胡清霞,高昂,曾煒佳,王妍馨,董金堂,朱正茂
?
高等哺乳動(dòng)物L(fēng)EM結(jié)構(gòu)域蛋白家族的研究進(jìn)展
胡清霞,高昂,曾煒佳,王妍馨,董金堂,朱正茂
南開(kāi)大學(xué)生命科學(xué)學(xué)院,天津市蛋白質(zhì)科學(xué)重點(diǎn)實(shí)驗(yàn)室,天津 300071
在高等動(dòng)物細(xì)胞開(kāi)放式有絲分裂過(guò)程中,細(xì)胞核膜會(huì)發(fā)生高度有序的周期性去組裝和裝配的動(dòng)態(tài)變化。近年的研究結(jié)果表明是LEM家族蛋白成員通過(guò)與BAF因子相互作用介導(dǎo)了內(nèi)核膜、核纖層蛋白以及染色體之間的相互作用。LEM蛋白、核纖層蛋白以及BAF因子直接相互作用形成的三元復(fù)合體在結(jié)構(gòu)與功能上是相互依賴(lài)的,在此結(jié)構(gòu)與功能上組成的網(wǎng)絡(luò)體系是形成細(xì)胞核的一些基本生物學(xué)過(guò)程的重要條件。該復(fù)合體在調(diào)控有絲分裂M期后期和末期染色體的正常分離、有絲分裂后核膜的重組裝,細(xì)胞分裂間期細(xì)胞核及核膜形態(tài)維持,調(diào)控DNA復(fù)制和DNA損傷修復(fù),調(diào)節(jié)基因表達(dá)和信號(hào)通路以及逆轉(zhuǎn)錄病毒感染等方面發(fā)揮著重要的生物學(xué)功能。并且LEM蛋白相關(guān)基因的異常對(duì)核纖層疾病和腫瘤的發(fā)生發(fā)展具有重要的影響。文章主要針對(duì)LEM蛋白家族成員的結(jié)構(gòu)以及功能研究進(jìn)展進(jìn)行了詳細(xì)的綜述。
LEM蛋白;核纖層蛋白;BAF;有絲分裂;核膜組裝;核膜核纖層?。荒[瘤發(fā)生
細(xì)胞核是真核生物細(xì)胞內(nèi)最重要的細(xì)胞器,在細(xì)胞核內(nèi)發(fā)生著與細(xì)胞遺傳及代謝活動(dòng)緊密相關(guān)的DNA復(fù)制、RNA轉(zhuǎn)錄和轉(zhuǎn)錄后加工等生命過(guò)程。核膜(Nuclear envelope)是包裹細(xì)胞核的一種雙層膜結(jié)構(gòu),分為外層核膜(Out nuclear membrane, ONM)、內(nèi)層核膜(Inner nuclear membrane, INM)以及兩層膜之間的核膜間隙(Inner nuclear membrane space, INS)。內(nèi)層核膜與外層核膜也是相互連續(xù)的膜系統(tǒng),其相互連接的地方鑲嵌著核孔復(fù)合體(Nuclear pore complex, NPC),核孔的一個(gè)重要作用就是為細(xì)胞核與細(xì)胞質(zhì)之間的物質(zhì)交換和信息交流提供通道。外層核膜面向細(xì)胞質(zhì),與粗面內(nèi)質(zhì)網(wǎng)直接相連,上面附著大量的核糖體,因此也被認(rèn)為是粗面內(nèi)質(zhì)網(wǎng)的一部分,可能參與蛋白質(zhì)翻譯等功能。內(nèi)層核膜呈片狀直接包裹細(xì)胞核,內(nèi)層核膜內(nèi)側(cè)為核纖層(Nuclear lamina),哺乳動(dòng)物的核纖層主要由Lamin A、Lamin B以及Lamin C這3種核纖層蛋白構(gòu)成。LaminA/C的表達(dá)具有組織與發(fā)育時(shí)期的特異性,而Lamin B在哺乳動(dòng)物的所有細(xì)胞中表達(dá)。核纖層蛋白與內(nèi)核膜上的其他蛋白質(zhì)存在結(jié)構(gòu)與功能上的相互關(guān)系。這些蛋白質(zhì)主要包括一些核被膜內(nèi)膜蛋白,如SUN1、LEM(LAP2-Emerin-MAN1)家族蛋白等;核孔復(fù)合體蛋白;核基質(zhì)與染色質(zhì)結(jié)合蛋白,如BAF等;細(xì)胞骨架結(jié)合蛋白,如Nesprin等。通過(guò)蛋白組學(xué)技術(shù)現(xiàn)已在3種不同類(lèi)型的細(xì)胞中鑒定出約200種不同的核膜跨膜蛋白(Nuclear envelope transmembrane proteins, NETs),如在鼠肝臟細(xì)胞中鑒定了67種NETs[1],在鼠骨骼肌細(xì)胞種鑒定了29種NETs[2],在人白細(xì)胞中鑒定了87種NETs[3],但大多數(shù)核膜跨膜蛋白的功能尚不清楚。相對(duì)而言,LEM家族蛋白成員研究得比較深入。目前研究發(fā)現(xiàn)LEM家族蛋白成員介導(dǎo)了內(nèi)核膜與核纖層蛋白以及染色體之間的相互作用,在維持核膜形態(tài),調(diào)控核膜裝配、DNA復(fù)制、基因轉(zhuǎn)錄、細(xì)胞增殖分化與凋亡等方面發(fā)揮著重要的作用。本文對(duì)高等動(dòng)物L(fēng)EM家族蛋白的結(jié)構(gòu)及其各種生物學(xué)功能的研究進(jìn)展進(jìn)行了綜述,以期為科研工作者對(duì)其基因新功能的挖掘以及基因功能的應(yīng)用奠定基礎(chǔ)。
已經(jīng)發(fā)現(xiàn)哺乳動(dòng)物基因組中有7個(gè)基因能編碼含LEM結(jié)構(gòu)域的蛋白,分別為、、、、、和。LEM結(jié)構(gòu)域是一個(gè)約有40個(gè)氨基酸組成的比較保守的雙螺旋結(jié)構(gòu),可以直接和BAF1 ( Barrier-to-autointegration-factor) 結(jié)合[4~9]?;蚓幋a的蛋白在高等動(dòng)物中高度保守,全長(zhǎng)為89個(gè)氨基酸,在細(xì)胞內(nèi)以二聚體結(jié)構(gòu)方式來(lái)發(fā)揮功能。BAF可以與雙鏈DNA非特異性結(jié)合,每個(gè)BAF分子含有兩個(gè)DNA結(jié)合位點(diǎn)[10]。LEM結(jié)構(gòu)域結(jié)合在BAF二聚體的中心部位,BAF的DNA結(jié)合位點(diǎn)的關(guān)鍵氨基酸殘基對(duì)BAF結(jié)合LEM結(jié)構(gòu)域蛋白同樣重要[11]。BAF二聚體存在兩種構(gòu)象,當(dāng)BAF二聚體與DNA結(jié)合后會(huì)促進(jìn)其構(gòu)象發(fā)生變化,這種變化增強(qiáng)了BAF二聚體與LEM結(jié)構(gòu)域蛋白的親和性。在分裂間期,LEM蛋白、Lamin A和BAF蛋白的細(xì)胞定位是相互依賴(lài)的[12,13],而且BAF與LEM蛋白家族的互作直接受到這些蛋白自身細(xì)胞周期性磷酸化修飾的調(diào)控[14]。缺失BAF或者過(guò)表達(dá)無(wú)DNA結(jié)合能力的BAF突變體會(huì)導(dǎo)致LEM蛋白和Lamin A的錯(cuò)誤定位,缺失Lamin A會(huì)導(dǎo)致LEM蛋白和BAF的錯(cuò)誤定位,缺失LEM蛋白會(huì)導(dǎo)致BAF的錯(cuò)誤定位[13]。BAF蛋白在染色質(zhì)結(jié)構(gòu)調(diào)控和染色體分離過(guò)程中具有重要功能,在有絲分離后期和減數(shù)分裂中的核膜重建過(guò)程中起關(guān)鍵作用。而B(niǎo)AF-LEM的這種交互作用在維持細(xì)胞核組織的穩(wěn)態(tài)和有絲分裂后核膜的重新組裝過(guò)程中起關(guān)鍵作用,這種交互作用將染色質(zhì)和核膜有機(jī)地聯(lián)系起來(lái)[15]。
多數(shù)含LEM結(jié)構(gòu)域的蛋白含有一個(gè)或兩個(gè)跨膜結(jié)構(gòu)域,是內(nèi)核膜的整合蛋白(圖1),如Emerin是一個(gè)單次跨膜的內(nèi)層核膜蛋白[16],MAN1是一個(gè)含有雙次跨膜結(jié)構(gòu)域的內(nèi)層核膜蛋白[4]。但是LAP2蛋白家族成員LAP2a和LAP2z,以及Ankle1不含跨膜結(jié)構(gòu)域,定位在胞質(zhì)或核質(zhì)中,并能在一定的生理或病理?xiàng)l件下發(fā)生蛋白轉(zhuǎn)位[6,8]。而Ankle2蛋白定位在核膜與內(nèi)質(zhì)網(wǎng)上[9](圖2)。在這7個(gè)編碼基因中,、和基因在轉(zhuǎn)錄后因選擇性剪接可最終形成多種不同的蛋白,發(fā)揮著不同的生物學(xué)功能。
圖1 LEM蛋白家族的結(jié)構(gòu)組成
LAP2含有6個(gè)異構(gòu)體,6個(gè)異構(gòu)體的氨基末端(1~187肽段)恒定不變,并含有一個(gè)LEM結(jié)構(gòu)域,但他們的羧基末端序列不同,且只有LAP2a和LAP2z在羧基末端沒(méi)有跨膜結(jié)構(gòu)模序;MAN1與LEMD2含有兩個(gè)跨膜結(jié)構(gòu),在MAN1的羧基末端含有一個(gè)RRM結(jié)構(gòu)域,介導(dǎo)與R-Smads的直接互作;ANKLE1與ANKLE2均含有一個(gè)Ankyrin repeats結(jié)構(gòu)域,ANKLE1沒(méi)有跨膜結(jié)構(gòu)域,但含有一個(gè)酶促活性的保守的GIY-YIG內(nèi)切核酸酶結(jié)構(gòu)域。
圖2 哺乳類(lèi)動(dòng)物中LEM蛋白家族成員的定位模式圖
LAP2a與ANKLE1蛋白能在胞質(zhì)與核質(zhì)中穿梭,ANKLE2定位在內(nèi)質(zhì)網(wǎng)與核被膜上,其他LEM蛋白均為核被膜內(nèi)膜蛋白,包括emerin、MAN1、LEM2和一些LAP2的選擇性剪接亞型等。LEM蛋白參與多種生物學(xué)過(guò)程:如參與有絲分裂染色體的分離,核膜的崩解和重建,細(xì)胞核的組裝,DNA復(fù)制和DNA損傷修復(fù),基因表達(dá)調(diào)控和信號(hào)轉(zhuǎn)導(dǎo),逆轉(zhuǎn)錄病毒的復(fù)制調(diào)控和細(xì)胞機(jī)械力傳導(dǎo)等。ONM:外核膜;INM:內(nèi)核膜;NPC:核孔。
LAP2是LEM蛋白的一員,在高等哺乳動(dòng)物中,LAP2家族成員有6個(gè)。LAP2家族成員的氨基末端1~187個(gè)氨基酸序列一致,研究表明,LAP2家族蛋白的一致序列與BAF對(duì)體外的膜-染色質(zhì)連接和核纖層組裝是必須的[17]。在該保守區(qū)域內(nèi)含有一個(gè)LEM結(jié)構(gòu)域和一個(gè)LEM-like結(jié)構(gòu)域,LEM結(jié)構(gòu)域依賴(lài)BAF建立起與染色質(zhì)之間的相互作用,而LEM- like結(jié)構(gòu)域可直接與染色質(zhì)之間直接相互作用[18]。LAP2b、LAP2d、LAP2e、LAP2g的羧基末端均含有一個(gè)穿膜結(jié)構(gòu)域,均為核被膜內(nèi)膜蛋白。
功能重疊是LEM蛋白家族成員的一個(gè)主要特點(diǎn)。例如,裂殖酵母中的Lem2和Man1蛋白,他們定位在內(nèi)核膜上,對(duì)維持細(xì)胞核的結(jié)構(gòu)穩(wěn)態(tài)有至關(guān)重要的功能[19]。而在研究小鼠成肌細(xì)胞分化的機(jī)制時(shí)發(fā)現(xiàn),Lem2卻與emerin在調(diào)節(jié)MAPK信號(hào)通路時(shí)發(fā)生功能重疊[20]。有研究發(fā)現(xiàn)emerin能直接結(jié)合到Man1蛋白氨基末端的結(jié)構(gòu)域上,但不知道這種互作具有怎樣的生物學(xué)效應(yīng)[11]。除Lamins和BAF之外,在已經(jīng)發(fā)現(xiàn)的與emerin直接互作的18個(gè)蛋白中,Btf (BCL associated transcription factor 1)[21]、GCL (Germ cell-less)[22]和HDAC3(Histone deacetylase 3)[23]也能與其他LEM家族蛋白直接互作(表1)。
表1 與LEM家族成員直接相互作用的蛋白及其功能分類(lèi)
此外,Man1蛋白含有一個(gè)RRM結(jié)構(gòu)域,該結(jié)構(gòu)域能夠促進(jìn)Man1蛋白與Smad2和Smad3結(jié)合,從而介導(dǎo)Man1對(duì)TGF-b信號(hào)通路活性的調(diào)節(jié)[24]。在Man1的羧基末端尾部,含有一個(gè)SRV模序,其也能介導(dǎo)Man1與BAF互作[11]。而ANKLE1蛋白含有一個(gè)酶促活性的保守的GIY-YIG內(nèi)切核酸酶結(jié)構(gòu)域,提示ANKLE1在DNA損傷修復(fù)過(guò)程中有重要功能。
LEM蛋白家族成員與Lamins以及BAF蛋白直接相互作用形成的三元復(fù)合體是核纖層的主要組成成分,其在結(jié)構(gòu)和功能上組成的網(wǎng)絡(luò)體系對(duì)細(xì)胞核內(nèi)的一些基本生物學(xué)過(guò)程是必須的[15]。這種三元復(fù)合物在結(jié)構(gòu)與功能上是相互依賴(lài)的,在結(jié)構(gòu)方面,隨機(jī)缺失其中之一,其余二者也會(huì)失去相互作用而解離;在功能方面,隨機(jī)缺失該復(fù)合體的任意組分,都會(huì)導(dǎo)致有絲分裂染色體的分離和有絲分裂后細(xì)胞核的重組裝等細(xì)胞生命活動(dòng)嚴(yán)重異常或紊亂[13,25,26]。
LEM蛋白家族成員除了與Lamins和BAF蛋白之間直接相互作用,還與大量的其他蛋白直接或間接相互作用(表1),從而在核膜裝配、細(xì)胞機(jī)械力傳導(dǎo)(Mechanotransduction)、信號(hào)傳導(dǎo)和基因表達(dá)調(diào)控、核骨架(Nucleoskeleton)構(gòu)成、染色質(zhì)錨定(Chromatin tethering)、DNA復(fù)制和DNA損傷修復(fù)等方面具有重要的生物學(xué)功能。
在高等哺乳動(dòng)物細(xì)胞的開(kāi)放式有絲分裂過(guò)程中,細(xì)胞核膜的形態(tài)會(huì)發(fā)生高度有序的周期性崩解和組裝的動(dòng)態(tài)變化。核膜動(dòng)態(tài)變化主要包括:G2/M轉(zhuǎn)換過(guò)程中核膜崩解(核膜崩解伴隨著核孔復(fù)合體以及核纖層解聚);在分裂中期崩解的部分核膜組分參與染色體分離和紡錘體組裝定位等;分裂后期核膜組分重新募集到染色質(zhì)外周,參與子代細(xì)胞的核膜裝配。核膜裝配過(guò)程受到嚴(yán)格有序的調(diào)控,雙層核膜的裝配同時(shí)伴隨著核孔復(fù)合體和核纖層的裝配,以及核內(nèi)染色質(zhì)的去凝集。越來(lái)越多的證據(jù)表明,LEM結(jié)構(gòu)域蛋白家族成員對(duì)有絲分裂過(guò)程和核膜崩解與組裝的動(dòng)態(tài)變化過(guò)程有深刻的影響。
在哺乳動(dòng)物細(xì)胞有絲分裂的前期,大量的核膜蛋白和核纖層蛋白發(fā)生了磷酸化修飾,從而激發(fā)或調(diào)控它們之間的相互作用、核骨架的重組以及核膜的解聚[14,27~30]。VRK蛋白激酶家族成員在這個(gè)過(guò)程中起到了重要作用,VRK-1通過(guò)磷酸化修飾BAF,從而減弱了BAF與染色質(zhì)以及LEM結(jié)構(gòu)域蛋白之間的親和力[31,32],極大地促進(jìn)了核膜的解聚。在哺乳動(dòng)物細(xì)胞中過(guò)表達(dá)VRK-1可以使BAF從染色質(zhì)上解離出來(lái)導(dǎo)致核被膜崩解[32]。
在有絲分裂過(guò)程中,不同的LEM結(jié)構(gòu)域蛋白如何精確適時(shí)協(xié)同的促進(jìn)核膜組裝目前仍有待深入研究。目前的研究表明,在有絲分裂后期,LAP2a與BAF共定位在端粒上,在有絲分裂末期,端粒區(qū)的LAP2a和BAF的亞組分被重新定位到靠近紡錘體兩極的核膜組裝特定區(qū)域的染色質(zhì)上形成染色體核心結(jié)構(gòu)區(qū)域(Chromosomal core structure regions)[33],大量的BAF、Lamin A和emerin被招募到此核心區(qū)域。與之不同的是,在非核心區(qū)域(Non-core regions)則富集著LAP2b、Lamin B和核纖層蛋白B受體(Lamin B receptor,LBR),然后逐漸擴(kuò)散至染色體核心結(jié)構(gòu)區(qū)域[34,35]。在核心結(jié)構(gòu)區(qū)域內(nèi)沒(méi)有核孔復(fù)合體,而在非核心區(qū)域中含有大量的核孔復(fù)合體[36]。在有絲分裂末期,核膜的重建依賴(lài)于BAF蛋白的去磷酸化。研究發(fā)現(xiàn)ANKLE2通過(guò)調(diào)節(jié)VRK-1和PP2A介導(dǎo)的BAF信號(hào)傳導(dǎo),即ANKLE2蛋白一方面抑制VRK-1對(duì)BAF的磷酸化修飾,同時(shí)ANKLE2又通過(guò)與PP2A蛋白的相互作用介導(dǎo)BAF的去磷酸化,進(jìn)而控制染色質(zhì)的招募和核被膜的重建[9]。
突變體BAF(G25E)不能與DNA或LEM結(jié)構(gòu)域蛋白結(jié)合,導(dǎo)致核膜組裝瓦解。LAP2b和核纖層蛋白一直分布在細(xì)胞核中,但在核膜重組裝過(guò)程中LAP2a較早與染色質(zhì)結(jié)合。研究發(fā)現(xiàn),LAP2a和LAP2b蛋白不一樣的磷酸化修飾模式提示它們?cè)诩?xì)胞核及核膜組裝過(guò)程中生物學(xué)功能不同。LAP2b發(fā)生磷酸化修飾的5個(gè)位點(diǎn)位于LAP2家族的氨基末端一致序列區(qū)域,而這些位點(diǎn)在LAP2a蛋白中沒(méi)有發(fā)生磷酸化修飾[28]。相反,LAP2a的羧基末端在有絲分裂過(guò)程中卻被磷酸化,從而可能調(diào)控其優(yōu)先與BAF和染色質(zhì)的相互作用。在體外細(xì)胞核的組裝實(shí)驗(yàn)中也發(fā)現(xiàn),加入的LAP2a蛋白的羧基末端重組片段會(huì)高效緊密的結(jié)合到有絲分裂的染色體上,從而抑制了內(nèi)源性LAP2a、核膜以及l(fā)amin A/C的組裝[28]。
LAP2b參與DNA復(fù)制起始的調(diào)節(jié)。在細(xì)胞分裂間期,LAP2b與HA95相互作用形成HA95-LAP2b復(fù)合物,該復(fù)合物對(duì)前復(fù)制復(fù)合體(Prereplication complex,preRC)定位到DNA復(fù)制起始位點(diǎn)很關(guān)鍵,并且可能抑制蛋白酶體對(duì) Cdc6的降解,從而促進(jìn)復(fù)制起始過(guò)程。破壞HA95-LAP2b之間的相互作用將引起泛素蛋白酶體介導(dǎo)的復(fù)制因子Cdc6的蛋白降解,并進(jìn)而抑制復(fù)制起始,但對(duì)復(fù)制的延伸過(guò)程以及核膜的組裝沒(méi)有影響[37]。
如上所述,LEM-BAF交互作用在染色體分離,細(xì)胞周期調(diào)控和有絲分裂后期核膜重建過(guò)程中具有關(guān)鍵作用,因此BAF與LEM蛋白的功能對(duì)基因組的完整性至關(guān)重要。核酸內(nèi)切酶ANKLE1是最近鑒定的一個(gè)LEM蛋白,其羧基末端含有一個(gè)酶促活性的保守的GIY-YIG內(nèi)切核酸酶結(jié)構(gòu)域,GIY-YIG模序廣泛的存在于原核或真核生物的DNA修復(fù)酶中,如UvrC,SLX4等[8,38~41]。在哺乳動(dòng)物中,ANKLE1主要在生血組織中表達(dá)。外源表達(dá)的ANKLE1蛋白能在胞質(zhì)和核質(zhì)間穿梭,核質(zhì)內(nèi)富集的ANKLE1會(huì)誘導(dǎo)DNA雙鏈斷裂和DNA損傷修復(fù)反應(yīng)。而只有BAF同時(shí)與染色質(zhì)和ANKLE1的LEM結(jié)構(gòu)域結(jié)合才能激活A(yù)NKLE1的核酸內(nèi)切酶活性。在線蟲(chóng)中的同源基因?yàn)椋琇em3功能失活的突變體線蟲(chóng)在輻照后表現(xiàn)出的表型與缺失的突變體線蟲(chóng)輻照后的表型很相似,如發(fā)生染色體分離缺陷等[42]。有意思的是,缺失的線蟲(chóng)和缺失的線蟲(chóng)對(duì)DNA損傷也高度敏感[42]。有跡象表明人類(lèi)的emerin蛋白對(duì)DNA損傷響應(yīng)也有重要影響,在紫外線照射細(xì)胞數(shù)分鐘內(nèi),emerin和BAF均會(huì)與DNA修復(fù)蛋白CUL4A和DDB2相互作用[43]。另外,Berk等還發(fā)現(xiàn)用喜樹(shù)堿處理過(guò)表達(dá)突變體的Hela細(xì)胞,或者用喜樹(shù)堿處理敲減表達(dá)的HeLa細(xì)胞,均會(huì)導(dǎo)致減少H2AX的磷酸化修飾[44]。
LAP2a參與DNA損傷修復(fù)和端粒維持過(guò)程[45]。LAP2a在細(xì)胞周期中的亞細(xì)胞定位是高度動(dòng)態(tài)的,在細(xì)胞分裂間期LAP2a定位于核質(zhì)中,在細(xì)胞分裂前期因核膜破裂而分散在細(xì)胞質(zhì)中,在有絲分裂后期和末期LAP2a-BAF復(fù)合物定位于染色體的端粒近端區(qū),與端粒復(fù)合體中的TRF1相互作用[45],TRF1是能直接與端粒DNA結(jié)合的端粒結(jié)合蛋白,是保護(hù)染色體端粒穩(wěn)定性的必要條件。LAP2a也與Werner解旋酶—WRN相互作用,WRN在端粒維持和DNA修復(fù)中發(fā)揮著重要的作用[46]。
最新的研究發(fā)現(xiàn)在C16-神經(jīng)酰胺介導(dǎo)的自噬途徑中,PRKACA能磷酸化修飾emerin的LEM結(jié)構(gòu)域,該磷酸化修飾的emerin與MAP1LC3B結(jié)合后能促進(jìn)自噬體的形成[47]。
LINC復(fù)合體(Linker of nucleoskeleton and cytoskeleton, LINC)的主要功能有維持核膜間隙形態(tài),將細(xì)胞機(jī)械力從核膜傳導(dǎo)到核纖層上[48~50]。SUN結(jié)構(gòu)域蛋白和nesprins蛋白是LINC復(fù)合體的主要組成成分。Emerin能直接與SUN結(jié)構(gòu)域蛋白和nesprins蛋白互作[51,52]。此外,emerin還能直接與核內(nèi)的肌動(dòng)蛋白互作。最近的研究發(fā)現(xiàn),施加在nesprin-1 蛋白上的機(jī)械力會(huì)激發(fā)細(xì)胞核的固化,在這個(gè)生物學(xué)過(guò)程中,與染色質(zhì)和核內(nèi)肌動(dòng)蛋白不同,完整的核纖層以及emerin蛋白的作用是必須的。在機(jī)械力的作用下,emerin的Y74和Y95會(huì)被SFKs(Src family kinases,SFKs)磷酸化,磷酸化的emerin介導(dǎo)細(xì)胞核對(duì)張力的機(jī)械響應(yīng)和適應(yīng),Y74與Y95磷酸化的emerin會(huì)進(jìn)一步影響應(yīng)力纖維(Stress fiber)的形成,并抑制SRF因子(Serum response factor, SRF)依賴(lài)的基因表達(dá)轉(zhuǎn)錄,如會(huì)抑制和等基因的轉(zhuǎn)錄[53]。
PIC在逆轉(zhuǎn)錄病毒DNA整合到宿主基因組的過(guò)程中起著關(guān)鍵的作用,PIC包含一個(gè)病毒DNA拷貝和一些病毒蛋白以及一些細(xì)胞蛋白如BAF[54]。在莫羅尼病毒(MoMLV)PIC中的LAP2a參與維持BAF蛋白的穩(wěn)定性[55],而在HIV-1病毒的PIC中emerin直接參與維持BAF蛋白的穩(wěn)定性[56]。在有絲分裂前期,LAP2a和BAF可自由擴(kuò)散在細(xì)胞質(zhì)中,這使得LAP2a和BAF在細(xì)胞質(zhì)中與PIC相互作用。在有絲分裂末期的早期,LAP2a和BAF在染色體的核心區(qū)域重組裝,而且LAP2a-BAF復(fù)合物能與組蛋白和核小體相互作用,這可能介導(dǎo)PIC結(jié)合到宿主染色體上并使得逆轉(zhuǎn)錄病毒整合到宿主染色體上。與MoMLV病毒只感染分裂的細(xì)胞不同,HIV-1病毒已有能力感染不分裂的細(xì)胞如巨噬細(xì)胞。在這里,研究發(fā)現(xiàn)HIV-1病毒的互補(bǔ)DNA與核染色質(zhì)的整合能力似乎依賴(lài)于與BAF和emerin的相互作用[56,57],當(dāng)HIV-1病毒感染缺失emerin的原代巨噬細(xì)胞時(shí)發(fā)現(xiàn)病毒cDNA能定位至細(xì)胞核,但不能整合到宿主的染色體上。
LEM蛋白家族成員除了與lamins和BAF蛋白之間直接相互作用,還與大量的其他蛋白直接或間接相互作用,如Btf、GCL、Lmo7和b-catenin等(表1),從而在基因表達(dá)調(diào)控、信號(hào)轉(zhuǎn)導(dǎo),在細(xì)胞及個(gè)體的生長(zhǎng)發(fā)育、衰老和腫瘤發(fā)生過(guò)程中都發(fā)揮著重要功能。
電子顯微鏡觀察發(fā)現(xiàn)高密度染色深的染色質(zhì)更多地集中在內(nèi)層核膜下,核外周被廣泛地認(rèn)為是基因沉默區(qū)[58]。研究發(fā)現(xiàn)核纖層及其結(jié)合蛋白可作為基因組動(dòng)態(tài)變化的支架,直接與組蛋白或特定的DNA序列結(jié)合,同時(shí)還能結(jié)合組蛋白或DNA修飾酶類(lèi)。HDAC3是核共抑制復(fù)合體(Nuclear co-repre-ssor complex, NCoR)的重要組分,HDAC3能直接去乙?;M蛋白H4來(lái)促進(jìn)NCoR與染色質(zhì)穩(wěn)定結(jié)合從而抑制基因的轉(zhuǎn)錄。Emerin與HDAC3直接相互作用,Emerin的多種致病性突變(S54F, Q133H, P183H, △95~99)和多個(gè)氨基酸殘基位點(diǎn)的突變(122,145,161,179,196)均能破壞Emerin與HDAC3的相互作用。體外試驗(yàn)表明,emerin-HDAC3能顯著的提升HDAC3的酶活性達(dá)2.5倍,提示emerin極大的促進(jìn)了HDAC3依賴(lài)的基因沉默[23]。體內(nèi)試驗(yàn)結(jié)果與體外試驗(yàn)結(jié)果一致,在emerin敲除的小鼠成纖維細(xì)胞和emerin敲低表達(dá)的細(xì)胞中H4K5的乙?;斤@著升高[23]。LAP2b也可與HDAC3直接相互作用,過(guò)表達(dá)LAP2b可誘導(dǎo)組蛋白H4去乙?;痆59]。LAP2b-HDAC3相互作用能直接參與到調(diào)節(jié)高度有序的染色質(zhì)結(jié)構(gòu),LAP2b-HDAC3在核膜綁定染色質(zhì)DNA的LAD (Lam-ina associated domains)區(qū)域的生物學(xué)過(guò)程中必須[60],LAD是基因組中大小約40Kb至15Mb的一段DNA,該區(qū)域內(nèi)基因密度低,轉(zhuǎn)錄活性低,激活性的組蛋白修飾駐留少[60]。
Btf蛋白在DNA損傷修復(fù)[61]、細(xì)胞凋亡[62]、轉(zhuǎn)錄調(diào)控[63]和發(fā)育[64]中具有重要的作用。通常情況下,Btf駐留在胞質(zhì)中,當(dāng)細(xì)胞被誘導(dǎo)發(fā)生凋亡時(shí),Btf能與MAN1或emerin相互作用并累積聚集在核膜處抑制一些基因的轉(zhuǎn)錄[21,65]。Btf是染色質(zhì)外顆粒叢(Interchromatin granule clusters, IGCs)的組成成分,是一個(gè)mRNA剪接因子[66]。Emerin還與另一個(gè)mRNA剪接因子YT521B蛋白相互作用,但是emerin能否或者如何調(diào)節(jié)mRNA的剪接目前尚未得知[67]。
E2F是一個(gè)重要的轉(zhuǎn)錄因子家族,通過(guò)調(diào)節(jié)靶基因的轉(zhuǎn)錄活性在細(xì)胞周期、DNA復(fù)制、細(xì)胞增殖分化凋亡等多種細(xì)胞進(jìn)程中發(fā)揮關(guān)鍵作用。轉(zhuǎn)錄因子DP家族與E2F結(jié)合形成E2F/DP異二聚體,能增強(qiáng)E2F的DNA結(jié)合親和力和轉(zhuǎn)錄激活功能。GCL能與E2F/DP異二聚體的DP相互作用形成復(fù)合體,由此,LAP2b、emerin或MAN1與GCL互作將會(huì)高效的抑制E2F/DP依賴(lài)的轉(zhuǎn)錄啟動(dòng)活性[22,68,69](圖3)。有研究表明缺失表達(dá)的人成纖維細(xì)胞增殖能力增強(qiáng)[70]。另外,與LAP2a相互作用的Rb能與E2F直接互作,從而抑制E2F介導(dǎo)的轉(zhuǎn)錄激活作用。
Emerin直接與兩個(gè)能在細(xì)胞表面和細(xì)胞核內(nèi)穿梭定位的信號(hào)轉(zhuǎn)導(dǎo)分子相互作用,其中一個(gè)是b-catenin[71],另一個(gè)是Lmo7。Emerin/b-catenin的相互作用能顯著的削弱Wnt信號(hào)通路的調(diào)控作用[71],缺失的成纖維細(xì)胞的細(xì)胞核內(nèi)會(huì)積聚高濃度的b-catenin并會(huì)導(dǎo)致細(xì)胞的快速增殖[70](圖3)。在細(xì)胞核內(nèi),Lmo7能激活、、、等基因的轉(zhuǎn)錄[72],但反過(guò)來(lái)emerin與Lmo7的相互作用可以使得Lmo7從這些基因的啟動(dòng)子上解離,并且驅(qū)動(dòng)Lmo7蛋白出核進(jìn)入胞質(zhì)和質(zhì)膜上[73]。
MAN1在基因表達(dá)調(diào)控中同樣具有重要作用。MAN1能直接結(jié)合到(調(diào)控生物鐘的核心基因)的啟動(dòng)子上并增強(qiáng)其轉(zhuǎn)錄,這提示核周與生物節(jié)律也有重要的聯(lián)系[74]。MAN1能抑制TGF-b信號(hào)通路,TGF-b信號(hào)能通過(guò)磷酸化修飾來(lái)激活轉(zhuǎn)錄因子Smad2和Smad3,在體外實(shí)驗(yàn)中,MAN1能與活化的Smad2/Smad4復(fù)合物或活化的Smad3/Smad4復(fù)合物相互作用。在細(xì)胞內(nèi),MAN1通過(guò)RRM結(jié)構(gòu)域與Smad2或Smad3直接互作,同時(shí),PPM1A能與MAN1直接互作并介導(dǎo)Smad2和Smad3的去磷酸化,從而阻礙Smad4識(shí)別Smad2和Smad3并最終導(dǎo)致TGF-b信號(hào)滅活[75](圖3)。
越來(lái)越多的證據(jù)表明,細(xì)胞核外周結(jié)構(gòu)的變化與人類(lèi)疾病或人類(lèi)健康有著密切的聯(lián)系?,F(xiàn)在已經(jīng)發(fā)現(xiàn)多種核膜蛋白或核膜結(jié)合蛋白突變會(huì)引起一系列人類(lèi)疾病。
目前已知和的突變會(huì)引發(fā)多種核纖層病(Laminopathies)。而編碼LEM蛋白的相關(guān)基因突變或LEM蛋白在細(xì)胞內(nèi)的轉(zhuǎn)位對(duì)核纖層病的發(fā)生發(fā)展都具有重要的影響。核纖層病的一種主要類(lèi)型為為肌肉相關(guān)疾病(如Emery dreifuss musculardystrophy, EDMD;Dilated cardiomyopathy, DCM等)。編碼lamin A/C的基因突變引起AD/AR-EDMD(Autosomal dominant and recessive EDMD)[76],編碼emerin的基因突變引起XL-EDMD(X-linked EDMD)[77]。突變會(huì)改變emerin在細(xì)胞中的定位并使其定位至內(nèi)質(zhì)網(wǎng)上,錯(cuò)誤定位的emerin通過(guò)調(diào)節(jié)MKL1來(lái)減弱SRF的活性,從而減少了SRF調(diào)控的基因的表達(dá),而許多SRF所靶標(biāo)的基因都對(duì)肌肉功能很關(guān)鍵,這些異常最終導(dǎo)致EDMD的發(fā)生[78]。在EDMD病人中,既有emerin的基因突變,也有Lamin A/C的編碼基因突變。在DCM病人中,既有LAP2a的編碼基因突變也有Lamin A/C編碼基因突變。(Arg690Cys)點(diǎn)突變會(huì)改變LAP2a蛋白的羧基末端結(jié)構(gòu),影響LAP2a與Lamin A/C的互作并導(dǎo)致DCM疾病發(fā)生,但致病機(jī)制不是很清楚[79]。
圖3 哺乳類(lèi)動(dòng)物中LEM蛋白家族成員的基因表達(dá)調(diào)控模式圖
MAN1、emerin與LAP2b都能與GCL互作,從而抑制了E2F/DP依賴(lài)的轉(zhuǎn)錄啟動(dòng)活性;LAP2b與emerin都能與HDAC3互作,促使乙?;M蛋白H4去乙?;瘡亩种苹虻霓D(zhuǎn)錄;P53,Btf與Lmo7等與LEM蛋白結(jié)合后會(huì)抑制這些轉(zhuǎn)錄因子介導(dǎo)的基因轉(zhuǎn)錄抑制; MAN1可以結(jié)合磷酸化修飾的R-Smads,與MAN1互作的PPM1A介導(dǎo)R-Smads的去磷酸化從而抑制TGF-b信號(hào)通路的轉(zhuǎn)錄活性;emerin可以結(jié)合b-catenin,從而抑制Wnt信號(hào)通路介導(dǎo)的轉(zhuǎn)錄活性。
MAN1的點(diǎn)突變或功能缺失可以引起B(yǎng)uschke- Ollendorf綜合征,這個(gè)疾病的癥狀為脆弱性骨硬化以及蠟油樣骨病[80]。此疾病主要由于發(fā)生了c2203C>T突變,該突變?cè)斐闪唆然┒说?35位的精氨酸殘基突變?yōu)榻K止密碼子,形成了一個(gè)缺失了羧基末端176個(gè)氨基酸殘基的突變體。在突變體的細(xì)胞中,TGF-b信號(hào)通路異常激活,該信號(hào)通路可能參與了該疾病的調(diào)控過(guò)程,但具體的作用機(jī)制需要進(jìn)一步研究。
大量研究發(fā)現(xiàn)在多種腫瘤中LAP2a的表達(dá)顯著上調(diào),如子宮頸癌,直腸結(jié)腸癌,乳腺癌,胰腺癌,胃癌等等[45]。且發(fā)現(xiàn)LAP2a的過(guò)表達(dá)與腫瘤惡性轉(zhuǎn)變顯著相關(guān)[45]。但是近年來(lái)研究發(fā)現(xiàn)LAP2a能通過(guò)激活pRb的抑制活性從而抑制細(xì)胞的增殖[45]。而且pRb和p53的失活會(huì)導(dǎo)致LAP2a的過(guò)表達(dá)[45],如在宮頸癌細(xì)胞中過(guò)表達(dá)HPV病毒的E6和E7蛋白,E6和E7可以直接結(jié)合到p53和pRb蛋白上而使其失活,這將導(dǎo)致LAP2a的表達(dá)上調(diào),在這些細(xì)胞中敲減E6和E7的表達(dá),p53和pRb蛋白活性得以恢復(fù),此時(shí)LAP2a的表達(dá)下調(diào)[45]。同樣,在成纖維細(xì)胞中敲減p53的表達(dá)也會(huì)導(dǎo)致LAP2a的表達(dá)上調(diào)?;诖耍琇AP2a在腫瘤發(fā)生發(fā)展過(guò)程中的過(guò)表達(dá)的腫瘤生物學(xué)功能還有待深入研究。有趣的是,另一個(gè)可在核質(zhì)與胞質(zhì)中穿梭的蛋白LEM3,全基因組關(guān)聯(lián)分析發(fā)現(xiàn)位于該基因內(nèi)部的兩個(gè)單核苷酸多態(tài)位點(diǎn)rs8100241和rs2363956與乳腺癌和卵巢癌的患病風(fēng)險(xiǎn)顯著相關(guān),但是目前尚無(wú)生物學(xué)證據(jù)表明其與腫瘤發(fā)生發(fā)展相關(guān)[81,82]。
高等動(dòng)物的LEM蛋白在調(diào)控核膜裝配,DNA復(fù)制與DNA損傷修復(fù),逆轉(zhuǎn)錄病毒整合入宿主基因組和逆轉(zhuǎn)錄病毒復(fù)制過(guò)程以及基因轉(zhuǎn)錄等方面都具有重要作用。更引人關(guān)注的是,越來(lái)越多的研究發(fā)現(xiàn),LEM蛋白編碼基因的突變和功能異常會(huì)引起核纖層病和腫瘤。核纖層疾病有一個(gè)共同的表型特征即為細(xì)胞核結(jié)構(gòu)紊亂,常染色質(zhì)與異染色質(zhì)定位異常。而且這種表型特征隨著細(xì)胞增殖過(guò)程紊亂程度顯著加重,這表明在細(xì)胞增殖過(guò)程中細(xì)胞核的去組裝和再組裝調(diào)控過(guò)程出現(xiàn)了異常。腫瘤細(xì)胞與正常細(xì)胞相比,其染色質(zhì)域(Chromatin territory)是有所不同的,這同樣表明腫瘤細(xì)胞在細(xì)胞增殖過(guò)程中細(xì)胞核裝配出現(xiàn)了異常。因此,進(jìn)一步研究揭示高等動(dòng)物細(xì)胞核膜動(dòng)態(tài)變化的內(nèi)在調(diào)控機(jī)制,尤其是LEM蛋白的功能,對(duì)于研究細(xì)胞的增殖、分化和衰老等生理過(guò)程和腫瘤發(fā)生發(fā)展病理過(guò)程之間的關(guān)系具有重要意義。
[1] Schirmer EC, Florens L, Guan TL, Yates JRⅢ, Gerace L. Nuclear membrane proteins with potential disease links found by subtractive proteomics., 2003, 301(5638): 1380–1382.
[2] Wilkie GS, Korfali N, Swanson SK, Malik P, Srsen V, Batrakou DG, de lasHeras J, Zuleger N, Kerr ARW, Florens L, Schirmer EC. Several novel nuclear envelope transmembrane proteins identified in skeletal muscle have cytoskeletal associations., 2011, 10(1): M110.003129.
[3] Korfali N, Wilkie GS, Swanson SK, Srsen V, Batrakou DG, Fairley EA, Malik P, Zuleger N, Goncharevich A, de Las Heras J, Kelly DA, Kerr ARW, Florens L, Schirmer EC. The leukocyte nuclear envelope proteome varies with cell activation and contains novel transmembrane proteins that affect genome architecture., 2010, 9(12): 2571–2585.
[4] Lin F, Blake DL, Callebaut I, Skerjanc IS, Holmer L, McBurney MW, Paulin-Levasseur M, Worman HJ. MAN1, an inner nuclear membrane protein that shares the LEM domain with lamina-associated polypeptide 2 and emerin., 2000, 275(7): 4840–4847.
[5] Cai ML, Huang Y, Ghirlando R, Wilson KL, Craigie R, Clore GM. Solution structure of the constant region of nuclear envelope protein LAP2 reveals two LEM-domain structures: one binds BAF and the other binds DNA., 2001, 20(16): 4399–4407.
[6] Shumaker DK, Lee KK, Tanhehco YC, Craigie R, Wilson KL. LAP2 binds to BAF?DNA complexes: requirement for the LEM domain and modulation by variable regions., 2001, 20(7): 1754–1764.
[7] Cai ML, Huang Y, Suh JY, Louis JM, Ghirlando R, Craigie R, Clore GM. Solution NMR structure of the barrier- to-autointegration factor-emerin complex., 2007, 282(19): 14525–14535.
[8] Brachner A, Braun J, Ghodgaonkar M, Castor D, Zlopasa L, Ehrlich V, Jiricny J, Gotzmann J, Knasmüller S, Foisner R. The endonuclease Ankle1 requires its LEM and GIY-YIG motifs for DNA cleavage in vivo., 2012, 125(Pt 4): 1048–1057.
[9] Asencio C, Davidson IF, Santarella-Mellwig R, Ly-Hartig TB, Mall M, Wallenfang MR, Mattaj IW, Gorjanacz M. Coordination of kinase and phosphatase activities by Lem4 enables nuclear envelope reassembly during mitosis., 2012, 150(1): 122–135.
[10] Zheng RL, Ghirlando R, Lee MS, Mizuuchi K, Krause M, Craigie R. Barrier-to-autointegration factor (BAF) bridges DNA in a discrete, higher-order nucleoprotein complex., 2000, 97(16): 8997–9002.
[11] Mansharamani M, Wilson KL. Direct binding of nuclear membrane protein MAN1 to emerin in vitro and two modes of binding to barrier-to-autointegration factor., 2005, 280(14): 13863–13870.
[12] Simon DN, Wilson KL. The nucleoskeleton as a genome-associated dynamic 'network of networks'., 2011, 12(11): 695–708.
[13] Liu J, Lee KK, Segura-Totten M, Neufeld E, Wilson KL, Gruenbaum Y. MAN1 and emerin have overlapping function(s) essential for chromosome segregation and cell division in Caenorhabditis elegans., 2003, 100(8): 4598–4603.
[14] Hirano Y, Segawa M, Ouchi FS, Yamakawa Y, Furukawa K, Takeyasu K, Horigome T. Dissociation of emerin from barrier-to-autointegration factor is regulated through mitotic phosphorylation of emerin in a xenopus egg cell-free system., 2005, 280(48): 39925–39933.
[15] Burke B, Stewart CL. The nuclear lamins: flexibility in function., 2013, 14(1): 13–24.
[16] Berk JM, Tifft KE, Wilson KL. The nuclear envelope LEM-domain protein emerin., 2013, 4(4): 298–314.
[17] Gant TM, Harris CA, Wilson KL. Roles of LAP2 proteins in nuclear assembly and DNA replication: Truncated LAP2β proteins alter lamina assembly, envelope formation, nuclear size, and DNA replication efficiency in Xenopuslaevis extracts., 1999, 144(6): 1083–1096.
[18] Furukawa K, Fritze CE, Gerace L. The major nuclear envelope targeting domain of LAP2 coincides with its lamin binding region but is distinct from its chromatin interaction domain., 1998, 273(7): 4213–4219.
[19] Gonzalez Y, Saito A, Sazer S. Fission yeast Lem2 and Man1 perform fundamental functions of the animal cell nuclear lamina., 2012, 3(1): 60–76.
[20] Huber MD, Guan T, Gerace L. Overlapping functions of nuclear envelope proteins NET25 (Lem2) and emerin in regulation of extracellular signal-regulated kinase signaling in myoblast differentiation., 2009, 29(21): 5718–5728.
[21] Haraguchi T, Holaska JM, Yamane M, Koujin T, Hashiguchi N, Mori C, Wilson KL, Hiraoka Y. Emerin binding to Btf, a death-promoting transcriptional repressor, is disrupted by a missense mutation that causes Emery-Dreifuss muscular dystrophy., 2004, 271(5): 1035–1045.
[22] Holaska JM, Lee KK, Kowalski AK, Wilson KL. Transcriptional repressor germ cell-less (GCL) and barrier to autointegration factor (BAF) compete for binding to emerin in vitro., 2003, 278(9): 6969–6975.
[23] Demmerle J, Koch AJ, Holaska JM. The nuclear envelope protein emerin binds directly to histone deacetylase 3 (HDAC3) and activates HDAC3 activity., 2012, 287(26): 22080–22088.
[24] Osada S, Ohmori SY, Taira M. XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos., 2003, 130(9): 1783–1794.
[25] Margalit A, Segura-Totten M, Gruenbaum Y, Wilson KL. Barrier-to-autointegration factor is required to segregate and enclose chromosomes within the nuclear envelope and assemble the nuclear lamina., 2005, 102(9): 3290–3295.
[26] Liu J, Rolef Ben-Shahar T, Riemer D, Treinin M, Spann P, Weber K, Fire A, Gruenbaum Y. Essential roles for Caenorhabditis elegans lamin gene in nuclear organization, cell cy-cle progression, and spatial organization of nuclear pore complexes., 2000, 11(11): 3937–3947.
[27] Dreger M, Otto H, Neubauer G, Mann M, Hucho F. Identification of phosphorylation sites in native lamina-associated polypeptide 2β., 1999, 38(29): 9426–9434.
[28] Gajewski A, Csaszar E, Foisner R. A phosphorylation cluster in the chromatin-binding region regulates chromosome association of LAP2α., 2004, 279(34): 35813–35821.
[29] Ellis JA, Craxton M, Yates JR, Kendrick-Jones J. Aberrant intracellular targeting and cell cycle-dependent phosphorylation of emerin contribute to the Emery-Dreifuss muscular dystrophy phenotype., 1998, 111 (Pt 6): 781–792.
[30] Foisner R, Gerace L. Integral membrane proteins of the nuclear envelope interact with lamins and chromosomes, and binding is modulated by mitotic phosphorylation., 1993, 73(7): 1267–1279.
[31] Molitor TP, Traktman P. Depletion of the protein kinase VRK1 disrupts nuclear envelope morphology and leads to BAF retention on mitotic chromosomes., 2014, 25(6): 891–903.
[32] Nichols RJ, Wiebe MS, Traktman P. The vaccinia-related kinases phosphorylate the N' terminus of BAF, regulating its interaction with DNA and its retention in the nucleus., 2006, 17(5): 2451–2464.
[33] Dechat T, Gajewski A, Korbei B, Gerlich D, Daigle N, Haraguchi T, Furukawa K, Ellenberg J, Foisner R. LAP2α and BAF transiently localize to telomeres and specific regions on chromatin during nuclear assembly., 2004, 117(25): 6117–6128.
[34] Margalit A, Vlcek S, Gruenbaum Y, Foisner R. Breaking and making of the nuclear envelope., 2005, 95(3): 454–465.
[35] Haraguchi T, Kojidani T, Koujin T, Shimi T, Osakada H, Mori C, Yamamoto A, Hiraoka Y. Live cell imaging and electron microscopy reveal dynamic processes of BAF- directed nuclear envelope assembly., 2008, 121(Pt 15): 2540–2554.
[36] Clever M, Funakoshi T, Mimura Y, Takagi M, Imamoto N. The nucleoporin ELYS/Mel28 regulates nuclear envelope subdomain formation in HeLa cells., 2012, 3(2): 187–199.
[37] Martins S, Eikvar S, Furukawa K, Collas P. HA95 and LAP2βmediate a novel chromatin-nuclear envelope interaction implicated in initiation of DNA replication., 2003, 160(2): 177–188.
[38] Fekairi S, Scaglione S, Chahwan C, Taylor ER, Tissier A, Coulon S, Dong MQ, Ruse C, Yates JR,Ⅲ, Russell P, Fuchs RP, McGowan CH, Gaillard PHL. Human SLX4 is a holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases., 2009, 138(1): 78–89.
[39] Svendsen JM, Smogorzewska A, Sowa ME, O'Connell BC, Gygi SP, Elledge SJ, Harper JW. Mammalian BTBD12/SLX4 assembles a holliday junction resolvase and is required for DNA repair., 2009, 138(1): 63–77.
[40] Pereira AR, Reed P, Veiga H, Pinho MG. The Holliday junction resolvase RecU is required for chromosome segregation and DNA damage repair in., 2013, 13: 18.
[41] Sarbajna S, Davies D, West SC. Roles of SLX1-SLX4, MUS81-EME1, and GEN1 in avoiding genome instability and mitotic catastrophe., 2014, 28(10): 1124–1136.
[42] Dittrich CM, Kratz K, Sendoel A, Gruenbaum Y, Jiricny J, Hengartner MO. LEM-3 - A LEM domain containing nuclease involved in the DNA damage response in.., 2012, 7(2): e24555.
[43] deOca RM, Shoemaker CJ, Gucek M, Cole RN, Wilson KL. Barrier-to-autointegration factor proteome reveals chromatin-regulatory partners., 2009, 4(9): e7050.
[44] Berk JM, Simon DN, Jenkins-Houk CR, Westerbeck JW, Gr?nning-Wang LM, Carlson CR, Wilson KL. The molecular basis of emerin-emerin and emerin-BAF interactions., 2014, 127(Pt 18): 3956–3969.
[45] Brachner A, Foisner R. Lamina-associated polypeptide (LAP) 2α and other LEM proteins in cancer biology., 2014, 773: 143–163.
[46] Li Z, Zhu YZ, Zhai YJ, Castroagudin MR, Bao YF, White TE, Glavy JS. Werner complex deficiency in cells disrupts the Nuclear Pore Complex and the distribution of lamin B1., 2013, 1833(12): 3338–3345.
[47] Deroyer C, Renert AF, Merville MP, Fillet M. New role for EMD (emerin), a key inner nuclear membrane protein, as an enhancer of autophagosome formation in the C16-cera-mide autophagy pathway., 2014, 10(7): 1229– 1240.
[48] Versaevel M, Braquenier JB, Riaz M, Grevesse T, Lantoine J, Gabriele S. Super-resolution microscopy reveals LINC complex recruitment at nuclear indentation sites., 2014, 4: 7362.
[49] Cain NE, Starr DA. SUN proteins and nuclear envelope spacing., 2014: 0. doi: 10.4161/19491034.2014. 990857
[50] Rothballer A, Schwartz TU, Kutay U. LINCing complex functions at the nuclear envelope: what the molecular architecture of the LINC complex can reveal about its function., 2013, 4(1): 29–36.
[51] Mislow JM, Holaska JM, Kim MS, Lee KK, Segura-Totten M, Wilson KL, McNally EM. Nesprin-1α self-associates and binds directly to emerin and laminA., 2002, 525(1–3): 135–140.
[52] Haque F, Mazzeo D, Patel JT, Smallwood DT, Ellis JA, Shanahan CM, Shackleton S. Mammalian SUN protein interaction networks at the inner nuclear membrane and their role in laminopathy disease processes., 2010, 285(5): 3487–3498.
[53] Guilluy C, Osborne LD, Van Landeghem L, Sharek L, Superfine R, Garcia-Mata R, Burridge K. Isolated nuclei adapt to force and reveal a mechanotransduction pathway in the nucleus., 2014, 16(4): 376–381.
[54] Lin CW, Engelman A. The barrier-to-autointegration factor is a component of functional human immunodeficiency virus type 1 preintegration complexes., 2003, 77(8): 5030–5036.
[55] Suzuki Y, Ogawa K, Koyanagi Y, Suzuki Y. Functional Disruption of the Moloney Murine Leukemia Virus Preintegration Complex by Vaccinia-related Kinases., 2010, 285(31): 24032–24043.
[56] Jacque JM, Stevenson M. The inner-nuclear-envelope protein emerin regulates HIV-1 infectivity., 2006, 441(7093): 641–645.
[57] Chen HM, Engelman A. The barrier-to-autointegration protein is a host factor for HIV type 1 integration., 1998, 95(26): 15270–15274.
[58] Stewart CL, Roux KJ, Burke B. Blurring the boundary: The nuclear envelope extends its reach., 2007, 318(5855): 1408–1412.
[59] Polioudaki H, Kourmouli N, Drosou V, Bakou A, Theodoropoulos PA, Singh PB, Giannakouros T, Georgatos SD. Histones H3/H4 form a tight complex with the inner nuclear membrane protein LBR and heterochromatin protein 1., 2001, 2(10): 920–925.
[60] Zullo JM, Demarco IA, Piqué-Regi R, Gaffney DJ, Epstein CB, Spooner CJ, Luperchio TR, Bernstein BE, Pritchard JK, Reddy KL, Singh H. DNA sequence-dep-endent compartmentalization and silencing of chromatin at the nuclear lamina., 2012, 149(7): 1474–1487.
[61] Liu HS, Lu ZG, Miki Y, Yoshida K. Protein kinase C δ induces transcription of the TP53 tumor suppressor gene by con-trolling death-promoting factor Btf in the apoptotic response to DNA damage., 2007, 27(24): 8480–8491.
[62] Renert AF, Leprince P, Dieu M, Renaut J, Raes M, Bours V, Chapelle JP, Piette J, Merville MP, Fillet M. The proapoptotic C16-ceramide-dependent pathway requires the death-promoting factor Btf in colon adenocarcinoma cells., 2009, 8(10): 4810–4822.
[63] Sarras H, AlizadehAzami S, McPherson JP. In search of a function for BCLAF1., 2010, 10: 1450–1461.
[64] McPherson JP, Sarras H, Lemmers B, Tamblyn L, Migon E, Matysiak-Zablocki E, Hakem A, Azami SA, Cardoso R, Fish J, Sanchez O, Post M, Hakem R. Essential role for Bclaf1 in lung development and immune system function., 2009, 16(2): 331–339.
[65] Wagner N, Krohne G. LEM-Domain proteins: new insights into lamin-interacting proteins., 2007, 261: 1–46.
[66] Politz JCR, Pederson T. Tracking nuclear poly(A) RNA movement within and among speckle nuclear bodies and the surrounding nucleoplasm., 2013, 1042: 61–71.
[67] Wilkinson FL, Holaska JM, Zhang Z, Sharma A, Manilal S, Holt I, Stamm S, Wilson KL, Morris GE. Emerin interactswith the splicing-associated factor, YT521-B., 2003, 270(11): 2459–2466.
[68] Nili E, Cojocaru GS, Kalma Y, Ginsberg D, Copeland NG, Gilbert DJ, Jenkins NA, Berger R, Shaklai S, Amariglio N, Brok-Simoni F, Simon AJ, Rechavi G. Nuclear membrane protein LAP2β mediates transcriptional repression alone and together with its binding partner GCL (germ-cell-less)., 2001, 114(Pt 18): 3297–3307.
[69] Holaska JM, Wilson KL. Multiple roles for emerin: implications for Emery-Dreifuss muscular dystrophy., 2006, 288(7): 676–680.
[70] Markiewicz E, Tilgner K, Barker N, van de Wetering M, Clevers H, Dorobek M, Hausmanowa-Petrusewicz I, Ramaekers FCS, Broers JLV, Blankesteijn WM, Salpingidou G, Wilson RG, Ellis JA, Hutchison CJ. The inner nuclear membrane protein emerin regulates β-catenin activity by restricting its accumulation in the nucleus., 2006, 25(14): 3275–3285.
[71] Stubenvoll A, Rice M, Wietelmann A, Wheeler M, Braun T. Attenuation of Wnt/β-catenin activity reverses enhanced generation of cardiomyocytes and cardiac defects caused by the loss of emerin., 2014, doi:10.1093/hmg/ddu498.
[72] Mull A, Kim G, Holaska JM. LMO7-null mice exhibit phenotypes consistent with emery-dreifuss muscular dystrophy., 2014, doi: 10.1002/mus.24286.
[73] Dedeic Z, Cetera M, Cohen TV, Holaska JM. Emerin inhibits Lmo7 binding to the Pax3 and MyoD promoters and expression of myoblast proliferation genes., 2011, 124(Pt 10): 1691–1702.
[74] Lin ST, Zhang LY, Lin XY, Zhang LC, Garcia VE, Tsai CW, Ptá?ek L, Fu YH. Nuclear envelope protein MAN1 regulates clock through BMAL1., 2014, 3: e02981.
[75] Bourgeois B, Gilquin B, Tellier-Lebegue C, Ostlund C, Wu W, Perez J, El Hage P, Lallemand F, Worman HJ, Zinn-Justin S. Inhibition of TGF-β signaling at the nuclear envelope: characterization of interactions between MAN1, Smad2 and Smad3, and PPM1A., 2013, 6(280): ra49.
[76] Mercuri E, Poppe M, Quinlivan R, Messina S, Kinali M, Demay L, Bourke J, Richard P, Sewry C, Pike M, Bonne G, Muntoni F, Bushby K. Extreme variability of phenotype in patients with an identical missense mutation in the lamin A/C gene: from congenital onset with severe phenotype to milder classic Emery-Dreifuss variant., 2004, 61(5): 690–694.
[77] Bione S, Maestrini E, Rivella S, Mancini M, Regis S, Romeo G, Toniolo D. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy., 1994, 8(4): 323–327.
[78] Ho CY, Jaalouk DE, Vartiainen MK, Lammerding J. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics., 2013, 497(7450): 507–511.
[79] Taylor MRG, Slavov D, Gajewski A, Vlcek S, Ku L, Fain PR, Carniel E, Di Lenarda A, Sinagra G, Boucek MM, Cavanaugh J, Graw SL, Ruegg P, Feiger J, Zhu X, Ferguson DA, Bristow MR, Gotzmann J, Foisner R, Mestroni L. Thymopoietin (lamina-associated polypeptide 2) gene mutation associated with dilated cardiomyopathy., 2005, 26(6): 566–574.
[80] Hellemans J, Preobrazhenska O, Willaert A, Debeer P, Verdonk PC, Costa T, Janssens K, Menten B, Van Roy N, Vermeulen SJT, Savarirayan R, Van Hul W, Vanhoenacker F, Huylebroeck D, De Paepe A, Naeyaert JM, Vandesompele J, Speleman F, Verschueren K, Coucke PJ, Mortier GR. Loss-of-function mutations inresult in osteopoikilosis, Buschke-Ollendorff syndrome and melorheostosis., 2004, 36(11): 1213–1218.
[81] Bolton KL, Tyrer J, Song H, Ramus SJ, Notaridou M, Jones C, Sher T, Gentry-Maharaj A, Wozniak E, Tsai YY,Weidhaas J, Paik D, Van Den Berg DJ, Stram DO, PearceCL, Wu AH, Brewster W, Anton-Culver H, Ziogas A, Narod SA, Levine DA, Kaye SB, Brown R, Paul J, Flanagan J, Sieh W, McGuire V, Whittemore AS, Campbell I, Gore ME, Lissowska J, Yang HP, Medrek K, Gronwald J, Lubinski J, Jakubowska A, Le ND, Cook LS, Kelemen LE, Brook-Wilson A, Massuger LFAG, Kiemeney LA, Aben KKH, van Altena AM, Houlston R, Tomlinson I, Palmieri RT, Moorman PG, Schildkraut J, Iversen ES, Phelan C, Vierkant RA, Cunningham JM, Goode EL, Fridley BL, Kruger-Kjaer S, Blaeker J, Hogdall E, Hogdall C, Gross J, Karlan BY, Ness RB, Edwards RP, Odunsi K, Moyisch KB, Baker JA, Modugno F, Heikkinenen T, Butzow R, Nevanlinna H, Leminen A, Bogdanova N, Antonenkova N, Doerk T, Hillemanns P, Dürst M, Runnebaum I, Thompson PJ, Carney ME, Goodman MT, Lurie G, Wang-Gohrke S, Hein R, Chang-Claude J, Rossing MA, Cushing-Haugen KL, Doherty J, Chen C, Rafnar T, Besenbacher S, Sulem P, Stefansson K, Birrer MJ, Terry KL, Hernandez D, Cramer DW, Vergote I, Amant F, Lambrechts D, Despierre E, Fasching PA, Beckmann MW, Thiel FC, Ekici AB, Chen XQ, the Australian Ovarian Cancer Study Group, the Australian Cancer Study (Ovarian Cancer), on behalf of the Ovarian Cancer Association Consortium, Johnatty SE, Webb PM, Beesley J, Chanock S, Garcia-Closas M, Sellers T, Easton DF, Berchuck A, Chenevix-Trench G, Pharoah PDP, Gayther SA. Common variants at 19p13 are associated with susceptibility to ovarian cancer., 2010, 42(10): 880–884.
[82] Antoniou AC, Wang XS, Fredericksen ZS, McGuffog L, Tarrell R, Sinilnikova OM, Healey S, Morrison J, Kartsonaki C, Lesnick T, Ghoussaini M, Barrowdale D, EMBRACE, Peock S, Cook M, Oliver C, Frost D, Eccles D, Evans DG, Eeles R, Izatt L, Chu C, Douglas F, Paterson J, Stoppa-Lyonnet D, Houdayer C, Mazoyer S, Giraud S, Lasset C, Remenieras A, Caron O, Hardouin A, Berthet P, GEMO Study Collaborators, Hogervorst FBL, Rookus MA, Jager A, van den Ouweland A, Hoogerbrugge N, van der Luijt RB, Meijers-Heijboer H, García EBG, HEBON, Devilee P, Vreeswijk MPG, Lubinski J, Jakubowska A, Gronwald J, Huzarski T, Byrski T, Górski B, Cybulski C, Spurdle AB, Holland H, kConFab, Goldgar DE, John EM, Hopper JL, Southey M, Buys SS, Daly MB, Terry MB, Schmutzler RK, Wappenschmidt B, Engel C, Meindl A, Preisler-Adams S, Arnold N, Niederacher D, Sutter C, Domchek SM, Nathanson KL, Rebbeck T, Blum JL, Piedmonte M, Rodriguez GC, Wakeley K, Boggess JF, Basil J, Blank SV, Friedman E, Kaufman B, Laitman Y, Milgrom R, Andrulis IL, Glendon G, Ozcelik H, Kirchhoff T, Vijai J, Gaudet MM, Altshuler D, Guiducci C, SWE-BRCA, Loman N, Harbst K, Rantala J, Ehrencrona H, Gerdes AM, Thomassen M, Sunde L, Peterlongo P, Manoukian S, Bonanni B, Viel A, Radice P, Caldes T, de la Hoya M, Singer CF, Fink-Retter A, Greene MH, Mai PL, Loud JT, Guidugli L, Lindor NM, Hansen TVO, Nielsen FC, Blanco I, Lazaro C, Garber J, Ramus SJ, Gayther SA, Phelan C, Narod S, Szabo CI, MOD SQUAD, Benitez J, Osorio A, Nevanlinna H, Heikkinen T, Caligo MA, Beattie MS, Hamann U, Godwin AK, Montagna M, Casella C, Neuhausen SL, Karlan BY, Tung N, Toland AE, Weitzel J, Olopade O, Simard J, Soucy P, Rubinstein WS, Arason A, Rennert G, Martin NG, Montgomery GW, Chang-Claude J, Flesch-Janys D, Brauch H, GENICA, Severi G, Baglietto L, Cox A, Cross SS, Miron P, Gerty SM, Tapper W, Yannoukakos D, Fountzilas G, Fasching PA, Beckmann MW, dos Santos Silva I, Peto J, Lambrechts D, Paridaens R, Rüdiger T, F?rsti A, Winqvist R, Pylk?s K, Diasio RB, Lee AM, Eckel-Passow J, Vachon C, Blows F, Driver K, Dunning A, Pharoah PPD, Offit K, Pankratz VS, Hakonarson H, Chenevix-Trench G, Easton DF, Couch FJ. A locus on 19p13 modifies risk of breast cancer inmutation carriers and is associated with hormone receptor-negative breast cancer in the general population., 2010, 42(10): 885–892.
(責(zé)任編委: 岑山)
Structural and functional studies of mammalian LEM-domain proteins
Qingxia Hu, Ang Gao, Weijia Zeng, Yanxin Wang, Jintang Dong, Zhengmao Zhu
During the process of open mitosis in higher eukaryotic cells, the nuclear envelope (NE) is disassembled and reassembled with highly organized and periodical dynamic morphological changes. Recent studies demonstrated that LEM-domain protein family mediates interactions among inner nuclear membrane, nuclear lamina protein and chromatin by interacting with barrier-to-autointegration-factor (BAF). The structure and function of the ternary complex formed by LEM-domain protein, nuclear lamina protein and BAF are dependent on each other. Moreover, the network formation based on this structure and function is critical for the development of basic biological processes of nuclear, and it plays important roles in chromatin separation in late metaphase and anaphase, NE reassembly after mitosis, morphological maintenance of nuclear and NE in interphase, regulation of DNA replication and DNA damage repair, regulation of gene expression and signaling pathway, and infection of retrovirus. Mutations in genes encoding LEM family proteins have important impacts on development and progression of laminopathic diseases and tumorigenesis. This review provides a detailed summary of structural and functional studies of the LEM family proteins.
LEM-domain protein; lamina; BAF; mitosis; NE disassembly and reassembly; laminopathies; tumorigenesis
2014-10-14;
2015-01-05
國(guó)家自然科學(xué)基金面上項(xiàng)目(編號(hào):81470118)和南開(kāi)大學(xué)教學(xué)改革項(xiàng)目“遺傳學(xué)本科教學(xué)激勵(lì)機(jī)制的研究與實(shí)踐”
胡清霞,在讀碩士,專(zhuān)業(yè)方向:細(xì)胞生物學(xué)。E-mail: 1150724550@qq.com
朱正茂,博士,副教授,研究方向:腫瘤發(fā)生和發(fā)展的分子機(jī)制研究,核膜組裝與細(xì)胞周期調(diào)控。E-mail: zhuzhengmao@nankai.edu.cn
10.16288/j.yczz.14-351
網(wǎng)絡(luò)出版時(shí)間: 2014-12-8 11:47:44
URL: http://www.cnki.net/kcms/detail/11.1913.R.20141208.1147.003.html