陳夢(mèng)尋,張華,婁江峰
(1上海理工大學(xué)能源與動(dòng)力工程學(xué)院,上海 200093;2浙江盾安人工環(huán)境設(shè)備股份有限公司,浙江 諸暨 311835)
納米制冷劑對(duì)換熱和壓縮機(jī)性能影響研究進(jìn)展
陳夢(mèng)尋1,張華1,婁江峰2
(1上海理工大學(xué)能源與動(dòng)力工程學(xué)院,上海 200093;2浙江盾安人工環(huán)境設(shè)備股份有限公司,浙江 諸暨 311835)
納米技術(shù)在制冷設(shè)備中的應(yīng)用是目前制冷領(lǐng)域的創(chuàng)新性研究之一。本文綜述了納米技術(shù)在制冷領(lǐng)域的最新研究成果,在節(jié)能環(huán)保的背景下總結(jié)了納米材料應(yīng)用于制冷系統(tǒng)中的優(yōu)勢(shì),簡(jiǎn)單介紹了近幾年常用的制備方法,列舉了不同的納米制冷劑對(duì)換熱效果的影響,闡述了納米顆粒在減小壓縮機(jī)摩擦、提高壓縮機(jī)性能方面的作用。提出如何制備具有長(zhǎng)期穩(wěn)定性的納米制冷劑、建立納米制冷劑流動(dòng)沸騰換熱和壓降特性模型、確保納米粒子可以在制冷系統(tǒng)各部件中運(yùn)行穩(wěn)定無(wú)沉淀是未來(lái)納米技術(shù)在制冷領(lǐng)域研究的關(guān)鍵問(wèn)題。
納米制冷劑;熱導(dǎo)率;沸騰換熱;壓縮機(jī)
中國(guó)制冷空調(diào)行業(yè) 2013年累計(jì)實(shí)現(xiàn)工業(yè)總產(chǎn)值超過(guò)5600億元[1],制冷設(shè)備投入使用產(chǎn)生了巨大的能耗,節(jié)能環(huán)保的呼聲迫使研究者們積極探索制冷及相關(guān)領(lǐng)域的節(jié)能方法。目前,提高制冷設(shè)備能效的主要途徑集中在提高壓縮機(jī)的運(yùn)行效率和減小換熱器的傳熱溫差兩個(gè)方面。自Choi[2]首次提出納米流體以來(lái),研究者們對(duì)納米流體在不同基液中的制備、物性特征和應(yīng)用展開(kāi)研究,實(shí)驗(yàn)結(jié)果顯示,將金屬氧化物、碳納米管或純金屬等納米顆粒(如Ag、ZnO、AlN、CNT等)放入基液中,流體的熱導(dǎo)率和傳熱系數(shù)明顯提高[3-6]。在這樣的背景下,納米制冷劑的概念被提出。納米制冷劑是指將納米顆粒添加到制冷劑中得到的穩(wěn)定懸浮液,可應(yīng)用于制冷、空調(diào)和熱泵系統(tǒng)中,其作用的效果主要體現(xiàn)在換熱與摩擦兩個(gè)方面。研究表明,在制冷劑中加入納米顆??稍鰪?qiáng)換熱性能、加強(qiáng)壓縮機(jī)潤(rùn)滑效果、提高制冷系統(tǒng)的COP、降低能源消耗[7]。Saidur等[8]將質(zhì)量分?jǐn)?shù)0.1%TiO2/礦物油與R134a混合,系統(tǒng)能耗降低26.1%。Venkataramana等[9]將0.1g/L TiO2/礦物油分別與制冷劑R134a、R436a、R436b混合,發(fā)現(xiàn)在蒸氣壓縮制冷系統(tǒng)中可以平穩(wěn)運(yùn)行,且降低了系統(tǒng)的不可逆性。相較于改變制冷設(shè)備基本部件和工質(zhì),通過(guò)添加一定量納米材料實(shí)現(xiàn)制冷系統(tǒng)能效和可靠性的提高,是更為節(jié)能高效的創(chuàng)新思路,目前該研究處于起步階段,有待進(jìn)一步探索。
制備出穩(wěn)定的納米流體是納米流體研究和應(yīng)用的前提。納米粒子在液相介質(zhì)中受到的作用力主要是范德華力和靜電力,納米粒子分散相的高表面能和布朗運(yùn)動(dòng)使納米流體的主要不穩(wěn)定性表現(xiàn)為團(tuán)聚和沉淀[10]。為提高納米粒子的分散穩(wěn)定性,研究者們多用超聲振蕩和添加分散劑的方法制備納米制冷劑/納米冷凍機(jī)油。分散劑與納米粒子表面發(fā)生反應(yīng)形成絡(luò)合物,從而有效改善納米粒子的界面性質(zhì),使其具有親油性或者親水性。表1列出了一些研究人員在制備油基納米流體使所用到的分散劑。由表1可知,使納米粒子在油基溶液中分散穩(wěn)定性良好的分散劑主要有油酸、失水山梨醇的脂肪酸酯(Span和Tween)、硅烷偶聯(lián)劑(KH570)和辛基硅烷等。
表1 納米流體研究中常用表面活性劑匯總
Xing等[13]在研究富勒烯C60納米油對(duì)冰箱壓縮機(jī)性能的影響實(shí)驗(yàn)中,先制備C60納米油,用分散劑span-40和tween-60對(duì)C60納米顆粒表面改性,添加到礦物油SUNISO 3GS中超聲60min,表征穩(wěn)定后再添加到R114制冷系統(tǒng)中測(cè)試。婁江峰等[16]在探究納米石墨冷凍油對(duì)R600a冰箱性能影響的實(shí)驗(yàn)中,制備納米石墨冷凍機(jī)油是先用硅烷偶聯(lián)劑KH570在無(wú)水乙醇中修飾納米石墨,再加入冷凍機(jī)油SUNISO 3GS中,超聲分散2h,并在100MPa下高壓均質(zhì),由此制得的納米石墨冷凍機(jī)油靜置 30天無(wú)明顯沉淀,表征穩(wěn)定后再注入制冷系統(tǒng)中與制冷劑R600a混合。
盡管在納米流體里加入分散劑能提高納米流體的分散穩(wěn)定性,但Liu等[17]、Heris等[18]、Trisaksri等[19]在研究中均沒(méi)有用到分散劑。Peng等[20]認(rèn)為分散劑在沸騰換熱過(guò)程中可能會(huì)導(dǎo)致吸附和凝聚,影響傳熱特性。Peng等[20]制備了R113納米制冷劑,先按質(zhì)量比例將Cu納米粒子與VG68混合,直接加入制冷劑R113中,超聲分散1h后觀察發(fā)現(xiàn),由此制備的納米制冷劑在12h內(nèi)無(wú)凝聚沉降,而實(shí)驗(yàn)過(guò)程不到4h,可以保證實(shí)驗(yàn)過(guò)程中納米制冷劑的一致性。
研究已制備的納米材料/制冷劑配對(duì)有 TiO2/ R141b[19]、CNTS/R113[21]、Cu/R113[22-23]、TiO2/ R600a[24]、Al2O3/R141b[25]等。制備納米制冷劑,超聲分散是必不可少的環(huán)節(jié),超聲時(shí)間大多為1~2h,但研究者們?cè)谑欠駪?yīng)適當(dāng)添加分散劑上觀點(diǎn)不統(tǒng)一,仍需進(jìn)一步探究;已有的研究成果在納米制冷劑制備方面涉及的制冷劑種類(lèi)較少,有待完善。
2.1 熱導(dǎo)率
在制冷和空調(diào)領(lǐng)域的應(yīng)用中,納米流體的熱導(dǎo)率是影響換熱效果非常重要的因素。當(dāng)制冷系統(tǒng)運(yùn)行時(shí),納米冷凍機(jī)油會(huì)隨著制冷劑一起循環(huán)并一直處于液相,熱導(dǎo)率是分析對(duì)制冷系統(tǒng)各部件傳熱性能影響的基礎(chǔ)參數(shù),因此有必要開(kāi)展納米冷凍機(jī)油的熱導(dǎo)率研究。
Mahbubul等[26-27]研究Al2O3/R141b和Al2O3/R-134a納米制冷劑熱導(dǎo)率,發(fā)現(xiàn)納米制冷劑的熱導(dǎo)率隨溫度的升高而增大,隨納米顆粒體積分?jǐn)?shù)的增加而增大,隨納米顆粒粒徑的增大而減小。其中,納米顆粒體積分?jǐn)?shù)對(duì)熱導(dǎo)率的影響更大。Corcione[28]為驗(yàn)證納米制冷劑的熱導(dǎo)率,開(kāi)發(fā)了經(jīng)驗(yàn)關(guān)聯(lián)式。Sitprasert等[29]根據(jù)納米顆粒體積分?jǐn)?shù)、納米顆粒大小和隨溫度而變化的邊界層的影響提出熱導(dǎo)率模型,確定納米制冷劑Al2O3/R-134a的熱導(dǎo)率。
Jiang等[30]在深入探究CNT納米制冷劑熱導(dǎo)率的影響因素時(shí)發(fā)現(xiàn),CNT納米制冷劑熱導(dǎo)率隨CNT體積分?jǐn)?shù)的增大而增大,且在同一濃度下,CNT納米顆粒的直徑越小、長(zhǎng)寬比越大,熱導(dǎo)率越大。實(shí)驗(yàn)結(jié)果如圖1所示。
圖1 4種CNT在不同體積分?jǐn)?shù)下CNT-R113的熱導(dǎo)率[30]
目前關(guān)于納米冷凍機(jī)油熱導(dǎo)率的研究成果只局限于幾種納米材料,未來(lái)應(yīng)拓展研究可用于制冷領(lǐng)域的多種納米材料,發(fā)現(xiàn)在確保定性的基礎(chǔ)上可制備出具有最佳粒徑、最佳濃度的納米制冷劑/納米冷凍機(jī)油。
2.2 沸騰換熱
納米流體作為一種新型的換熱介質(zhì),其沸騰換熱特性一直是納米流體研究的熱點(diǎn)。在制冷領(lǐng)域,國(guó)內(nèi)外學(xué)者已經(jīng)展開(kāi)了關(guān)于納米粒子對(duì)制冷劑及含油制冷劑沸騰換熱性能影響的實(shí)驗(yàn)研究,主要集中在對(duì)高溫納米制冷劑(R113、R123、R141b、R134a)及其含油混合物的池沸騰換熱和流動(dòng)沸騰換熱特性方面,如表2、表3所示。
由于目前的研究成果有限,不同的研究者以不同的制冷劑為基液,對(duì)混合流體的沸騰換熱研究成果尚有矛盾的地方。大部分研究者發(fā)現(xiàn),納米粒子的添加有利于強(qiáng)化制冷劑/含油制冷劑的沸騰換熱特性,同時(shí)也有少量實(shí)驗(yàn)結(jié)果表明,特定的納米粒子會(huì)惡化池沸騰換熱。
由表2、表3可知,目前關(guān)于納米制冷劑的研究大多集中在非常用制冷劑上,而將納米粒子添加到常用制冷劑R410A、R32(空調(diào))與R600a(冰箱),或者含油制冷劑中的研究則還處于初步階段,更未見(jiàn)定量的預(yù)測(cè)模型報(bào)道,需要進(jìn)行深入、系統(tǒng)的實(shí)驗(yàn)研究。有關(guān)含納米冷凍機(jī)油/制冷劑管內(nèi)流動(dòng)沸騰換熱特性的關(guān)聯(lián)式也未見(jiàn)報(bào)道。物性(密度、黏度、表面張力、比熱容)對(duì)沸騰換熱的特性有重要的影響,而目前對(duì)物性方面準(zhǔn)確的研究成果比較缺乏,限制了該領(lǐng)域的研究。
表2 納米粒子/冷凍機(jī)油/制冷劑混合物沸騰換熱的研究現(xiàn)狀
一般來(lái)說(shuō),潤(rùn)滑劑的黏度降低,摩擦系數(shù)降低,但由于潤(rùn)滑劑的承載力下降,磨損率隨之增加。研究結(jié)果表明,添加了納米粒子的潤(rùn)滑油可有效降低摩擦系數(shù)和磨損率,提升壓縮機(jī)的運(yùn)行效率和可靠性。
Lee等[47-48]、Xing等[13]在探究納米冷凍機(jī)油對(duì)壓縮機(jī)性能的影響時(shí)都選用富勒烯C60納米材料。Lee等[47]探究添加了富勒烯納米油的制冷劑在滑動(dòng)推力軸承的滾動(dòng)壓縮機(jī)中的耐磨特性。在滑動(dòng)推力軸承中,當(dāng)軌道板速度在300r/min和3000r/min之間時(shí),納米油的摩擦系數(shù)比純油小。推測(cè)可能是因?yàn)楦焕障┘{米顆粒嵌入摩擦表面之間改善了潤(rùn)滑性能,同時(shí)也能防止轉(zhuǎn)子間金屬表面直接接觸引起的磨損。Lee等[48]發(fā)現(xiàn)將富勒烯納米粒子與礦物油混合,可以在冰箱壓縮機(jī)中穩(wěn)定運(yùn)行,且當(dāng)納米粒子濃度為0.1%(體積分?jǐn)?shù))時(shí),潤(rùn)滑效果最好,摩擦系數(shù)降低90%。Xing等[13]將富勒烯納米粒子添加到礦物油SUNISO 3GS中,與制冷劑R600a混合,研究對(duì)冰箱壓縮機(jī)性能的影響,發(fā)現(xiàn)隨著納米顆粒濃度的增加明顯下降,納米油的摩擦系數(shù)下降,且在低負(fù)載時(shí)下降更明顯,壓縮機(jī)機(jī)殼表面溫度也隨之降低,潤(rùn)滑效果很好,提高了冰箱壓縮機(jī)的性能。
表3 納米粒子/制冷劑混合物沸騰換熱的研究現(xiàn)狀
此外,F(xiàn)e3O4[49]、TiO2[50]、石墨[16]等納米材料制備的納米冷凍機(jī)油對(duì)壓縮機(jī)性能的改善效果也值得關(guān)注。Fu等[49]將Fe3O4納米粒子添加到礦物油中,以HFC134a/HC600a為制冷劑,測(cè)試冰箱的性能,實(shí)驗(yàn)數(shù)據(jù)顯示,壓縮機(jī)機(jī)殼的溫度每升高2.2℃,吸氣溫度略有改變,排氣溫度下降3.5℃,蒸發(fā)器平均溫度下降0.3℃,冷卻時(shí)間減少了148s。Bi等[50]發(fā)現(xiàn)HFC134a/礦物油/TiO2納米流體在家用冰箱的工作中可平穩(wěn)有效運(yùn)行。當(dāng)TiO2質(zhì)量分?jǐn)?shù)為0.1%時(shí),能量消耗較HFC134a/POE節(jié)省26.1%。納米顆粒提高了礦物油在HFC134a中的溶解度,增大了壓縮機(jī)的回油率。婁江峰等[16]在探究納米石墨冷凍油對(duì)冰箱性能影響的實(shí)驗(yàn)中發(fā)現(xiàn),采用0.1%納米石墨冷凍油時(shí)平均耗電量降低4.55%,壓縮機(jī)的排氣和吸氣壓力均隨著納米冷凍油濃度的提高而降低,且排氣壓力的降低幅度更大。
已有研究成果表明,納米粒子的添加可以改善礦物油的性能,加強(qiáng)壓縮機(jī)的冷卻效果,降低壓縮機(jī)的進(jìn)、排氣壓力,降低摩擦系數(shù)和制冷系統(tǒng)(冰箱)的能量消耗。納米制冷劑具有提高壓縮機(jī)運(yùn)行可靠性以及減小運(yùn)行能耗的潛力。
目前,納米技術(shù)在制冷領(lǐng)域的應(yīng)用研究已經(jīng)有了具備指導(dǎo)性意義的成果:納米顆粒的添加有利于強(qiáng)化制冷劑/含油制冷劑的沸騰換熱特性,將納米冷凍機(jī)油應(yīng)用于制冷系統(tǒng)可有效降低摩擦系數(shù)和磨損率,提升壓縮機(jī)的性能,提高整個(gè)制冷系統(tǒng)的COP,但該研究仍處于起步階段,未來(lái)還應(yīng)在以下幾方面探索。
(1)納米制冷劑的制備通常只是保證了納米制冷劑在實(shí)驗(yàn)過(guò)程中若干小時(shí)的穩(wěn)定性,若投入商業(yè)使用,穩(wěn)定性是需要長(zhǎng)期保證的。如何制備長(zhǎng)期穩(wěn)定的納米制冷劑,同時(shí)探索其他性能優(yōu)異的納米材料(如石墨烯和金屬納米線等)和其他類(lèi)礦物油、POE油和PAG油等,是納米技術(shù)在制冷領(lǐng)域應(yīng)用中需要解決的研究難點(diǎn)。
(2)納米冷凍機(jī)油和制冷劑混合物的相變過(guò)程非常復(fù)雜,需要拓寬實(shí)驗(yàn)工況范圍,如納米粒子的濃度、納米冷凍機(jī)油的含量、質(zhì)量流量、熱流密度和實(shí)驗(yàn)管徑等,在積累更多高精度的實(shí)驗(yàn)數(shù)據(jù)的基礎(chǔ)上,結(jié)合混合物的管內(nèi)流型和氣泡的生長(zhǎng)規(guī)律,建立可準(zhǔn)確預(yù)測(cè)含納米油制冷劑流動(dòng)沸騰換熱和壓降特性參數(shù)的模型,為采用納米冷凍機(jī)油的制冷系統(tǒng)開(kāi)發(fā)設(shè)計(jì)提供必要的理論基礎(chǔ)。
(3)為保證采用納米冷凍機(jī)油的制冷設(shè)備長(zhǎng)期穩(wěn)定運(yùn)行,需要考察納米冷凍機(jī)油在壓縮機(jī)內(nèi)摩擦以及隨制冷劑循環(huán)流動(dòng)時(shí)的穩(wěn)定性,測(cè)試納米粒子在制冷系統(tǒng)各部件中的殘留情況,研究納米粒子隨冷凍機(jī)油的輸運(yùn)特性,進(jìn)而優(yōu)化制冷設(shè)備的設(shè)計(jì),以確保納米粒子不會(huì)沉積在毛細(xì)管或其他部件中。
[1]張朝暉,陳敬良,劉曉紅,等.中國(guó)制冷空調(diào)工業(yè)協(xié)會(huì)再談中國(guó)制冷空調(diào)行業(yè)的轉(zhuǎn)型升級(jí)發(fā)展[J].制冷與空調(diào),2014,14(1):1-5.
[2]Choi S U S. Enhancing thermal conductivity of fluids with nanoparticles,developments and applications of non newton flows[J]. Applied A:Materials Science&Processing,1995,66:99-105.
[3]Pankaj Sharma,Il-Hyun Baek,Taehyun Cho,et al. Enhancement of thermal conductivity of ethylene glycol based silver nanofluids[J]. Powder Technology,2011,208(1):7-19.
[4]Yu Wei,Xie Huaqing,Chen Lifei,et al. Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid[J]. Thermochimica Acta,2009,491(1-2):92-96.
[5]Yu Wei,Xie Huaqing,Li Yang,et al. Experimental investigation on thermal conductivity and viscosity of aluminum nitride nanofluid[J]. Particuology,2011,9:187-191.
[6]Meng Zhaoguo,Wu Daxiong,Wang Liangang,et al. Carbon nanotube glycol nanofluids:Photo-thermal properties,thermal conductivities and rheological behavior[J]. Particuology,2012,10:614-618.
[7]Ali Celen,Alican ?ebi,Melih Aktas,et al. A review of nanorefrigerants: Flow characteristics and applications[J]. International Journal of Refrigeration,2014,44:125-140.
[8]Saidur R,Kazi S N,Hossain M S,et al. A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems[J]. Renewable and Sustainable Energy Reviews,2011,15(1):310-323.
[9]Venkataramana Murthy,Padmanabhan V,Senthilkumar Palanisamy. The use of TiO2nanoparticles to reduce refrigerator irreversibility[J]. Energy Conversion and Management,2012,59:122-132.
[10]Zoubida Haddad,Cherifa Abid,Hankan F Oztop,et al. A review on how the researchers prepare their nanofluids[J]. International Journal of Thermo Science,2014,76(1):168-189.
[11]Choi C,Yoo H S,Oh J M. Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants[J]. Current Applied Physics,2008,8(6):710-712.
[12]Wang Ruixiang,Wu Qingping,Wu Yezheng. Use of nanoparticles to make mineral oil lubricants feasible for use in a residential air conditioner employing hydro-fluorocarbons refrigerants[J]. Energy and Buildings,2010,42(11):2111-2117.
[13]Xing Meibo,Wang Ruixiang,Yu Jianlin. Application of fullerene C60 nano-oil for performance enhancement of domestic refrigerator compressors[J]. International Journal of Refrigeration,2014,40:398-403.
[14]婁江峰,張華,王瑞祥,等.顆粒形態(tài)和濃度對(duì)納米石墨冷凍機(jī)油密度和黏度的影響[J].化工學(xué)報(bào),2014,65(10):3846-3851.
[15]Henderson Kristen,Young-Gil Park,Liu Liping,et al. Flow-boiling heat transfer of R134a-based nanofluids in a horizontal tube[J]. International Journal of Heat and Mass Transfer,2010,53(5-6):944-951.
[16]婁江峰 ,張華 ,王瑞祥.納米石墨冷凍油對(duì) R600a冰箱的性能影響[J].化工學(xué)報(bào),2014,65(2):516-521.
[17]Liu Z H,Xiong J G,Bao R. Boiling heat transfer characteristics of nanofluids in a flat heat pipe evaporator with micro-grooved heating surface[J]. Int. J. Multiphase Flow,2007,33:1284-1295.
[18]Heris S Zeinali,Esfahany M Nasr,Etemad S G. Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube[J]. Int. J. Heat Fluid Flow,2007,28(2):203-210.
[19]Trisaksri Visinee,Wongwises Somchai. Nucleate pool boiling heat transfer of TiO2-R141b nanofluids[J]. International Journal of Heat and Mass Transfer,2009,52(5-6):1582-1588.
[20]Peng Hao,Ding Guoliang,Jiang Weiting,et al. Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube[J]. Int. J. Refrig.,2009,32(6):1259-1270.
[21]Peng H,Ding G.,Hu H,et al. Influence of carbon nanotubes on nucleate pool boiling heat transfer characteristics of refrigerant-oil mixture[J]. Int. J. Thermal Sci.,2010,49:2428-2438.
[22]Peng Hao,Ding Guoliang,Hu Haitao,et al. Effect of nanoparticle size on nucleate pool boiling heat transfer of refrigerant/oil mixture with nanoparticles[J]. International Journal of Heat and Mass Transfer,2009,54(6):1839-1850.
[23]Peng H,Ding G.,Hu H. Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid[J]. Exp. Thermal Fluid Sci.,2011,35:960-970.
[24]Bi Shengshan,Guo Kai,Liu Zhigang,et al. Performance of a domestic refrigerator using TiO2-R600a nano-refrigerant as working fluid[J]. Energy Convers. Manage,2011,52(1):733-737.
[25]Mahbubul I M,Saidur R,Amalina M A. Thermal conductivity,viscosity and density of R141b refrigerant based nanofluid[J]. Proc. Eng.,2013,56:310-315.
[26]Mahbubul I M,Saidur R,Amalina M A. Influence of particle concentration and temperature on thermal conductivity and viscosity of Al2O3/R141b nanorefrigerant[J]. International Communications in Heat and Mass Transfer,2013,43:100-104.
[27]Mahbubul I M,F(xiàn)adhilah S A,Saidur R,et al. Thermophysical properties and heat transfer performance of Al2O3/R134a nanorefrigerants[J]. International Journal of Heat and Mass Transfer,2013,57(1):100-108.
[28]Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids[J]. Energy Convers. Manage,2011,52(1):789-793.
[29]Sitprasert C,Dechaumphai P,Juntasaro V. A thermal conductivitymodel for nanofluids including effect of the temperature-dependent interfacial layer[J]. J. Nanopart. Res.,2009,11(6):1465-1476.
[30]Jiang W,Ding G,Peng H. Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants[J]. International Journal of Thermal Sciences,2009,48:1108-1115.
[31]Kedzierski M A,Gong M. Effect of CuO nanolubricant on R134a pool boiling heat transfer[J]. Int. J. Refrigeration,2009,32:791-799.
[32]Kedzierski M A. Effect of Al2O3nanolubricant on R134a pool boiling heat transfer[J]. Int. J. Refrigeration,2011,34:498-508.
[33]Bartelt K,Park Y,Liu L,et al. Flow boiling of R134a/POE/CuO nanofluids in a horizontal tube[C]//International Refrigeration and Air Conditioning Conference,Purdue,2008. West Lafayette,Indiana,USA.
[34]Akhavan-Behabadi M A,Nasr M,Baqeri S. Experimental investigation of flow boiling heat transfer of R600a/oil/CuO in a plain horizontal tube[J]. Experimental Thermal and Fluid Science,2014,58:105-111.
[35]Henderson K,Park Y G,Liu L,et al. Flow boiling heat transfer of R134a-based nanofluids in a horizontal tube[J]. Int. J. Heat Mass. Transfer,2010,53:944-951.
[36]Peng Hao,Ding Guoliang,Hu Haitao,et al. Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture with diamond nanoparticles[J]. International Journal of Refrigeration,2010,33(2):347-358.
[37]Kedzierski M A. Effect of diamond nanolubricate on R134a pool boiling heat transfer[C]//Nanoscale Heat and Mass Transfer International Conference,Shanghai,China. 2009:389-398.
[38]Park K J,Jung D. Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air conditioning[J]. Energy and Buildings,2007,39:1061-1064.
[39]Park K J,Jung D. Enhancement of nucleate boiling heat transfer using carbon nanotubes[J]. Int. J. Heat Mass. Transfer,2007,50:4499-4502.
[40]Trisaksri V,Wongwises S. Nucleate pool boiling heat transfer of TiO2/R141b nanofluids[J]. Int. J. Heat Mass. Transfer,2009,52:1582-1588.
[41]Yang C Y,Liu D W. Effect of nano-particles for pool boiling heat transfer of refrigerant 141B on horizontal tubes[J]. Int. J. Microscale Nanoscale Thermal Fluid Transport Phenomena,2010,1(3):233-243.
[42]Peng H,Ding D,Jiang W,et al. Heat transfer characteristics of refrigerant-based nanofluid flow boiling inside a horizontal smooth tube[J]. Int. J. Refrigeration,2009,32:1259-1270.
[43]Sun Bin,Di Yang. Flow boiling heat transfer characteristics of nano-refrigerants in a horizontal tube[J]. International Journal of Refrigeration,2014,38:206-214.
[44]Park Y,Sommers A,Liu L,et al. Nanoparticles to enhance evaporative heat transfer[C]//The 22nd Int. Congress of Refrigeration,Beijing,China,2007. Paper number:ICR07-B1-709.
[45]Mahbubul I M,Saidura R,Amalina M A. Heat transfer and pressure drop characteristics of Al2O3-R141b nanorefrigerant in horizontal smooth circular tube[J]. Procedia Engineering,2013,56:323-329.
[46]Tang Xiao,Zhao Yaohua,Diao Yanhua. Experimental investigation of the nucleate pool boiling heat transfer characteristics of δ-Al2O3-R141b nanofluids on a horizontal plate[J]. Experimental Thermal and Fluid Science,2014,52:88-96.
[47]Lee J,Cho S,Hwang Y,et al. Application of fullerene-added nano-oil for lubrication enhancement in friction surfaces[J]. Tribol. Int.,2009,42(3):440-447.
[48]Lee K,Wang Y H,Cheong S,et al. Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil[J]. Curr. Appl. Phys.,2009,9(2):128-131.
[49]Fu Liehu,Wang Ruixiang,Cong Wei,et al. Experiment study on performance of refrigerator using nano-particle additive[J]. Journal of Xi’an Jiaotong University,2008,42:852-854.
[50]Bi Shengshan,Shi Lin,Zhang Lili. Application of nanoparticles in domestic refrigerators[J]. Applied Thermal Engineering,2008,28(14-15):1834-1843.
Research progress of influence on heat transfer and characteristics of compressor with nano-refrigerant
CHEN Mengxun1,ZHANG Hua1,LOU Jiangfeng2
(1School of Energy and Power Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;2Zhejiang DUN’AN Artificial Environmental Equipment Co.,Ltd.,Zhuji 311835,Zhejiang,China)
Application of nanotechnology in refrigeration equipment is one of the innovative researches in the field of refrigeration. Updated research achievements of nanotechnology in refrigeration field is reviewed,through summarizing the advantages of nanomaterials applied in refrigeration system under the background of energy conservation and environmental protection,introducing common preparation methods in recent years,enumerating the influence of different nano-refrigerants upon heat transfer,and explaining the effect of nano-particle in reducing friction and improving the performance of compressors. Several important questions have been raised:how to prepare long-term stable nano-refrigerant,how to build models of characteristics about flow boiling heat transfer and pressure drop of nano-refrigerant,as well as how to make sure that nano-particle will be stable in each part of the refrigeration system during running process. Researches should be focused on these problems in the future.
nano-refrigerant;thermal conductivity;boiling heat transfer;compressor
TB 61+2; TB 383
A
1000-6613(2015)12-4145-06
10.16085/j.issn.1000-6613.2015.12.003
2015-03-26;修改稿日期:2015-05-04。
國(guó)家自然科學(xué)基金(51176124)、上海市曙光計(jì)劃(跟蹤)(10GG21)及上海市研究生創(chuàng)新基金(JWCXSL1101)項(xiàng)目。
陳夢(mèng)尋(1992—),女,碩士研究生,主要從事納米制冷技術(shù)的研究。E-mail 1090357452@qq.com。聯(lián)系人:張華,教授,博士生導(dǎo)師,主要從事制冷空調(diào)與新能源利用方向的研究。E-mail zhanghua3000@163.com。