于治療阿爾茨海默癥具有重要意義.
圖5 Aβ聚集體形成的TEM圖[59]Fig.5 TEM images of Aβ aggregates[59]
Aβ的纖維化被認(rèn)為是導(dǎo)致AD的重要原因,纖維化速度的加快可能增加AD的發(fā)病風(fēng)險(xiǎn),而抑制Aβ聚集和纖維的形成則被認(rèn)為是對(duì)AD極富潛力的治療方法.很多類淀粉蛋白可以吸附在不同基質(zhì)上,針對(duì)Zn2+、Cu2+及Cu+等金屬離子所引起的Aβ的無定形聚集,本課題組已開展相關(guān)研究,試圖尋找抑制或逆轉(zhuǎn)Aβ聚集的方法.前期研究發(fā)現(xiàn):硒蛋白P的組氨酸富集區(qū)(His-rich domain of selenoprotein P,SelP-H)對(duì)Zn2+、Cu2+及Cu+具有較高的親和力,通過螯合Zn2+、Cu+及Cu2+,從而有效抑制Zn2+、Cu+及Cu2+誘導(dǎo)的Aβ的無定形聚集,及其引發(fā)的ROS的生成及神經(jīng)毒性.因此,SelP-H通過螯合金屬離子,從而調(diào)控金屬離子引發(fā)的Aβ的聚集,達(dá)到保護(hù)神經(jīng)細(xì)胞的作用,可能在延緩AD進(jìn)展方面具有一定的潛力.而具有小尺寸和高比表面積的納米粒子,對(duì)很多類淀粉蛋白的聚集過程具有重要的影響.雖然納米粒子和Aβ相互作用的研究及利用納米技術(shù)來治療AD已取得顯著進(jìn)展[62-63],然而,納米粒子對(duì)各種 Aβ聚集體如Aβ斑塊的形成的影響及其作用機(jī)理,抑制Aβ聚集過程中所產(chǎn)生的寡聚體等中間物對(duì)細(xì)胞毒性大小等問題仍有待進(jìn)一步深入研究.探索某種納米粒子與Aβ的相互作用,有助于了解Aβ的聚集機(jī)理及粒子對(duì)Aβ聚集的影響,設(shè)計(jì)和制備出特定的具有生物相容性、低毒性、副作用小和具有可降解性的納米粒子,抑制Aβ的聚集或破壞其Aβ纖維結(jié)構(gòu),這將是未來研究的重點(diǎn)方向.
/References:
[1]Chiti F,Dobson C M.Protein misfolding,functional amyloid,and human disease [J].Annual Review of Biochemistry,2006,75(1):333-366.
[2]Swerdlow R H,Burns J M,Khan S M.The Alzheimer's disease mitochondrial cascade hypothesis:progress and perspectives[J].Biochimica et Biophysica Acta,2014,1842(8):1219-1231.
[3]Pimplikar S.Neuroinflammation in Alzheimer's disease:from pathogenesis to a therapeutic target[J].Journal of Clinical Immunology,2014,34(1):64-69.
[4]Jakob-Roetne R,Jacobsen H.Alzheimer's disease:from pathology to therapeutic approaches[J].Angewandte Chemie-International Edition,2009,48(17):3030-3059.
[5]Breydo L,Uversky V N.Structural,morphological,and functional diversity of amyloid oligomers[J].FEBS letters,2015,589(19):2640-2648.
[6]Iulita M F,Cuello A C.Nerve growth factor metabolic dysfunction in Alzheimer's disease and down syndrome[J].Trends in Pharmacological Sciences,2014,35(7):338-348.
[7]Selkoe D J.Alzheimer's disease:genes,proteins,and therapy[J].Physiological Reviews,2001,81(2):741-766.
[8]Sipe J D,Cohen A S.Review:history of the amyloid fibril[J].Journal of Structural Biology,2000,130(2/3):88-98.
[9]Westermark P,Benson M D,Buxbaum J N,et al.A primer of amyloid nomenclature[J].Amyloid-Journal of Protein Folding Disorders,2007,14(3):179-183.
[10]Nelson R,Sawaya M R,Balbirnie M,et al.Structure of the cross-beta spine of amyloid-like fibrils [J].Nature,2005,435(743):773-778.
[11]Lee C,Ham S.Characterizing amyloid-beta protein misfolding from molecular dynamics simulations with explicit water[J].Journal of Computational Chemistry,2011,32(2):349-355.
[12]Olofsson A,Lindhagen-Persson M,Sauer-Eriksson A ,et al.Amide solvent protection analysis demonstrates that amyloid-beta(1-40)and amyloid-beta(1-42)form different fibrillar structures under identical conditions[J].Biochemical Journal,2007,404(1):63-70.
[13]Olofsson A.Sauer-Eriksson A E,Ohman A.The solvent protection of alzheimer amyloid-beta-(1-42)fibrils as determined by solution NMR spectroscopy[J].The Journal of Biological Chemistry,2006,281(1):477-483.
[14]Azriel R,Gazit E.Analysis of the minimal amyloid-forming fragment of the islet amyloid polypeptide[J].Journal of Biological Chemistry,2001,276(36):34156-34161.
[15]Gazit E.A possible role for pi-stacking in the self-assembly of amyloid fibrils[J].FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology,2002,16(1):77-83.
[16]Mohamed A,Cortez L.De Chaves E P.Aggregation state and neurotoxic properties of alzheimer β-amyloid peptide[J].Current Protein and Peptide Science,2011,12(3):235-257.
[17]Serem W K,Bett C K,Ngunjiri J N.Studies of the growth,evolution,and self-aggregation of beta-amyloid fibrils using tapping-mode atomic force microscopy [J].Microscopy Research and Technique,2011,74(7):699-708.
[18]Shinkai Y,Yoshimura M,Ito Y,et al.Amyloid betaproteins 1-40 and 1-42(43)in the soluble fraction of extra-and intracranial blood vessels[J].Annals of Neurology,1995,38(3):421-428.
[19]Lewczuk P,Kornhuber J,Vanmechelen E,et al.Amyloid beta peptides in plasma in early diagnosis of Alzheimer's disease:a multicenter study with multiplexing[J].Experimental Neurology,2010,223(2):366-370.
[20]Yamaguchi T,Matsuzaki K,Hoshino M.Transient formation of intermediate conformational states of amyloid-beta peptide revealed by heteronuclear magnetic resonance spectroscopy [J].FEBS Letters,2011,585(7):1097-1102.
[21]Sabella S,Quaglia M,Lanni C,et al.Capillary electrophoresis studies on the aggregation process of beta-amyloid 1-42 and 1-40 peptides [J].Electrophoresis,2004,25(18/19):3186-3194.
[22]Bromberg L,Chang E P,Alvarez-Lorenzo C,et al.Binding of functionalized paramagnetic nanoparticles to bacterial lipopolysaccharides and DNA [J].Langmuir:the ACS Journal of Surfaces and Colloids,2010,26(11):8829-8835.
[23]Mu Bin,Liu Peng,Du Pengcheng,et al.Magnetic-targeted pH-responsive drug delivery system via layer-by-layer self-assembly ofpolyelectrolytes onto drug-containing emulsion droplets and its controlled release[J].Journal of Polymer Science Part A:Polymer Chemistry,2011,49(9):1969-1976.
[24]Jambhrunkar S,Qu Zhi,Popat A,et al.Effect of Surface Functionality of Silica Nanoparticles on Cellular Uptake and Cytotoxicity [J].Molecular Pharmaceutics,2014,11(10):3642-3655.
[25]Ke Qingqing,Pei Jiying,Yang Fan,et al.Visual Colorimetric Detection of Neurogenin 3 with Glutathione-Modified Gold Nanoparticle[J].Chinese Journal of Analytical Chemistry,2014,42(7):955-961.
[26]Liao Yihung,Chang Yujen,Yoshiike Yuji,et al.Negatively charged gold nanoparticles inhibit Alzheimer's amyloid-β fibrillization,induce fibril dissociation,and mitigate neurotoxicity[J].Small(Weinheim an der Bergstrasse,Germany),2012,8(23):3631-3639.
[27]Majzik A,F(xiàn)ueloep L,Csapo E,et al.Functionalization of gold nanoparticles with amino acid,beta-amyloid peptides and fragment[J].Colloids and Surfaces B Biointerfaces,2010,81(1):235-241.
[28]Lee H,Kim Y,Park A,et al.Amyloid-β aggregation with gold nanoparticles on brain lipid bilayer[J].Small(Weinheim an der Bergstrasse,Germany),2014,10(9):1779-1789.
[29]Yang F S,Lim G P,Begum A N,et al.Curcumin inhibits formation of amyloid beta oligomers and fibrils,binds plaques,and reduces amyloid in vivo[J].Journal of Biological Chemistry,2005,280(7):5892-5901.
[30]Banerjee R.Effect of curcumin on the metal ion induced fibrillization of amyloid-beta peptide[J].Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy,2014,117:798-800.
[31]Palmal S,Maity A R,Singh B K,et al.Inhibition of amyloid fibril growth and dissolution of amyloid fibrils by curcumin-gold nanoparticles[J].Chemistry(Weinheim an der Bergstrasse,Germany),2014,20(20):6184-6191.
[32]Zirah S,Kozin S A,Mazur A K,et al.Structural changes of region 1-16 of the Alzheimer disease amyloid beta-peptide upon zinc binding and in vitro aging[J].Journal of Biological Chemistry,2006,281(4):2151-2161.
[33]Danielsson J,Pierattelli R,Banci L,et al.High-resolution NMR studies ofthe zinc-binding site ofthe Alzheimer's amyloid beta-peptide [J].FEBS Journal,2007,274(1):46-59.
[34]Zou Jin,Kajita K,Sugimoto N.Cu2+inhibits the aggregation of amyloid β-peptide(1-42)in vitro [J].Angewandte Chemie International Edition,2001,40(12):2274-2277.
[35]Raman B,Ban T,Yamaguchi K,et al.Metal ion-dependent effects of clioquinol on the fibril growth of an amyloid beta peptide [J].Journal of Biological Chemistry,2005,280(16):16157-16162.
[36]Smith D P,Ciccotosto G D,Tew D J,et al.Concentration dependent Cu2+induced aggregation and dityrosine formation of the Alzheimer's disease amyloid-beta peptide [J].Biochemistry,2007,46(10):2881-2891.
[37]Dorlet P,Gambarelli S,F(xiàn)aller P,et al.Pulse EPR spectroscopy reveals the coordination sphere of copper(II)ions in the 1-16 amyloid-β peptide:a key role of the first two N-Terminus residues[J].Angewandte Chemie-International Edition,2009,48(49):9273-9276.
[38]Drew S C,Noble C J,Masters C L,et al.Pleomorphic Copper coordination by Alzheimer's disease amyloid-beta peptide [J].Journal of the American Chemical Society,2009,131(3):1195-1207.
[39]Huang X,Atwood C S,Hartshorn M A,et al.The Aβ peptide of Alzheimer's disease directly produces Hydrogen peroxide through metal ion reduction [J].Biochemistry,1999,38(24):7609-7616.
[40]Miura T,Suzuki K,Takeuchi H.Binding of iron(III)to the single tyrosine residue of amyloid beta-peptide probed by raman spectroscopy[J].Journal of Molecular Structure,2001,598(1):79-84.
[41]Ricchelli F,Drago D,F(xiàn)ilippi B,et al.Aluminum-triggered structural modifications and aggregation of beta-amyloids[J].Cellular and Molecular Life Sciences,2005,62(15):1724-1733.
[42]Miller Y,Ma Buyong,Nussinov R.Zinc ions promote Alzheimer Aβ aggregation via population shift of polymorphic states[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(21):9490-9495.
[43]Lin Changjun,Huang Hanchang,Jiang Zhaofeng.Cu(II)interaction with amyloid-beta peptide:a review of neuroactivemechanismsin AD brains[J]. Brain Research Bulletin,2010,82(5/6):235-242.
[44]Lim S C,Paterson B M,F(xiàn)odero-Tavoletti M T,et al.A copperradiopharmaceuticalfordiagnostic imaging of Alzheimer's disease:a bis(thiosemicarbazonato)copper(II)complex that binds to amyloid-beta plaques[J].Chemical Communications,2010,46(30):5437-5439.
[45]Barnham K J,Kenche V B,Ciccotosto G D,et al.Platinum-based inhibitors of amyloid-beta as therapeutic agents for Alzheimer's disease[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(19):6813-6818.
[46]Seixas J D,Santos M F,Mukhopadhyay A A,et al.A contribution to the rational design of Ru(CO)3Cl2L complexes for in vivo delivery of CO [J].Dalton Transactions,2015,44(11):5058-5075.
[47]Streltsov V A,Epa V C,James S A,et al.Structural insights into the interaction of platinum-based inhibitors with the Alzheimer's disease amyloid-beta peptide[J].Chemical Communications,2013,49(97):11364-11366.
[48]Man B Y W,Chan H M,Leung C H,et al.Group 9 metal-based inhibitors of β-amyloid(1-40)fibrillation as potential therapeutic agents for Alzheimer's disease [J].Chemical Science,2011,2(5):917-921.
[49]Wu Weihui,Sun Xun,Yu Yeping,et al.TiO2nanoparticles promote β-amyloid fibrillation in vitro [J].Biochemical and Biophysical Research Communications,2008,373(2):315-318.
[50]Mahmoudi M,Hofmann H,Rothen-Rutishauser B,et al.Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles [J].Chemical Reviews,2012,112(4):2323-2338.
[51]Mahmoudi M,Quinlan-Pluck F,Monopo M P,et al.Influence of the physiochemical properties of superparamagnetic iron oxide nanoparticles on amyloid β protein fibrillation in solution [J].ACS Chemical Neuroscience,2013,4(3):475-485.
[52]Cabaleiro-Lago C,Quinlan-Pluck F,Lynch I A,et al.Dual effect of amino modified polystyrene nanoparticles on amyloid beta protein fibrillation [J].ACS Chemical Neuroscience,2010,1(4):279-287.
[53]Cabaleiro-Lago C,Quinlan-Pluck F,Lynch I A,et al.Inhibition of amyloid beta protein fibrillation by polymeric nanoparticles[J].Journal of the American Chemical Society,2008,130(46):15437-15443.
[54]Foley P,Gerlach M,Youdim M B,et al.MAO-B inhibitors:multiple roles in the therapy of neurodegenerative disorders?[J].Parkinsonism & Related Disorders,2000,6(1):25-47.
[55]Ono K,Hasegawa K,Naiki H,et al.Anti-Parkinsonian agents have anti-amyloidogenic activity for alzheimer's βamyloid fibrils in vitro[J].Neurochemistry International,2006,48(4):275-285.
[56]Baysal I,Yabanoglu-Ciftci S,Tunc-Sarisozen Y A,et al.Interaction of selegiline-loaded PLGA-b-PEG nanoparticles with beta-amyloid fibrils[J].Journal of Neural Transmission,2013,120(6):903-910.
[57]Engel M F,Vandenakker C C,Schleeger M,et al.The polyphenol EGCG inhibits amyloid formation less efficiently at phospholipid interfaces than in bulk solution [J].Journal of the American Chemical Society,2012,134(36):14781-14788.
[58]Bellinger F P,Raman A V,Reeves M A.Regulation and function of selenoproteins in human disease[J].Biochemical Journal,2009,422(1):11-22.
[59]Zhang Jingnan,Zhou Xianbo,Yu Qianqian,et al.Epigallocatechin-3-gallate(EGCG)-stabilized selenium nanoparticles coated with Tet-1 peptide to reduce amyloid-β aggregation and cytotoxicity[J].ACS Applied Materials& Interfaces,2014,6(11):8475-8487.
[60]Medina C,Santos-Martinez M J,Radomski A,et al.Nanoparticles:pharmacological and toxicological significance[J].British Journal of Pharmacology,2007,150(5):552-558.
[61]Mulik R S,Monkkonen J,Juvonen R O,et al.ApoE3 mediated poly(butyl)cyanoacrylate nanoparticles containing curcumin:study of enhanced activity of curcumin against beta amyloid induced cytotoxicity using in vitro cell culture model[J].Molecular Pharmaceutics,2010,7(3):815-825.
[62]Brambilla D,Le Droumaguet B,Nicolas J A,et al.Nanotechnologies for alzheimer's disease:diagnosis,therapy,and safety issues [J].Nanomedicine:Nanotechnology,Biology,and Medicine,2011,7(5):521-540.
[63]Ni Jiazuan,Chen Ping,Liu Qiong,et al.Advance reseach on strategies for the prevention of Alzheimer's disease[J].Journal of Shenzhen University Science and Engineering,2013,30(4):331-348.(in Chinese)倪嘉纘,陳 平,劉 瓊,等.阿爾茨海默病的防治策略研究進(jìn)展[J].深圳大學(xué)學(xué)報(bào)理工版,2013,30(4):331-348.