吳文杰,錢蓮文
(泉州師范學(xué)院 a.化學(xué)與生命學(xué)院;b.資源與環(huán)境學(xué)院,福建 泉州 362000)
常綠楊根伸長(zhǎng)區(qū)鋁毒指標(biāo)性超微結(jié)構(gòu)的研究
吳文杰a,錢蓮文b
(泉州師范學(xué)院 a.化學(xué)與生命學(xué)院;b.資源與環(huán)境學(xué)院,福建 泉州 362000)
以常綠楊Populus×enramericana cv.A-61/186根尖為材料,研究根伸長(zhǎng)區(qū)細(xì)胞鋁中毒的超微結(jié)構(gòu)標(biāo)志性特征。結(jié)果表明:(1)低度慢性(0.074 mmol/L 90 d)中毒結(jié)構(gòu)指標(biāo): 細(xì)胞壁“彎勾壁”(Hook wall)呈大小勾狀且部分壁斷裂,“梭形胞基質(zhì)”(Spindle cell stroma)瘦長(zhǎng)形且具孔洞;(2)中度中性(0.370 mmol/L,60 d)中毒結(jié)構(gòu)指標(biāo):細(xì)胞壁間隙和局部胞間層溶解,“梭形胞基質(zhì)”(Spindlecell stroma)分解呈松長(zhǎng)線團(tuán)狀;(3)高度急性(0.518 mmol/L,30 d)中毒結(jié)構(gòu)指標(biāo):細(xì)胞壁溶解,“彎勾壁”(Hook wall)呈多個(gè)細(xì)長(zhǎng)勾重疊,“梭形胞基質(zhì)”(Spindle cell stroma)多個(gè)細(xì)長(zhǎng)具孔洞。本次實(shí)驗(yàn)發(fā)現(xiàn)并提出的“彎勾壁”(Hook wall)和“梭形胞基質(zhì)”(Spindle cell stroma)這兩個(gè)超微結(jié)構(gòu)名詞,填補(bǔ)了鋁中毒診斷的結(jié)構(gòu)指標(biāo),充實(shí)了細(xì)胞毒理解剖學(xué)內(nèi)容。
常綠楊;根伸長(zhǎng)區(qū);細(xì)胞鋁毒害;鋁中毒診斷;超微結(jié)構(gòu)指標(biāo)
土壤中的鋁離子進(jìn)入植物根尖并成倍富集,直接阻礙了細(xì)胞的伸長(zhǎng),在小麥根尖鋁毒[1]和玉米根尖鋁毒的研究中已經(jīng)證實(shí)[2]。鋁毒害植物根的明顯癥狀是根的長(zhǎng)度受抑制[3],外形表現(xiàn)為根系粗短,根尖腫大、根毛數(shù)量變少[4],導(dǎo)致植物根系活力下降,降低了根的吸收能力,從而限制了植物正常的生長(zhǎng)發(fā)育[5]。小麥根尖受鋁毒后,其伸長(zhǎng)區(qū)細(xì)胞疏松排列,特別是伸長(zhǎng)區(qū)皮層細(xì)胞間隙小,形態(tài)扁平,細(xì)胞壁褶皺起伏不平,相靠近的細(xì)胞交合在一起,這些超微結(jié)構(gòu)顯示,鋁脅迫使根尖伸長(zhǎng)區(qū)細(xì)胞正常的縱向伸長(zhǎng)轉(zhuǎn)變?yōu)闄M向生長(zhǎng)[6]。鋁與楊樹根尖伸長(zhǎng)區(qū)的關(guān)系研究,還未見報(bào)道,本次實(shí)驗(yàn)旨在從超微結(jié)構(gòu)水平探究鋁毒害楊樹根尖伸長(zhǎng)區(qū)細(xì)胞的解剖學(xué)機(jī)理。
于2013年3月從本研究實(shí)驗(yàn)苗圃地剪取約15 cm長(zhǎng)的常綠楊Populus×enramericana cv.A-61/186一年生插條,扦插在白色泡沫箱內(nèi),箱內(nèi)盛18 L培養(yǎng)液,用一泡沫浮于培養(yǎng)液面作為插條的固定支持物,每盆每無性系扦插6株,隨機(jī)排列,共24盆,用空氣泵晝夜連續(xù)通氣;扦插后先用自來水培養(yǎng)20 d,生根后挑選生長(zhǎng)狀況基本一致的苗木分裝6盆,每盆6株,用Hoagland全素營(yíng)養(yǎng)液培養(yǎng),用稀鹽酸調(diào)整pH值為4.8,分別加入不同濃度的AlCl3·6H2O,使培養(yǎng)液中的對(duì)照實(shí)驗(yàn)和鋁濃度1至濃度5分別為:0、0.074、0.222、0.370、0.518、0.666 mmol·L-1。在脅迫 30、60、90 d 時(shí)分別取長(zhǎng)勢(shì)一致部位相同的根尖作為電鏡觀察的材料。
鋁脅迫第30、60和90天,分別將采集的材料,迅速投進(jìn)5%戊二醛(0.1 mol/L PBS配制,pH值7.0)的固定液里,抽氣使材料沉底,在4℃冰箱里固定24 h,用0.1 mol/L PBS沖洗后,再用1%餓酸溶液固定4 h,重蒸水多次沖洗,經(jīng)系列濃度乙醇脫水后,用Epon 812環(huán)氧樹脂加以包埋,用LIMB V型超薄切片機(jī)進(jìn)行縱切,切片用醋酸雙氧鈾及檸檬酸鉛進(jìn)行染色,在日立H-7650型透射電子顯微鏡下進(jìn)行觀察及拍片。
第30天的圖0-30、圖1-30 、圖2-30、圖3-30、圖4-30和圖5-30分別是對(duì)照實(shí)驗(yàn)、鋁濃度1至濃度5的超微結(jié)構(gòu)(見圖1)。
細(xì)胞壁變化:對(duì)照實(shí)驗(yàn)的細(xì)胞壁著色深明顯易見,出現(xiàn)小結(jié)構(gòu)“彎勾壁(Hw:hook wall)”的特殊結(jié)構(gòu);濃度1細(xì)胞壁厚薄不均,在薄壁處出現(xiàn)“彎勾壁”(Hw:hook wall)雛形;濃度2細(xì)胞壁間隙和局部胞間層空洞,未見其他特殊結(jié)構(gòu);濃度3部分細(xì)胞間隙和胞間層透亮,“彎勾壁(Hw:hook wall)”呈連續(xù)兩個(gè)小勾;濃度4細(xì)胞壁模糊,“彎勾壁(Hw:hook wall)”呈多個(gè)細(xì)長(zhǎng)勾重疊;濃度5細(xì)胞壁模糊,“彎勾壁(Hw:hook wall)”多個(gè)長(zhǎng)勾聚集。
胞基質(zhì)的變化:對(duì)照實(shí)驗(yàn)細(xì)胞內(nèi)基質(zhì)未見絞織成團(tuán);濃度1細(xì)胞內(nèi)基質(zhì)部分呈聚集態(tài);濃度2“梭形胞基質(zhì)”(Scs:Spindle cell stroma)已成形,且濃密結(jié)實(shí);濃度3“梭形胞基質(zhì)”(Scs:Spindle cell stroma)輕微收縮密集;濃度4“梭形胞基質(zhì)”(Scs:Spindle cell stroma)多個(gè)細(xì)長(zhǎng)有空洞;濃度5“梭形胞基質(zhì)”(Scs:Spindle cell stroma)呈瓦解松散態(tài)。
細(xì)胞器的變化:隨著濃度的升高淀粉粒有減少的趨勢(shì),液泡由大而明顯變化到小而暗淡的趨向。
細(xì)胞壁變化:對(duì)照實(shí)驗(yàn)的細(xì)胞 “彎勾壁”(Hw:hook wall)呈一大彎兩大勾狀(見圖1中0-60);濃度1細(xì)胞“彎勾壁(Hw:hook wall)”呈一大彎兩側(cè)各一個(gè)長(zhǎng)勾狀(見圖1中1-60);濃度2“彎勾壁(Hw:hook wall)”呈一大勾一小勾,小勾出部分壁斷裂(見圖1中2-60);濃度3細(xì)胞間隙和部分的胞間層透亮,“彎勾壁(Hw:hook wall)”連續(xù)兩個(gè)大勾(見圖1中3-60);濃度4細(xì)胞壁模糊,“彎勾壁(Hw:hook wall)”多個(gè)鈍勾波浪排列(見圖1中4-60);濃度5細(xì)胞壁模糊,未見特殊結(jié)構(gòu)。
胞基質(zhì)的變化:對(duì)照實(shí)驗(yàn)“梭形胞基質(zhì)”(Scs:Spindle cell stroma)較小較瘦(見圖1中0-60);濃度1細(xì)胞內(nèi)可見“梭形胞基質(zhì)(Scs:Spindle cell stroma)”雛形(見圖1中1-60);濃度2可見“梭形胞基質(zhì)”(Scs:Spindle cell stroma)收縮呈有空洞團(tuán)狀(見圖1中2-60);濃度3“梭形胞基質(zhì)”(Scs:Spindle cell stroma)瓦解呈松長(zhǎng)線團(tuán)狀(見圖1中3-60);濃度4“梭形胞基質(zhì)”(Scs:Spindle cell stroma)呈團(tuán)狀收縮密集(見圖1中4-60);濃度5只見胞基質(zhì)的密集碎塊(見圖1中5-60)。
細(xì)胞器的變化:隨著濃度的升高質(zhì)體有減少的趨勢(shì),淀粉粒有增多的趨勢(shì);液泡由大而明顯變化到小而暗淡的趨向。
細(xì)胞壁變化:對(duì)照實(shí)驗(yàn)細(xì)胞壁深灰色隙致密緊湊,其彎勾壁”(Hw:hook wall)呈一小勾狀(見圖1中0-90);濃度1細(xì)胞壁具 “彎勾壁(Hw:hook wall)”雛形(見圖1中1-90);濃度2“彎勾壁(Hw:hook wall)”呈兩大勾一小勾,部分壁斷裂(見圖1中2-90);濃度3彎勾壁(Hw:hook wall)”呈連一大勾兩小勾,部分壁模糊斷裂(見圖1中3-90);濃度4“彎勾壁(Hw:hook wall)”呈連一大勾(見圖1中4-90);濃度5細(xì)胞壁出現(xiàn)顯著的斷裂(見圖1中5-90)。
胞基質(zhì)的變化:對(duì)照實(shí)驗(yàn)細(xì)胞“梭形胞基質(zhì)”(Scs:Spindle cell stroma)變大變胖(見圖1中0-90);濃度1大型帶飄線的“梭形胞基質(zhì)(Scs:Spindle cell stroma)”(見圖1中1-90);濃度2“梭形胞基質(zhì)”(Scs:Spindle cell stroma)變瘦變長(zhǎng),出現(xiàn)空洞(見圖1中2-90);濃度3“梭形胞基質(zhì)”(Scs:Spindle cell stroma)濃密,變瘦變小(見圖1中3-90);濃度4“梭形胞基質(zhì)”(Scs:Spindle cell stroma)離解成多個(gè)濃密,局部空洞(見圖1中4-90);濃度5只見胞基質(zhì)的密集碎塊(見圖1中5-90)。
圖1 縱向圖片排列示各濃度的超微結(jié)構(gòu)(×15 000)Fig.1 Portrait picture arrangement shown in each concentration ultrastructure (×15 000)
細(xì)胞器的變化:質(zhì)體呈正態(tài)分布,兩邊的濃度少中間的濃度多;液泡呈正態(tài)分布,兩邊的濃度大而明顯,中間的濃度小而暗淡;淀粉粒有增多的趨勢(shì);液泡由大而明顯變化到小而暗淡的趨向;蛋白質(zhì)球有增多的趨勢(shì)。
總之,30 d在濃度4脅迫下鋁導(dǎo)致細(xì)胞“彎勾壁(Hw:hook wall)”數(shù)量變多并開始瓦解;60 d濃度3導(dǎo)致細(xì)胞“梭形胞基質(zhì)”(Scs:Spindle cell stroma)松散瓦解; 90 d濃度2細(xì)胞壁開始瓦解斷裂。
濃度2(90 d)“彎勾壁(Hw:hook wall)”呈兩大勾一小勾,部分壁斷裂,“梭形胞基質(zhì)”(Scs:Spindle cell stroma)變瘦變長(zhǎng),出現(xiàn)空洞;濃度3(60 d)細(xì)胞壁間隙和部分的胞間層開始溶解,梭形胞基質(zhì)”(Scs:Spindle cell stroma)瓦解呈松長(zhǎng)線團(tuán)狀;濃度4(30 d)細(xì)胞壁溶解,“彎勾壁(Hw:hook wall)”呈多個(gè)細(xì)長(zhǎng)勾重疊,“梭形胞基質(zhì)”(Scs:Spindle cell stroma)多個(gè)細(xì)長(zhǎng)有空洞。
時(shí)間與濃度作用關(guān)系呈負(fù)相關(guān)性。時(shí)間短濃度較高,主要作用在細(xì)胞壁上;隨著時(shí)間延長(zhǎng)濃度降低主要作用在胞基質(zhì)上;時(shí)間增加濃度低,細(xì)胞壁和胞基質(zhì)同時(shí)溶解。
細(xì)胞壁是鋁進(jìn)入植物根尖的首要累積部位,有研究報(bào)道,小麥根系中77%的鋁累積在細(xì)胞壁[7]。在鋁脅迫下,耐鋁型水稻品種的細(xì)胞壁鋁含量高達(dá)80%[8],大麥的根細(xì)胞壁中能累積鋁達(dá)85%以上[9]。由于細(xì)胞壁大量累積鋁,使得細(xì)胞壁的形成及其代謝系統(tǒng)受影響,引起細(xì)胞壁正常結(jié)構(gòu)及功能的改變。本次實(shí)驗(yàn)根伸長(zhǎng)區(qū)細(xì)胞壁也出現(xiàn)結(jié)構(gòu)改變,呈現(xiàn)“彎勾壁”特殊結(jié)構(gòu)。
細(xì)胞壁富集鋁后,細(xì)胞壁組成物質(zhì)的成分、含量和比例發(fā)生改變,進(jìn)而使細(xì)胞壁在結(jié)構(gòu)和功能上發(fā)生變化,特別是在細(xì)胞壁延伸性、剛?cè)嵝院秃兔富钚苑矫姘l(fā)生變化,抑制了細(xì)胞的伸長(zhǎng)[10]。鋁脅迫下細(xì)胞壁的主要化學(xué)成分纖維素、半纖維素和果膠等發(fā)生變化,改變狀況能反應(yīng)出植物受鋁毒的程度。
鋁脅迫下根尖細(xì)胞壁的素纖維含量升高,使細(xì)胞壁硬化,進(jìn)而抑制了細(xì)胞的伸長(zhǎng)。有學(xué)者Houd和Diallo應(yīng)用微陣列圖譜技術(shù),對(duì)小麥根尖細(xì)胞的纖維素合成酶基因進(jìn)行研究,得出其表達(dá)量顯著提高,并將該基因作為耐鋁毒基因[11]。但也有研究發(fā)現(xiàn),鋁毒使得小麥根尖的細(xì)胞壁纖維素含量下降,而伴有根短及根尖外形有腫脹現(xiàn)象,較少的微纖維排列方向發(fā)生變化,由正常的垂直方向排列變化為平行方向排列,從而使細(xì)胞生長(zhǎng)方向由原來的縱向生長(zhǎng)轉(zhuǎn)變?yōu)闄M向生長(zhǎng)[12]。鋁脅迫下楊樹根尖細(xì)胞壁纖維素含量是上升還是下降,還需作深入的研究,探究鋁脅迫影響纖維素的合成機(jī)理。
鋁脅迫能導(dǎo)致根尖細(xì)胞壁半纖維素含量明顯提高,通過鋁毒對(duì)水稻[8]、小麥[13]和南瓜[14]細(xì)胞壁半纖維素含量的影響研究得以證實(shí)。而從植物信號(hào)轉(zhuǎn)導(dǎo)角度研究,信號(hào)物質(zhì)NO的強(qiáng)度,能顯著降低鋁脅迫下水稻根尖細(xì)胞壁半纖維的含量,降低鋁在根尖的積累含量,減少鋁毒害程度[15]。植物信號(hào)轉(zhuǎn)導(dǎo)現(xiàn)象,如應(yīng)用于楊樹根尖細(xì)胞的研究,進(jìn)一被揭示其明確的調(diào)控過機(jī)理,對(duì)提高楊樹根的抗鋁毒能力具有現(xiàn)實(shí)意義。
鋁脅迫導(dǎo)致根尖細(xì)胞壁果膠含量上升,是鋁降低了果膠分解代謝的結(jié)果[10]。鋁離子與果膠酸的游離梭基結(jié)合力大于二價(jià)離子鈣和銅離子,鋁離子置換了果膠中的二價(jià)離子,牢固結(jié)合了果膠梭基,加劇了凝膠化,凝膠化使細(xì)胞壁變硬,進(jìn)而抑制了細(xì)胞的伸長(zhǎng)[16]。
有研究報(bào)道,木質(zhì)素、bingdi質(zhì)也是植物耐鋁的重要指標(biāo)[17]。木質(zhì)素和bingdi含量升高使得細(xì)胞壁變厚而使其彈性變小,因而抑制了細(xì)胞伸長(zhǎng)[18]。鋁脅迫下細(xì)胞壁半纖維素和果膠含量上升高增強(qiáng)了鋁的累積量,加劇了鋁毒程度[19],進(jìn)而影響了木質(zhì)素代謝相關(guān)酶的活性以及其代謝產(chǎn)物的變化,使木質(zhì)素含量顯著增高,木質(zhì)素填充于細(xì)胞壁中,使細(xì)胞壁見堅(jiān)硬而木質(zhì)化,抵制了細(xì)胞的膨壓伸長(zhǎng)動(dòng)力,使根伸長(zhǎng)受抑制[20]。楊樹根伸長(zhǎng)區(qū)細(xì)胞壁出現(xiàn)斷裂現(xiàn)象,可能與木質(zhì)素含量提高有關(guān)聯(lián),還需作深入的研究。
有報(bào)道成熟花粉內(nèi)的細(xì)胞質(zhì)聚集體與微絲束有關(guān)聯(lián),花粉活化后微絲聚集體散開;花粉萌發(fā)后,細(xì)胞質(zhì)中出現(xiàn)周質(zhì)微管和被刺小泡,微絲以纖絲狀遍布整個(gè)花粉管中[21-22]。本次研究在鋁脅迫下楊樹根伸長(zhǎng)區(qū)細(xì)胞內(nèi)存在的“梭形胞基質(zhì)”(Spindle cell stroma)特殊結(jié)構(gòu),可能與微絲微管的聚集體狀態(tài)有關(guān)聯(lián),還需作深入的研究,以揭示其形成機(jī)理。
[1]Rincon M R A, Gonzales R A. Aluminum partitioning in intact roots of aluminum-tolerant and aluminum-sensitive wheat(Triticum aestivum L.)cultivars[J].Plant Physiol.,1992,99:1021-1028.
[2]Ryan P R, Ditomaso J M, Kochian L V. Aluminum toxicity in roots: an investigation of spatial sansitivity and the role of tha root cap[J].J. Exp. Bot.,1993,44:437-446.
[3]Zhao Z Q, Ma J F, Sato K, et al. Differential Al resistance and citrate secretion in barley (Hordeum vulgare L.)[J].Planta,2003,217(5):794-800.
[4]Ciamporova M. Morpliological and structural responses of plant roots to aluminium at organ, tissue, and cellular levels[J].Biol.Plant Prag.,2002, 45:161-171.
[5]Barcelo J, Guevara P, Poschenrieder C. Silicon amelioration of aluminium toxicity in teosinte (Zea mays L. ssp. Mexicana)[J].Plant Soil,1993,154:249-255.
[6]楊 野,王 偉,劉 輝,等.鋁脅迫對(duì)不同耐鋁小麥品種根伸長(zhǎng)生長(zhǎng)影響的研究[J].植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2010, 16(3):584-590.
[7]Ma J F, Shen R F, Nagao S, et al. Aluminum targets elongating cells by reducing cell wall extensibility in wheat roots[J].Plant Cell Physiol., 2004,45 (5):583-589.
[8]Yang J L, Li Y Y,Zhang Y J, et al. Cell wall polysaccharides are specifically involved in the exclusion of aluminum from the rice root apex[J].Plant Physiol.,2008,146:602-611.
[9]Clarkson D T. lnteraction between aluminum and phosphorus on root surfaces and cell wall material[J].Plant Soil ,1967,27:347-356.[10]Sakurai N. Cell wall functions in growtli and development-A pliysical and cliemical point of view[J].Plant Res.,1991,104:235-251.
[11]Houde M, Diallo A O. Identification of genes and pathways associated with aluminum stress and tolerance using transcriptomeprofiling of wheat near-isogenic lines[J]. BMC Genomics, 2008,9:400-403.
[12]Teraoka T, Kaneko M, Mori S, et al. Aluminum rapidly nhibits cellulose synthesis in roots of barley and wheat seedlings [J].J.Plant physiol.,2002, 159:17-23.
[13]Hossain A K M Z, Ohno T, Koyama H, et al. Effect of enhanced calcium supply on aluminum toxicity in relation to cell wall properties in the root apex of two wheat cultivars differing in aluminum resistance[J]. Plant Soil, 2005,276:193-204.
[14]Delmer D P. Cellulose biosynthesis:exciting times for a difficult field of study[J]. Plant Mol. Biol.,1999, 50:245-276.
[15]Zhang Z, Wang H, Wang X, et al. Nitric oxide enhances aluminum tolerance by affecting cell wall polysaccharides in rice roots[J].Plant Cell Rep.,2011,30:1701-1711.
[16]唐劍鋒,羅湖旭,林咸永,等.鋁脅迫下小麥根細(xì)胞壁果膠甲醞酶活性的變化及其與耐鋁性的關(guān)系[J].浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版), 2006, 32(2):145-151.
[17]Smith E, Naik D, Cummins J R. Genotypic variation in aluminum resistance, cellular aluminum fractions, callose and pectin formation and organic acid accumulation in roots of Populus hybrids[J]. Environ.Exp. Bot.,2011,72:182-193.
[18]Teraoka T, Kaneko M, Mori S, et al. Aluminum rapidly inhibits cellulose synthesis in roots of barley and wheat seedlings[J]. J.Plant Physiol., 2002, 159:17-23.
[19]Li Y Y, Yank J L, Zhang Y J, et al. Disorganized distribution of homogalacturonan epitopes in cell walls as one possible mechanism for aluminium-induced root growth inhibition in maize[J]. Ann. Bot., 2009,104:235-241.
[20]Wang J, Kao C H. Aluminum-inliibited root growtli of rice seedlings is mediated through putrescine accumulation[J].Plant Soil, 2006, 288:373-381.
[21]蔡 雪,董云洲.朱頂紅花粉萌發(fā)過程中營(yíng)養(yǎng)細(xì)胞質(zhì)的超微結(jié)構(gòu)變化[J].發(fā)育與生殖生物學(xué)報(bào)(英文版),1995,4(2):24-29.
[22]李 俊,鄭小賢,劉東蘭,等.金溝嶺林場(chǎng)落葉松人工林的空間結(jié)構(gòu)特征[J].中南林業(yè)科技大學(xué)學(xué)報(bào),2014,34(1):60-63.
Indicative effects of acid and aluminum stress on cell ultrastructure in root elongation zone of evergreen poplar clone
WU Wen-jiea, QIAN Lian-wenb
(a. College of Chemistry and Life science; b. College of Resources and Environment Science, Quanzhou Normal University,Quanzhou 362000, Fujian, China)
The indicative effect of ultrastructure of root cap cells were studied under controlled concentration and acting time with evergreen poplar clone (Populus×enramericana cv.A-61/186). The results show as follows. Low-grade chronic toxicosis indication(0.074 mmol/L, 90 dats): Cell wall showed as “Hook wall” of different size and parts of wall were broken, “Spindle cell stroma”appeared as slender shape with holes on it; Moderate neutral toxicosis indication (0.370 mmol/L, 60 days): The intercellular space of cells and middle lamella began to decompose, “Spindle cell stroma” were loosen and presented as long thread shape; Highly acute toxicosis indication (0.518 mmol/L, 30 days): Cell wall were decomposed and the hook of “Hook wall” were thin and long and overlap,“Spindle cell stroma” appeared as thin and long shape with many holes on it. The new cell ultrastructure noun “Hook wall” and “Spindle cell stroma” were founded and proposed in the experiment. The findings fill in the blanks of diagnosing ultrastructure indication of aluminum poison and enrich the contents of cell toxicity of anatomy.
evergreen poplar; root elongation zone; cell aluminum toxicity; aluminum intoxication diagnosis; ultrastructure indication
S792.11
A
1673-923X(2015)11-0005-05
10.14067/j.cnki.1673-923x.2015.11.002
2015-06-10
國(guó)家自然科學(xué)基金項(xiàng)目(31100459);福建省教育廳A類科技計(jì)劃項(xiàng)目(JA12272)
吳文杰,副教授 通訊作者:錢蓮文,副教授,博士;E-mail:lianwenq@qq.com
吳文杰,錢蓮文.常綠楊根伸長(zhǎng)區(qū)鋁毒指標(biāo)性超微結(jié)構(gòu)的研究[J].中南林業(yè)科技大學(xué)學(xué)報(bào), 2015, 35(11): 5-9.
[本文編校:吳 毅]