郭園園,蒿建龍,薛海斌,劉喆頡
1)太原理工大學(xué)新型傳感器與智能控制教育部重點(diǎn)實(shí)驗(yàn)室,太原030024;2)太原理工大學(xué)物理與光電工程學(xué)院,太原030024;3)新加坡國(guó)立大學(xué)電氣與計(jì)算機(jī)工程系,新加坡117583
自旋轉(zhuǎn)移力矩效應(yīng)[1-2]可以在沒有外部磁場(chǎng)情形下實(shí)現(xiàn)對(duì)磁性材料磁矩的有效控制,因而,自旋轉(zhuǎn)移力矩驅(qū)動(dòng)的自旋電子器件引起了人們強(qiáng)烈的關(guān)注[3-9].例如,基于自旋轉(zhuǎn)移力矩效應(yīng)的新型超高密度磁記錄[7-8,10-12]、高頻微波發(fā)生器[13-16]、邏輯器件[17-19].特別是,自旋轉(zhuǎn)移力矩驅(qū)動(dòng)的磁性隨機(jī)存儲(chǔ)器具有高讀寫速度、非易失性、高存儲(chǔ)密度等優(yōu)點(diǎn),引起人們的廣泛興趣.
但是,對(duì)于自旋轉(zhuǎn)移力矩驅(qū)動(dòng)的磁性隨機(jī)存儲(chǔ)器,其磁矩翻轉(zhuǎn)所需的臨界電流密度在107~108A/cm2量級(jí),此時(shí),隨機(jī)存儲(chǔ)器的存儲(chǔ)介質(zhì)很容易被擊穿,從而制約了自旋轉(zhuǎn)移力矩驅(qū)動(dòng)的磁性隨機(jī)存儲(chǔ)器的大范圍應(yīng)用.因此,如何降低自旋轉(zhuǎn)移力矩驅(qū)動(dòng)磁矩翻轉(zhuǎn)所需的臨界電流密度是一個(gè)亟待解決的問題.最近,有學(xué)者在平面型的磁性隧道結(jié)的研究中,發(fā)現(xiàn)CoFeB/MgO界面處存在的垂直各向異性[20]可有效減小磁矩翻轉(zhuǎn)所需的臨界電流密度[21-22].
本研究基于Landau-Lifshitz-Gilbert-Slonczew ski(LLGS)方程,研究垂直界面各向異性對(duì)CoFeB/MgO磁隧道結(jié)自由層靜態(tài)磁矩方向的影響,尤其是在平面型磁隧道結(jié)中,磁矩翻轉(zhuǎn)所需的臨界電流密度與界面各向異性常數(shù)之間的關(guān)系.此外,還研究了固定層磁矩相對(duì)于自由層磁矩方向的小角度以及類場(chǎng)自旋轉(zhuǎn)移力矩對(duì)磁矩翻轉(zhuǎn)時(shí)間的影響.
采用的CoFeB/MgO磁隧道結(jié)(magnetic tunnel junctions,MTJ),如圖1.頂層與底層的介質(zhì)層為鐵磁層,中間被非磁性的氧化層隔開.在兩個(gè)鐵磁層中,較薄的鐵磁層磁矩方向可自由轉(zhuǎn)動(dòng),稱為自由層(free layer);較厚的鐵磁層磁矩方向被固定,稱為固定層(pinned layer).固定層磁矩mp在x-z平面,其方向與x軸間的夾角為ω.當(dāng)一束電子通過MTJ結(jié)構(gòu)的固定層時(shí),將被極化為與固定層磁矩方向相同的自旋極化電流.此自旋極化電流通過隔離層進(jìn)入自由層后,將對(duì)自由層磁矩產(chǎn)生一個(gè)自旋轉(zhuǎn)移力矩(spin transfer torque,STT).
圖1 水平磁隧道結(jié)模型Fig.1 Schematic representation of the studied in-plane magnetic tunnel junction
此時(shí),自由層磁矩的動(dòng)力學(xué)特性遵循Landau-Lifshitz-Gilbert-Slonczewski(LLGS)方程
其中,m為自由層磁矩單位矢量;γ是旋磁比;Heff為自由層受到的有效磁場(chǎng),它包括沿 +x方向的面內(nèi)形狀各向異性場(chǎng)Hk、沿 +z方向的界面垂直各向異性場(chǎng)Hk⊥和沿 -z方向的退磁場(chǎng)Hd;α是Gilbert阻尼系數(shù);τSTT是極化電流產(chǎn)生的自旋轉(zhuǎn)移力矩,描述為
這里,?為普朗克常量;ε為自由層自旋極化率;μ0為真空磁導(dǎo)率;e為電子的電荷;d為自由層厚度;Ms為自由層飽和磁化強(qiáng)度;J為電流密度;mp=(mpx,mpy,mpz)為固定層磁矩的單位矢量,為方便討論,取mp=(cosω,0,sinω),并定義
在笛卡爾坐標(biāo)系中,將方程(1)展開可得到如式(4)的一組微分方程:
其中,mx、my和mz分別是自由層磁矩m沿著x、y和z軸的分量;mpx、mpy和mpz分別是固定層磁矩mp沿著x、y和z軸的分量;Γ =(1+α2)/γ;α為阻尼系數(shù);Hk⊥=2Ku/Ms,Ku為界面垂直各向異性系數(shù).
在下面的數(shù)值模擬中,相關(guān)參數(shù)的選取符合CoFeB/MgO磁隧道結(jié)的實(shí)際情況,其數(shù)量級(jí)與文獻(xiàn)[22]一致,參數(shù)選取如下:阻尼系數(shù)α=0.02,旋磁比γ=173.2 GHz/T,自由層的橫截面積S=120×50 nm2,厚度d=1.5 nm,飽和磁化強(qiáng)度Ms=1.0×106A/m,退磁場(chǎng)Hd=Ms,面內(nèi)形狀各向異性場(chǎng)Hk=2.64×104A/m,固定層的自旋極化率ε=0.4.此外,假設(shè)最初的自由層磁矩沿著x軸方向.
首先研究在沒有電流作用時(shí),界面各向異性常數(shù)對(duì)靜態(tài)自由層磁矩方向的影響.圖2(a)和圖2(b)分別給出了自由層界面各向異性系數(shù)取不同值時(shí),自由層磁矩面內(nèi)和垂直于面的磁滯回線.由圖2可知,當(dāng)界面各向異性系數(shù)小于1.0 mJ/m2時(shí),界面各向異性較小,不足以抵消磁場(chǎng)作用.此時(shí),在磁隧道結(jié)中,自由層磁矩排列在面內(nèi),由于同時(shí)受到形狀各向異性的影響,最終磁矩沿橢圓的長(zhǎng)軸方向排列.當(dāng)界面各向異性系數(shù)大于1.0 mJ/m2時(shí),界面各向異性場(chǎng)增強(qiáng),足以抵消磁場(chǎng)作用,從而使自由層磁矩沿著垂直于面的方向[21].本研究著重研究平面型磁隧道結(jié),因此,界面各向異性系數(shù)的取值范圍為0~0.9 mJ/m2.
圖2 具有不同界面各向異性常數(shù)自由層的磁滯回線Fig.2 Simulated free layer magnetization curves for different interfacial anisotropy
下面,研究自由層磁矩在平面內(nèi)時(shí),界面各向異性系數(shù)對(duì)磁矩翻轉(zhuǎn)特性的影響.圖3(a)給出了脈沖電流作用時(shí)間分別為10和20 ns時(shí),界面各向異性系數(shù)對(duì)磁隧道結(jié)磁矩翻轉(zhuǎn)閾值電流密度的影響.對(duì)于平面型磁隧道結(jié),引入界面各向異性能夠有效地降低磁矩翻轉(zhuǎn)所需的閾值電流密度,且呈線性變化,如圖3(a).特別是,隨著界面各向異性系數(shù)從0增至0.9 mJ/m2,在10 ns電流脈沖作用下,其閾值電流密度可從21.35 MA/cm2減至7.49 MA/cm2,約減小了65%,使自由層磁矩翻轉(zhuǎn)的閾值電流密度降低到106A/cm2量級(jí).此外,電流脈沖的作用時(shí)間對(duì)閾值電流密度也有影響,即電流作用時(shí)間越長(zhǎng),閾值電流密度越低.圖3(b)給出了在持續(xù)時(shí)間為10 ns,23 MA/cm2的電流密度作用下,自由層磁矩在不同界面各向異性系數(shù)作用下隨時(shí)間的變化.從圖3可見,在相同電流作用下,界面各向異性系數(shù)越大,磁矩翻轉(zhuǎn)越快.在下面的討論中,設(shè)固定界面各向異性常數(shù)Ku=0.6 mJ/m2,分別研究類場(chǎng)自旋轉(zhuǎn)移力矩、固定層磁矩方向?qū)Υ啪胤D(zhuǎn)時(shí)間的影響.
圖3 界面各向異性對(duì)磁矩翻轉(zhuǎn)特性的影響Fig.3 Dependence of switching properties on interfacial anisotropy
由式(2)可知,自旋轉(zhuǎn)移力矩效應(yīng)正比于固定層與自由層磁矩的矢量積.因此,固定層磁矩的方向可以影響自由層磁矩的動(dòng)力學(xué)特性.對(duì)于考慮的磁隧道結(jié),在電流施加的初始時(shí)刻,兩磁性層通常為近平行或反平行狀態(tài),其叉乘結(jié)果將導(dǎo)致STT效應(yīng)趨于零,這將導(dǎo)致翻轉(zhuǎn)時(shí)間較長(zhǎng).特別是,磁矩翻轉(zhuǎn)過程需要較長(zhǎng)的預(yù)翻轉(zhuǎn)時(shí)間.但是,當(dāng)固定層的磁矩向面外傾斜時(shí),固定層在初始時(shí)刻就可以提供一個(gè)較大的自旋轉(zhuǎn)移力矩作用,因而對(duì)消除預(yù)翻轉(zhuǎn)時(shí)間和縮短總翻轉(zhuǎn)時(shí)間會(huì)有明顯效果.圖4給出了ω取不同值時(shí),隧道結(jié)磁矩翻轉(zhuǎn)時(shí)間和電流密度之間的關(guān)系.如圖4,傾斜固定層磁矩確實(shí)可以使自由層磁矩翻轉(zhuǎn)所用的時(shí)間縮短.
在電流驅(qū)動(dòng)的磁矩翻轉(zhuǎn)過程中,局域磁矩與傳導(dǎo)電子自旋之間的相互作用,不僅可以導(dǎo)致平面內(nèi)自旋轉(zhuǎn)移力矩的出現(xiàn),且會(huì)產(chǎn)生平面外的類場(chǎng)自旋轉(zhuǎn)移力矩.尤其是這兩類自旋轉(zhuǎn)移力矩都與電流成正比,有助于電流驅(qū)動(dòng)的磁矩翻轉(zhuǎn)[23].式(2)僅考慮了平面內(nèi)自旋轉(zhuǎn)移力矩的作用,若同時(shí)考慮類場(chǎng)自旋轉(zhuǎn)移力矩對(duì)磁矩翻轉(zhuǎn)的影響,此時(shí)描述電流產(chǎn)生的自旋轉(zhuǎn)移力矩效應(yīng)可修正為
其中,bJ描述了電流誘導(dǎo)的類場(chǎng)自旋轉(zhuǎn)移力矩.這里,bJ=βaJ,β為類場(chǎng)自旋轉(zhuǎn)移力矩和自旋轉(zhuǎn)移力矩的比值,其取值范圍為(-1,1).為研究類場(chǎng)自旋轉(zhuǎn)移力矩對(duì)翻轉(zhuǎn)時(shí)間的影響,選取固定電流密度J=15 MA/cm2,作用時(shí)間10 ns,研究固定層磁矩偏角ω和系數(shù)β對(duì)翻轉(zhuǎn)時(shí)間的影響.數(shù)值結(jié)果表明,當(dāng)β為正值時(shí),類場(chǎng)自旋轉(zhuǎn)移力矩將阻礙磁矩翻轉(zhuǎn),使磁矩翻轉(zhuǎn)時(shí)間增加;而當(dāng)相應(yīng)的β為負(fù)值時(shí),類場(chǎng)自旋轉(zhuǎn)移力矩將促進(jìn)磁矩翻轉(zhuǎn),從而使磁矩翻轉(zhuǎn)時(shí)間縮短,如圖5.
圖4 固定層磁矩傾斜角取不同值時(shí),自由層磁矩翻轉(zhuǎn)所需時(shí)間和電流密度之間的關(guān)系Fig.4 Current density as a function of switching time for different angles of the pinned layer
圖5 當(dāng)固定層傾斜角不同時(shí),翻轉(zhuǎn)時(shí)間隨β=bJ/aJ的變化Fig.5 The switching time as a function of β=bJ/aJfor different values of the tilt angle of the pinned-layer
基于 Landau-Lifshitz-Gilbert-Slonczewski方程,研究了平面型磁隧道結(jié)的界面各向異性對(duì)其磁矩翻轉(zhuǎn)特性的影響.數(shù)值結(jié)果顯示,增加界面垂直各向異性可以有效減小磁矩翻轉(zhuǎn)所需的臨界電流密度,且臨界電流密度與界面各向異性系數(shù)成反比.例如,在10 ns的電流脈沖作用下,當(dāng)界面各向異性系數(shù)從0增至0.9 mJ/m2時(shí),其閾值電流密度可從21.35 MA/cm2降低到7.49 MA/cm2,減小約 65%.另外,還研究了固定層磁矩與自由層磁矩之間小的傾角和類場(chǎng)自旋轉(zhuǎn)移力矩對(duì)磁矩翻轉(zhuǎn)時(shí)間的影響.例如,當(dāng)固定層磁矩相對(duì)于自由層磁矩有一個(gè)小的傾角時(shí),可以明顯加快自由層的磁矩翻轉(zhuǎn).此外,當(dāng)類場(chǎng)自旋轉(zhuǎn)移力矩與自旋轉(zhuǎn)移力矩之比為正值時(shí),類場(chǎng)自旋轉(zhuǎn)移力矩將阻礙磁矩翻轉(zhuǎn);反之,該數(shù)值為負(fù)值時(shí),則對(duì)磁矩的翻轉(zhuǎn)起促進(jìn)作用.
/References:
[1]Slonczewski J C.Current-driven excitation of magnetic multilayers[J].Journal of Magnetism and Magnetic Materials,1996,159(1/2):L1-L7.
[2]Berger L.Emission of spin waves by a magnetic multilayer traversed by a current[J].Physical Review B,1996,54(13):9353.
[3]Albert F J,Katine J A,Ralph D C.Spin-polarized current switching of a Co thin film nanomagnet[J].Applied Physics Letters,2000,77(23):3809-3911.
[4]Katine J A,Albert F J,Buhrman R A,Myers E B,Ralph D C.Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars[J].Physical Review Letters,2000,84(14):3149-3152.
[5]Kaka S,Pufall M R,Rippard W H.Spin transfer switching of spin valve nanopillars using nanosecond pulsed current[J].Journal of Magnetism and Magnetic Materials,2005,286:375-380.
[6]Bao Jin,Xu Xiaoguang,Jiang Yong.Current-induced magnetization switching in spin valves[J].Acta Physical Sinica,2009,58(11):7998.(in Chinese)包 瑾,徐曉光,姜 勇.自旋閥中電流誘導(dǎo)磁化翻轉(zhuǎn)行為的研究 [J],物理學(xué)報(bào),2009,58(11),7998.
[7]Zhao H,Lyle A,Zhang Y,et al.Low writing energy and subnanosecond spin torque transfer switching of in-plane magnetic tunnel junction for spin torque transfer random access memory [J].Journal of Applied Physics,2011,109(7):07C720.
[8]Lee J M,Lee C M,Ye L X,et al.Switching properties or MgO-based magnetic tunnel junction devices driven by spin-transfer torque in the nanosecond regime[J].IEEE Transactions on magnetics,2011,47(3):629.
[9]Jin Wei,Wan Zhenmao,Liu Yaowen.Nonlinear magnetization dynamics excited by the spin-transfer torque effect[J].Acta Physical Sinica,2011,60(1):017502.(in Chinese).金 偉,萬振茂,劉要穩(wěn),自旋轉(zhuǎn)移矩效應(yīng)激發(fā)的非線性磁化動(dòng)力學(xué) [J].物理學(xué)報(bào),2011,60(1):017502.
[10]Wan Langhui,Wei Yadong,Xi Dingping,et al.Spindependent transport through ferromagnet-magnetic scattering region-ferromagnet hybrid junction [J].Journal of shenzhen university science and engineering,2004,21(1):7-13.(in Chinese).萬浪輝,衛(wèi)亞東,奚定平,等.磁導(dǎo)線-磁性散射區(qū)-磁導(dǎo)線系統(tǒng)的自旋輸運(yùn) [J].深圳大學(xué)學(xué)報(bào),2004,21(1):7-13.
[11]Gabriel D,Chaves O,Georg W,et al.Micromagnetic study of spin transfer switching with a spin polarization tilted out of the free layer plane[J].Journal of Applied Physics,2015,117(17),17D705.
[12]Zhang X L,Zhang Z Z,Liu Y W,et al.Simulation of electric-field and spin-transfer-torque induced magnetization switching in perpendicular magnetic tunnel junctions[J].Journal of Applied Physics,2015,117(17):17A701.
[13]Su Yikun,Deng Yujun,Huang Xiangyu,et al.Preparation and characterization of Fe nanowire arrays[J].Journal of shenzhen university science and engineering,2013,30(6):617-622.(in Chinese).蘇軼坤,鄧宇駿,黃湘愉,等.Fe納米線的制備與表征 [J].深圳大學(xué)學(xué)報(bào),2013,30(6):617-622.
[14]Zhou Y,Zhang H,Liu Y W,et al.Macrospin and micromagnetic studies of tilted polarizer spin-torque nanooscillators[J].Journal of Applied Physics,2012,112(6):063903.
[15]Huang H B,Ma X Q,Zhao C P,et al.Micromagnetic study of high-power spin-torque oscillator with perpendicular magnetization in half-metallic Heusler alloy spin valve nanopillar under external magnetic field [J].Journal of Magnetism and Magnetic Materials,2015,373(105):10-15.
[16]Maehara H,Kubota H,Suzuki Y,et al.High Q factor over 3000 due to out-of-plane precession in nano-contact spin-torque oscillator based on magnetic tunnel junction[J].Applied Physics Express,2014,7(2):023003.
[17]Leem L,Harris J S.Magnetic coupled spin-torque devices for nonvolatile logic applications[J].Journal of Applied Physics,2009,105(7):07D102.
[18]Yao X F,Harms J,Lyle A,et al.Magnetic tunnel junction-based spintronic logic units operated by spin transfer torque [J]. IEEE Transactionson Nanotechnology,2012,11(1):120.
[19]Bhowmik D,You L,Salahuddin S.Spin hall effect clocking of nanomagnetic logic without a magnetic field[J].Nature Nanotechnology,2015,9(1):59.
[20]Ikeda S,Miura K,Yamamoto H,et al.A perpendicularanisotropy CoFeB-MgO magnetic tunnel junction [J].Nature Materials,2012,9(9):721.
[21]Amiri P K,Zeng Z M,Langer J,et al.Switching current reduction using perpendicular anisotropy in CoFeB-MgO magnetic tunnel junctions [J].Applied Physics Letters,2011,98(11):112507.
[22]Tomasello R,Puliafito V,Azzerboni B,et al.Switching properties in magnetic tunnel junctions with interfacial perpendicular anisotropy:micromagnetic study[J],IEEE Transactions on Magnetics,2014,50(7):7100305.
[23]Li Z,Zhang S,Diao Z,et al.Perpendicular spin torques in magnetic tunnel junctions[J].Physical Review Letters,2008,100(24):246602.