涂艷陽(yáng),祁 婧,張永生(第四軍醫(yī)大學(xué):唐都醫(yī)院實(shí)驗(yàn)外科,唐都醫(yī)院,陜西西安70038)
·述評(píng)·
膠質(zhì)瘤中分子標(biāo)記物的應(yīng)用進(jìn)展
涂艷陽(yáng)1,祁 婧1,張永生2(第四軍醫(yī)大學(xué):1唐都醫(yī)院實(shí)驗(yàn)外科,2唐都醫(yī)院,陜西西安710038)
【Abstract】Gliomas are a common central nervous system tumor. The malignant gliomas are the most lethal in all gliomas,with a poor prognosis.The overall survival of GBM patients is only 12 to 14 months after diagnosis.With the personal medication precision progress,therapeutic options for various tumors have become gradually dependent on the molecular spectrum of patients.Malignant gliomas are one of the tumors in which treatment response relies largely on the molecular characteristics of the tumor.Therefore,awareness of the genetic background of the patients will help decision-making regarding the best treatment strategy to use.In this paper,a novel molecular classification of gliomas based on recent findings of their genetic characteristics is introduced. Representative molecular markers(IDH1 mutation,1p19q co-deletion,EGFRvIII amplification and MGMT promoter methylation)are described.In addition,the progress of malignant gliomas omics studies are briefly discussed.Finally,a novel concept for non-invasive detection that could facilitate both diagnosis and treatment monitoring is presented.There is no doubt that the use of molecular profiling by biomarkers will indeed improve the overall survival and quality of life of malignant gliomas patients.
【Keywords】glioblastoma;molecular markers;therapeutic strategies
膠質(zhì)瘤是一種常見(jiàn)的成人中樞神經(jīng)系統(tǒng)腫瘤.惡性膠質(zhì)細(xì)胞瘤的預(yù)后相對(duì)較差,是所有膠質(zhì)瘤中最致命的.惡性膠質(zhì)瘤患者確診后的總生存期僅為12~14個(gè)月.隨著個(gè)人用藥精度的不斷提高,腫瘤治療方案逐漸依賴于患者的分子譜.惡性膠質(zhì)瘤的治療響應(yīng)很大程度上依賴于腫瘤的分子特征.因此,對(duì)于每個(gè)患者遺傳背景的認(rèn)識(shí)將有助于選擇最佳的治療策略.在本文中介紹了一種基于最新發(fā)現(xiàn)的遺傳特性的新型膠質(zhì)瘤分子分型.對(duì)代表性的分子標(biāo)記,如IDH1突變、1p19q共缺失、MGMT啟動(dòng)子甲基化以及EGFRvIII擴(kuò)增等進(jìn)行說(shuō)明.此外,還針對(duì)惡性膠質(zhì)瘤組學(xué)研究的發(fā)展進(jìn)行簡(jiǎn)要討論.無(wú)創(chuàng)檢測(cè)這一新的概念可以促進(jìn)現(xiàn)有的診斷和治療監(jiān)控.利用生物標(biāo)記物的使用分子分析確實(shí)會(huì)提高惡性膠質(zhì)瘤患者的整體存活率和生活質(zhì)量.
惡性膠質(zhì)瘤;分子標(biāo)記物;治療策略
膠質(zhì)瘤是最常見(jiàn)的原發(fā)性中樞神經(jīng)系統(tǒng)腫瘤,發(fā)病率幾乎達(dá)到腦腫瘤的50%.膠質(zhì)瘤分為室管膜瘤、星形細(xì)胞瘤、少突膠質(zhì)細(xì)胞、腦干膠質(zhì)瘤、視神經(jīng)膠質(zhì)瘤以及根據(jù)主要細(xì)胞類型的混合膠質(zhì)瘤.根據(jù)世界衛(wèi)生組織執(zhí)行的病理表現(xiàn)型,膠質(zhì)瘤進(jìn)一步分為四個(gè)等級(jí)(Ⅰ~Ⅳ),其中Ⅰ和Ⅱ級(jí)反映了低級(jí)別膠質(zhì)瘤,Ⅲ和Ⅳ級(jí)(膠質(zhì)母細(xì)胞瘤,惡性膠質(zhì)瘤)反映了高級(jí)別膠質(zhì)瘤.近60%的高級(jí)別膠質(zhì)瘤為惡性膠質(zhì)瘤,發(fā)病率約為3/10 0000[1].
惡性膠質(zhì)瘤是最常見(jiàn)的成人中樞神經(jīng)系統(tǒng)腫瘤,約占所有顱內(nèi)腫瘤的17%[2].對(duì)于治療惡性膠質(zhì)瘤的標(biāo)準(zhǔn)策略是手術(shù)后進(jìn)行放療和化療.然而,由于腫瘤細(xì)胞的大量浸潤(rùn)和快速增殖,惡性膠質(zhì)瘤患者的生存期只有12~14個(gè)月,5年存活率最高為9.8%[3].對(duì)于Ⅱ和Ⅲ級(jí)膠質(zhì)瘤,預(yù)后相對(duì)較好,但生存期仍然很差,分別為2年和2~5年[4].
根據(jù)病理神經(jīng)膠質(zhì)瘤標(biāo)準(zhǔn),世界衛(wèi)生組織將等級(jí)分為Ⅰ~Ⅳ,而新出現(xiàn)的分子分型是基于癌癥基因組計(jì)劃(the cancer genome atlas,TCGA)數(shù)據(jù).作為最早出現(xiàn)的通過(guò)TCGA研究的癌癥類型,惡性膠質(zhì)瘤分為經(jīng)典型、間質(zhì)型、神經(jīng)元型和神經(jīng)元前型[5-6].神經(jīng)元前型惡性膠質(zhì)瘤表現(xiàn)出α型血小板源型生長(zhǎng)因子受體的突變、異檸檬酸脫氫酶的點(diǎn)突變(isocitrate dehydrogenase,IDH)、磷脂酰肌醇3-激酶的過(guò)度表達(dá)和通路激活以及翻譯阻遏4EBP1的抑制[6-7].經(jīng)典型表現(xiàn)出7號(hào)染色體擴(kuò)增和10號(hào)染色體的損失、EGFR擴(kuò)增/突變、凋亡蛋白和絲裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)略微下調(diào)以及Notch1和Notch3的水平增加[6-7].神經(jīng)元亞型通常表達(dá)神經(jīng)元標(biāo)記物,如神經(jīng)細(xì)絲蛋白輕鏈多肽、γ-氨基丁酸A受體α1、突觸結(jié)合蛋白1以及溶質(zhì)載體家族12-成員5[6].
膠質(zhì)瘤 CpG島甲基化表型(glioma-CpG island methylator phenotype,G-CIMP)是用于膠質(zhì)瘤分級(jí)的新的分子特征.Noushmehr等[8]確定TCGA數(shù)據(jù)庫(kù)中272個(gè)惡性膠質(zhì)瘤病例中G-CIMP表現(xiàn)出大量位點(diǎn)的協(xié)同甲基化.這些數(shù)據(jù)在另一組惡性膠質(zhì)瘤和低級(jí)別膠質(zhì)瘤中進(jìn)行了驗(yàn)證,因?yàn)榈图?jí)別膠質(zhì)瘤中也普遍存在G-CIMP腫瘤.驗(yàn)證結(jié)果表明它們屬于神經(jīng)元前亞型.G-CIMP腫瘤與神經(jīng)元前亞型有共同的通路特征,同時(shí)Cox-2、IGFBP2以及膜聯(lián)蛋白1下降,且GCIMP腫瘤患者趨于年輕化[8].Brennan等[7]證實(shí)GCIMP表型有助于通過(guò)影響下游靶基因來(lái)改善神經(jīng)元前亞型惡性膠質(zhì)瘤患者預(yù)后.分子變化表明大多數(shù)非G-CIMP間充質(zhì)惡性膠質(zhì)瘤是從神經(jīng)元前型演變來(lái)的[9].
Turcan等[10]表明IDH1突變是通過(guò)甲基化重構(gòu)來(lái)建立G-CIMP亞型.他們進(jìn)一步驗(yàn)證在G-CIMP腫瘤中觀察到的廣泛DNA甲基化是否有助于通過(guò)DNA甲基轉(zhuǎn)移酶(DNA methyltransferases,DNMT)抑制劑治療IDH1突變膠質(zhì)瘤初始化細(xì)胞來(lái)實(shí)現(xiàn)神經(jīng)膠質(zhì)瘤細(xì)胞去分化.該數(shù)據(jù)表明靶向病理DNA甲基化可逆轉(zhuǎn)IDH1突變引起的甲基化狀態(tài),阻止膠質(zhì)瘤起始細(xì)胞分化以及加強(qiáng)對(duì)腫瘤的控制[11].這些發(fā)現(xiàn)強(qiáng)調(diào)DNA甲基化在腦膠質(zhì)瘤發(fā)展和治療中的重要性作用.
2.1IDH突變 IDH是代謝的關(guān)鍵因素之一,催化異檸檬酸產(chǎn)生酮戊二酸和二氧化碳的氧化脫羧反應(yīng). IDH1和IDH2利用NADP+作為輔因子催化相同的反應(yīng).IDH基因突變(IDH1和IDH2)在低等級(jí)膠質(zhì)瘤中超過(guò)70%,在惡性膠質(zhì)瘤中同時(shí)存在[10,12-13].最常見(jiàn)的 IDH1突變(超過(guò) 95%)發(fā)生在精氨酸 132(R132H).野生型IDH1催化異檸檬酸生成α-酮戊二酸(一種潛在的癌代謝物),而在IDH1突變后新生性酶功能催化α-酮戊二酸生成2-羥基戊二酸,2-羥基戊二酸是與遺傳性高血壓、遺傳不穩(wěn)定性和惡性轉(zhuǎn)化等關(guān)聯(lián)的癌代謝物.IDH1突變是一種最常見(jiàn)的在膠質(zhì)瘤最早發(fā)生的遺傳改變,且是用于膠質(zhì)瘤患者最有效的診斷和預(yù)測(cè)指標(biāo)的生物標(biāo)記.Izquierdo-garcia等[13]研究TCGA數(shù)據(jù)發(fā)現(xiàn)IDH1突變神經(jīng)膠質(zhì)瘤患者的丙酮酸羧化酶的水平比野生型更高.Esmaeili等[14]表明IDH1-R132H突變影響磷酸乙醇胺和甘油磷酸膽堿以及改變了腦膠質(zhì)瘤中的磷脂代謝.
在人星形膠質(zhì)細(xì)胞中突變IDH1的強(qiáng)制表達(dá)來(lái)模擬G-CIMP陽(yáng)性低級(jí)別膠質(zhì)瘤的甲基化的改變. Duncan等[15]發(fā)現(xiàn)IDH1突變是G-CIMP表型的分子基礎(chǔ),其中強(qiáng)調(diào)的是致癌作用和制定治療策略的表觀遺傳學(xué)的重要性.采用聚類分析,Shinawu等[16]在研究1例長(zhǎng)期存活膠質(zhì)瘤患者的G-CIMP陽(yáng)性表型,發(fā)現(xiàn)該表型與IDH1突變狀態(tài)緊密相關(guān).Usher等[17]發(fā)現(xiàn)CD4+Th1細(xì)胞和抗體自發(fā)地發(fā)生在IDH1-R132H膠質(zhì)瘤患者,且特異性識(shí)別IDH1-R132H,顯示出有效突變特異的抗腫瘤免疫反應(yīng).
2.21p19q共缺失 已報(bào)道膠質(zhì)瘤經(jīng)常發(fā)生染色體1p和19q上遺傳信息的缺失.膠質(zhì)瘤中發(fā)現(xiàn)少突膠質(zhì)細(xì)胞中1p上等位基因丟失有如下幾種:Ⅱ級(jí)少突膠質(zhì)細(xì)胞(6/6),Ⅲ級(jí)間變性少突膠質(zhì)細(xì)胞(5/6)和Ⅱ~Ⅲ級(jí)混合少突膠質(zhì)細(xì)胞(2/3)[18].19q上等位基因缺失發(fā)生率特別高,在少突膠質(zhì)細(xì)胞瘤和混合膠質(zhì)瘤中分別為81%和31%.75%以上在19q上的等位基因缺失的腫瘤細(xì)胞也表現(xiàn)出在1p上的基因座雜合性缺失[19].存在1p19q共缺失的患者進(jìn)行放療后有更長(zhǎng)的總生存期[20].研究表明,存在1p19q共缺失的患者進(jìn)行放療結(jié)合PCV療法(甲基芐肼,洛莫司汀和長(zhǎng)春新堿)比單獨(dú)接受放療的患者生存期延長(zhǎng)兩倍[21].
有證據(jù)表明1p19q共缺失不僅作為一個(gè)有利的預(yù)后因素,而且可作為化學(xué)敏感性的預(yù)測(cè).目前1p19q共缺失是膠質(zhì)瘤預(yù)后并與其它組合治療反應(yīng)的評(píng)估標(biāo)記.共缺失1p19q和MGMT啟動(dòng)子甲基化是獨(dú)立的正預(yù)后指標(biāo).此外由于1p19q缺失腫瘤也表現(xiàn)出IDH突變,1p19q共缺失與IDH突變是密切相關(guān)的.IDH突變、MGMT啟動(dòng)子甲基化和1p19q共缺失患者的存活期大大增加[22-23].
2.3O6-甲基鳥(niǎo)嘌呤DNA甲基轉(zhuǎn)移酶(MGMT)啟動(dòng)子甲基化 MGMT是一種DNA修復(fù)酶,可在烷化劑(如替莫唑胺)誘導(dǎo)時(shí)直接從鳥(niǎo)嘌呤O6位去除烷基,從而減少腫瘤細(xì)胞對(duì)于化療劑的反應(yīng).MGMT啟動(dòng)子經(jīng)常在神經(jīng)膠質(zhì)瘤細(xì)胞中發(fā)生甲基化,隨后導(dǎo)致MGMT活性喪失[7,24].臨床研究已預(yù)先證明MGMT啟動(dòng)子甲基化是一個(gè)正預(yù)后標(biāo)志,可以使得腫瘤對(duì)放療更敏感[20].大量證據(jù)表明MGMT甲基化水平是初診為腦膠質(zhì)瘤對(duì)于烷基化劑反應(yīng)的陽(yáng)性預(yù)測(cè)標(biāo)記物[25-27].另兩個(gè)前瞻性隨機(jī)III期試驗(yàn)報(bào)道MGMT啟動(dòng)子甲基化狀態(tài)可以在老年患者替莫唑胺治療中起到一種預(yù)測(cè)作用[28-29].但是MGMT啟動(dòng)子甲基化水平并不是替莫唑胺治療唯一獨(dú)立的預(yù)測(cè)指標(biāo).
2.4EGFRvIII擴(kuò)增 組成型活性突變EGFRvIII,已知的de2-7 EGFR或ΔEGFR,存在于25%~30%惡性膠質(zhì)瘤中,同時(shí)還存在EGFR擴(kuò)增/過(guò)表達(dá)[30-31].在大多數(shù)(97%)經(jīng)典亞型膠質(zhì)瘤觀察到存在EGFR擴(kuò)增,但是在其他亞型很少見(jiàn)到.EGFR點(diǎn)基因突變包括vIII(在12/22中的經(jīng)典亞型樣品中鑒定),并伴有p53缺失突變.研究發(fā)現(xiàn)在G-CIMP陽(yáng)性惡性膠質(zhì)瘤中EGFR信號(hào)受到抑制,而對(duì)G-CIMP表型的誘導(dǎo)與EGFR和H-ras基因的表達(dá)抑制有關(guān),會(huì)導(dǎo)致EGFR信號(hào)的抑制[32].
EGFRvIII通過(guò)激活其他受體酪氨酸激酶(receptor tyrosine kinase,RTK)在腫瘤發(fā)生中發(fā)揮作用. Greenall等[33]證實(shí) MET反式激活轉(zhuǎn)錄與體外U87MG膠質(zhì)瘤細(xì)胞中 EGFRvIII的活性成正比. EGFRvIII和反式激活轉(zhuǎn)錄RTK兩者同時(shí)靶向顯著比單獨(dú)任一藥劑處理的小鼠模型有更長(zhǎng)生存期,說(shuō)明反式激活轉(zhuǎn)錄RTK的有效封鎖對(duì)于治療EGFRvIII陽(yáng)性神經(jīng)膠質(zhì)瘤可能是一種治療策略.
2.5其他標(biāo)記 除了上述已經(jīng)充分研究的分子標(biāo)記,還有一些其它因素也與神經(jīng)膠質(zhì)瘤患者預(yù)后相關(guān).NF1突變經(jīng)常發(fā)生在骨髓間質(zhì)亞型.Ozawa等[9]研究發(fā)現(xiàn)NF1缺失可以使得神經(jīng)元前型腫瘤轉(zhuǎn)化為間質(zhì)亞型.在神經(jīng)膠質(zhì)瘤Myc的過(guò)表達(dá)為60%~80%,并且其表達(dá)水平與分級(jí)相關(guān)[34].增加的Myc基因的活性在減弱神經(jīng)元分化以及促進(jìn)惡性膠質(zhì)瘤啟動(dòng)細(xì)胞的自我更新能力等方面起著重要作用[34-35].
隨著測(cè)序技術(shù)的發(fā)展,全基因組、外顯子組和RNA測(cè)序已經(jīng)被廣泛地應(yīng)用到膠質(zhì)瘤組學(xué)研究中.通過(guò)結(jié)合全基因組、外顯子組、轉(zhuǎn)錄和甲基化測(cè)序分析,確定在彌漫性內(nèi)在腦橋膠質(zhì)瘤發(fā)現(xiàn)激活素受體基因ACVR1復(fù)發(fā)性體細(xì)胞突變[36-37].這些突變引起組成性激活蛋白,導(dǎo)致了Smad蛋白的磷酸化和DNA結(jié)合蛋白1和2(ID1/2)下游目標(biāo)抑制劑的過(guò)表達(dá)[37].在兒科高級(jí)的星形膠質(zhì)細(xì)胞瘤中ACVR1中的功能獲得性突變會(huì)引起骨形態(tài)蛋白(bone morphogenetic protein,BMP)-ACVR1通路超活化、增加Smad 1/5/8的磷酸化以及BMP靶基因的活化[38].在兒科高級(jí)別膠質(zhì)瘤細(xì)胞中也檢測(cè)到其他常見(jiàn)的突變,如受體酪氨酸激酶-Ras-PI3K信號(hào)通路(68%)、組蛋白修飾基因(73%)和染色質(zhì)重塑的基因(59%)[36].在腦干神經(jīng)膠質(zhì)瘤,通過(guò)外顯子組測(cè)序鑒定和有針對(duì)性的突變分析得到在PPM1D上的腫瘤特異性突變(p53誘導(dǎo)蛋白磷酸酶1D)[39].作為體細(xì)胞突變的高頻率靶點(diǎn),PPM1D突變?cè)鰪?qiáng)細(xì)胞抑制DNA損傷應(yīng)答的活化能力,使其成為腦干膠質(zhì)瘤治療的潛在治療靶點(diǎn).
識(shí)別惡性膠質(zhì)瘤調(diào)控網(wǎng)絡(luò)的分子特征可以增加個(gè)性化藥物的精確度.但是目前的檢測(cè)方法落后于分子譜進(jìn)展.用于癌癥診斷和響應(yīng)評(píng)價(jià)的方法很大程度上取決于病理和成像技術(shù).內(nèi)窺鏡和腹腔鏡檢查是侵入性方法,成像方法的靈敏度受腫瘤最小尺寸的限制.因此容易觀察的樣品(如血液、尿液和腦脊髓液)是可用于預(yù)測(cè)患者預(yù)后,決定治療策略以及監(jiān)測(cè)治療反應(yīng)和疾病進(jìn)展的有效液體活檢.
循環(huán)腫瘤細(xì)胞和循環(huán)脫細(xì)胞核酸是血漿/血清中兩個(gè)重要的“資源”,為無(wú)創(chuàng)檢測(cè)方法提供線索.癌細(xì)胞的游離DNA(cfDNA)在凋亡和壞死期間被釋放到腫瘤微環(huán)境中.cfDNA的大小范圍從小的70~200堿基對(duì)的片段到大的約21千堿基的片段[40].cfDNA的半衰期是5分鐘至幾小時(shí),因?yàn)檫@些片段由肝臟和腎臟快速有效循環(huán)清除.由于它們可以實(shí)時(shí)反映疾病的進(jìn)展和周轉(zhuǎn),因此cfDNAs是活檢完美指標(biāo)[41-43].
最近一項(xiàng)研究表明,腫瘤實(shí)體IDH1突變的患者血漿中可以檢測(cè)到IDH1突變.同時(shí)確定了IDH1可檢測(cè)性的高比率和血腦屏障破壞之間的關(guān)系[44].另一項(xiàng)研究報(bào)告顯示在星形細(xì)胞瘤患者9/12血清樣品和腫瘤組織中檢測(cè)到p16異常啟動(dòng)子甲基化[45].在血清中也發(fā)現(xiàn)MGMT甲基化,其存在與膠質(zhì)瘤組織高度相關(guān)[46].在惡性膠質(zhì)瘤患者血清中也能檢測(cè)到其他標(biāo)記物(如染色體1p,19q和10q雜合性缺失),并且與匹配高度腫瘤組織高度相關(guān)[47].未來(lái)對(duì)膠質(zhì)瘤生物標(biāo)記物的研究工作必須著眼于鑒定用于檢測(cè)和提高檢測(cè)方法的靈敏度和可行性的特異分子.
[1]de Groot JF.High-grade gliomas[J].Continuum,2015,21(2 Neurooncology):332-344.
[2]Wu CX,Lin GS,Lin ZX,et al.Peritumoral edema shown by MRI predicts poor clinical outcome in glioblastoma[J].World J Surg Oncol,2015,13:97.
[3]Stupp R,Mason WP,Van den Bent MJ,et al.Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma[J]. N Engl J Med,2005,352(10):987-996.
[4]Bell C,Dowson N,F(xiàn)ay M,et al.Hypoxia imaging in gliomas with 18F-fluoromisonidazole PET:toward clinical translation[J].Semin Nucl Med,2015,45(2):136-150.
[5]Phillips HS,Kharbanda S,Chen R,et al.Molecular subclasses of high-grade glioma predict prognosis,delineate a pattern of disease progression,and resemble stages in neurogenesis[J].Cancer Cell,2006,9(3):157-173.
[6]Verhaak RG,Hoadley KA,Purdom E,et al.Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA,IDH1,EGFR,and NF1[J]. Cancer Cell,2010,17(1):98-110.
[7]Brennan CW,Verhaak RG,McKenna A,et al.The Somatic Genomic Landscape of Glioblastoma[J].Cell,2013,155(2):462-477.
[8]Noushmehr H,Weisenberger DJ,Diefes K,et al.Identification of a CpG Island Methylator Phenotype that Defines a Distinct Subgroup of Glioma[J].Cancer Cell,2010,17(5):510-522.
[9]Ozawa T,Riester M,Cheng YK,et al.Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma[J].Cancer Cell,2014,26(2):288-300.
[10]Turcan S,Rohle D,Goenka A,et al.IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype[J].Nature,2012,483(7390):479-483.
[11]Turcan S,F(xiàn)abius AW,Borodovsky A,et al.Efficient induction of differentiation and growth inhibition in IDH1 mutant glioma cells by the DNMT Inhibitor Decitabine[J].Oncotarget,2013,4(10):1729-1736.
[12]Balss J,Meyer J,Mueller W,et al.Analysis of the IDH1 codon 132 mutation in brain tumors[J].Acta Neuropathol,2008,116(6):597-602.
[13]Izquierdo-garcia JL,Cai LM,Chaumeil MM,et al.Glioma cells with the IDH1 mutation modulate metabolic fractional flux through pyruvate carboxylase[J].PLoS ONE,2014,9(9):e108289.
[14]Esmaeili M,Hamans BC,Navis AC,et al.IDH1 R132H mutation generates a distinct phospholipid metabolite profile in glioma[J]. Cancer Res,2014,74(17):4898-4907.
[15]Duncan CG,Barwick BG,Jin G,et al.A heterozygous IDH1R132 H/ WT mutation induces genome-wide alterations in DNA methylation[J]. Genome Res,2012,22(12):2339-2355.
[16]Usher CL,Handsaker RE,Esko T,et al.Structural forms of the human amylase locus and their relationships to SNPs,haplotypes and obesity[J].Nat Genet,2015,47(8):921-925.
[17]Schumacher T,Bunse L,Pusch S,et al.A vaccine targeting mutant IDH1induces antitumour immunity[J].Nature,2014,512(7514):324-327.
[18]Bello MJ,Vaquero J,de Campos JM,et al.Molecular analysis of chromosome 1 abnormalities in human gliomas reveals frequent loss of 1p in oligodendroglial tumors[J].Int J Cancer,1994,57(2):172-175.
[19]Reifenberger J,Reifenberger G,Liu L,et al.Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p[J].Am J Pathol,1994,145(5):1175-1190.
[20]Wick W,Hartmann C,Engel C,et al.NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with procarbazine,lomustine,and vincristine or temozolomide[J].J Clin Oncol,2009,27(35):5874-5880.
[21]Cairncross G,Wang M,Shaw E,et al.Phase III trial of chemoradiotherapy for anaplastic oligodendroglioma:long-term results of RTOG 9402[J].J Clin Oncol,2013,31(3):337-343.
[22]Zhang ZY,Chan AK,Ng HK,et al.Surgically treated incidentally discovered low-grade gliomas are mostly IDH mutated and 1p19q codeleted with favorable prognosis[J].Int J Clin Exp Pathol,2014, 7(12):8627-8636.
[23]Leu S,Von Felten S,F(xiàn)rank S,et al.IDH/MGMT-driven molecular classification of low-grade glioma is a strong predictor for long-term survival[J].Neuro-oncology,2013,15(4):469-479.
[24]Berghoff AS,Hainfellner JA,Marosi C,et al.Assessing MGMT methylation status and its current impact on treatment in glioblastoma[J]. CNS Oncol,2015,4(1):47-52.
[25]Mur P,Rodríguez de Lope á,Díaz-Crespo FJ,et al.Impact on prognosis of the regional distribution of MGMT methylation with respect to the CpG island methylator phenotype and age in glioma patients[J].J Neurooncol,2015,122(3):441-450.
[26]Minniti G,Salvati M,Arcella A,et al.Correlation between O6-methylguanine-DNA methyltransferase and survival in elderly patients with glioblastoma treated with radiotherapy plus concomitant and adjuvant temozolomide[J].J Neurooncol,2011,102(2):311-316.
[27]Hegi ME,Diserens AC,Gorlia T,et al.MGMT gene silencing and benefit from temozolomide in glioblastoma[J].N Engl J Med,2005,352(10):997-1003.
[28]Malmstr?m A,Gr?nberg BH,Marosi C,et al.Temozolomide versus standard 6-week radiotherapy versus hypofractionated radiotherapy in patients older than 60 years with glioblastoma:the Nordic randomised,phase 3 trial[J].Lancet Oncol,2012,13(9):916-926.
[29]Wick W,Platten M,Meisner C,et al.Temozolomide chemotherapy alone versus radiotherapy alone for malignant astrocytoma in the elderly:the NOA-08 randomised,phase 3 trial[J].Lancet Oncology,2012,13(7):707-715.
[30]Pelloski CE,Ballman KV,F(xiàn)urth AF,et al.Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma[J].J Clin Oncol,2007,25(16):2288-2294.
[31]Cominelli M,Grisanti S,Mazzoleni S,et al.EGFR amplified and overexpressing glioblastomas and association with better response to adjuvant metronomic temozolomide[J].J Natl Cancer Inst,2015,107(5):1-13.
[32]Li J,Taich ZJ,Goyal A,et al.Epigenetic suppression of EGFR signaling in G-CIMP+glioblastomas[J].Oncotarget,2014,5(17):7342-7356.
[33]Greenall SA,Donoghue JF,Van Sinderen M,et al.EGFRvIII-mediated transactivation of receptor tyrosine kinases in glioma:mechanism and therapeutic implications[J].Oncogene,2015,34(41):5277-5287.
[34]Annibali D,Whitfield JR,F(xiàn)avuzzi E,et al.Myc inhibition is effective against glioma and reveals a role for Myc in proficient mitosis[J].Nat Commun,2014,5:4632.
[35]Zheng H,Ying H,Yan H,et al.Pten and p53 converge on c-Myc to control differentiation,self-renewal,and transformation of normal and neoplastic stem cells in glioblastoma[J].Cold Spring Harb Symp Quant Biol,2008,73:427-437.
[36]WU G,Diaz AK,Paugh BS,et al.The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma[J].Nat Genet,2014,46(5):444-450.
[37]Buczkowicz P,Hoeman C,Rakopoulos P,et al.Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations[J].Nat Genet,2014,46(5):451-456.
[38]Fontebasso AM,Papillon-Cavanagh S,Schwartzentruber J,et al. Recurrent somatic mutations in ACVR1 in pediatric midline highgrade astrocytoma[J].Nat Genet,2014,46(5):462-466.
[39]Zhang L,Chen LH,Wan H,et al.Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas[J]. Nat Genet,2014,46(7):726-730.
[40]Jahr S,Hentze H,Englisch S,et al.DNA fragments in the blood plasma of cancer patients:quantitations and evidence for their origin from apoptotic and necrotic cells[J].Cancer Res,2001,61(4):1659-1665.
[41]Schwarzenbach H,Hoon DS,Pantel K.Cell-free nucleic acids as biomarkers in cancer patients[J].Nat Rev Cancer,2011,11(6):426-437.
[42]Heidary M,Auer M,Ulz P,et al.The dynamic range of circulating tumor DNA in metastatic breast cancer[J].Breast Cancer Res,2014,16(4):421.
[43]Murtaza M,Dawson SJ,Tsui DW,et al.Non-invasive analysis of acquired resistancetocancertherapybysequencingofplasma DNA[J].Nature,2013,497(7447):108-112.
[44]Boisselier B,Gállego Pérez-Larraya J,Rossetto M,et al.Detection of IDH1 mutation in the plasma of patients with glioma[J].Neurology,2012,79(16):1693-1698.
[45]Wakabayashi T,Natsume A,Hatano H,et al.p16 promoter methylation in the serum as a basis for the molecular diagnosis of gliomas[J].Neurosurgery,2009,64(3):455-461.
[46]Balaňa C,Ramirez JL,Taron M,et al.O6-methyl-guanine-DNA methyltransferase methylation in serum and tumor DNA predicts response to 1,3-bis(2-chloroethyl)-1-nitrosourea but not to temozolamide plus cisplatin in glioblastoma multiforme[J].Clin Cancer Res,2003,9(4):1461-1468.
[47]Lavon I,Refael M,Zelikovitch B,et al.Serum DNA can define tumor-specific genetic and epigenetic markers in gliomas of various grades[J].Neuro-oncology,2010,12(2):173-180.
The progress of molecular biomarkers in gliomas
TU Yan-Yang1,QI Jing1,ZHANG Yong-Sheng2
Fourth Military Medical University:1Department of Experimental Surgery of Tangdu Hospital,2Tangdu Hospital,Xi'an 710038,China
R739.4
A
2095-6894(2016)07-01-05
2016-06-05;接受日期:2016-06-22
國(guó)家自然科學(xué)基金面上項(xiàng)目(81572983);第四軍醫(yī)大學(xué)科技發(fā)展基金(2016XD306)
涂艷陽(yáng).博士,副教授,副主任醫(yī)師.Tel:029-84777469
E-mail:tu.fmmu@gmail.com