季金莉, 石志巖, 楊衛(wèi)國
(江蘇大學(xué)理學(xué)院, 江蘇鎮(zhèn)江212013)
?
關(guān)于樹指標(biāo)二階齊次馬氏鏈的等價(jià)定義
季金莉,石志巖,楊衛(wèi)國
(江蘇大學(xué)理學(xué)院, 江蘇鎮(zhèn)江212013)
[摘要]樹指標(biāo)隨機(jī)過程是近年來概率論的研究方向之一,已引起了概率論、物理學(xué)、計(jì)算機(jī)等學(xué)科的廣泛關(guān)注,國內(nèi)外關(guān)于樹指標(biāo)隨機(jī)過程的研究已經(jīng)取得了一定的成果.樹指標(biāo)隨機(jī)過程中的一類重要的模型就是樹指標(biāo)馬氏鏈.Benjiamini和Peres首先給出了樹指標(biāo)馬氏鏈的定義.楊衛(wèi)國、陳曉雪和王豹給出了樹指標(biāo)一階馬氏鏈的等價(jià)定義.楊衛(wèi)國等又研究了樹指標(biāo)馬氏鏈強(qiáng)極限定理.為了更有效的研究樹指標(biāo)隨機(jī)過程,本文給出樹指標(biāo)二階齊次馬氏鏈的等價(jià)定義,并證明其等價(jià)性.
[關(guān)鍵詞]等價(jià)定義; 樹; 馬氏鏈; 樹指標(biāo)隨機(jī)過程
1引言
圖1 Gayley樹TC,2形成的雙根樹
樹指標(biāo)隨機(jī)過程是用來描述具有樹的結(jié)構(gòu)的數(shù)據(jù)模型,在生物學(xué)中有著很好的應(yīng)用.生物學(xué)家研究桿狀菌的分裂時(shí),總結(jié)出桿狀菌分裂的規(guī)律,即一個(gè)桿狀菌在分裂時(shí),從中間斷開,這樣分裂成兩個(gè)新桿狀菌,這兩個(gè)新的桿狀菌為原來的桿狀菌的后代.如果我們把每一次分裂中的桿狀菌看成一個(gè)頂點(diǎn),那么所有桿狀菌全體就是一個(gè)樹指標(biāo)隨機(jī)過程[1].因此研究樹指標(biāo)隨機(jī)過程的各種極限理論不僅有較高的理論意義,同時(shí)也具有較好的實(shí)際應(yīng)用價(jià)值.Benjiamini和Peres[2]首先給出了樹指標(biāo)馬氏鏈的定義并研究了其常返性質(zhì)和射線常返性質(zhì).Berger[3]等研究了齊次樹圖上平穩(wěn)隨機(jī)場熵率的存在性.楊衛(wèi)國等[4-6]研究了齊次樹圖上馬氏鏈場狀態(tài)發(fā)生頻率,以及二階有限非齊次馬氏鏈的強(qiáng)大數(shù)定律.楊衛(wèi)國等[7]研究了樹指標(biāo)馬氏鏈的等價(jià)定義.石志巖等[8]研究了樹上二階非齊次馬氏鏈隨機(jī)轉(zhuǎn)移概率調(diào)和平均的極限性質(zhì).本節(jié)我們主要給出樹指標(biāo)二階齊次馬氏鏈的定義,并研究樹指標(biāo)二階齊次馬氏鏈若干的等價(jià)定義.
則稱P為二階轉(zhuǎn)移矩陣.
p=(p(x,y)),x,y∈G,
(1)
(2)
分別為G2上的概率分布和G3上的二階轉(zhuǎn)移矩陣.如果對于任何頂點(diǎn)t,
(3)
且
P(X-1=x-1,X0=x0)=P(x-1,x0),?x-1,x0∈G,
(4)
2主要結(jié)果
給出二階樹指標(biāo)馬氏鏈的等價(jià)定義.
(5)
證(i)→(ii):由(i)式及條件概率的乘法公式有
=P(X-1=x-1,X0=x0,XL1=xL1,XL2=xL2…XLn=xLn)
(6)
設(shè)i≥1,?t∈Li,有
=…
將上式代入(6)中
顯然有
P(X-1=x-1,X0=x0)=P(x-1,x0),x-1,x0∈G,
只需要證明,對于任何頂點(diǎn)t,(t≠-1,0)
(7)
又
P(X1t=x1t,X2t=x2t,Xt1=xt1,Xt2=xt2,…,Xtn=xtn)
(8)
于是得
即(i)式成立.
注2將(5)式作為二階齊次馬氏鏈的等價(jià)定義.如果t僅和父代1t有關(guān),就是陳曉雪[7]等研究的樹指標(biāo)馬氏鏈等價(jià)定義.顯然本文t不僅和父代1t有關(guān),而且和祖父代2t也有關(guān)系,所以本文將樹指標(biāo)馬氏鏈等價(jià)定義的推廣到樹指標(biāo)二階馬氏鏈.類似地,也可以給出樹指標(biāo)高階馬氏鏈的定義.
[參考文獻(xiàn)]
[1]Guyon J. Limit theorems for bifurcating Markov chains[J]. Application to the detection of cellular aging, Ann. Appl.Probab., 2007, 17 (5-6): 1538-1569.
[2]Benjamini I,Peres Y. Markov chains indexed by trees[J]. The Annals of Probability,1994,22(1):219-243.
[3]Toby B,Ye Z X. Entropic aspects of random fields on trees[J]. IEEE Transactions on Information Theory,1990,36(5):1006-1018.
[4]Yang W G,Liu W. Strong law of large numbers for Markov chains fields on a bethe tree[J]. Statist Probab Lett, 2000,49:245-250.
[5]Yang W G. Some limit properties for Markov chains indexed by a homogeneous tree[J]. Statist Probab Lett,2003, 65:241-250.
[6]楊衛(wèi)國,劉杰.關(guān)于二重有限非齊次馬氏鏈的強(qiáng)大數(shù)定律[J].江蘇大學(xué)學(xué)報(bào):自然科學(xué)版,2009,30(2):209-212.
[7]陳曉雪,楊衛(wèi)國,王豹. 樹指標(biāo)馬氏鏈的等價(jià)定義[J]. 數(shù)學(xué)研究,2012, 45(4):411-414.
[8]Shi Z Y,Yang W G. Some limit properties of random transition probability for second-order nonhomogeneous Markov chains indexed by a tree[J]. Journal of Inequalities and Applications,2009,25:65-71.
[9]石志巖,楊衛(wèi)國.樹上非齊次馬氏鏈隨機(jī)轉(zhuǎn)移概率的極限性質(zhì)[J].應(yīng)用數(shù)學(xué)學(xué)報(bào),2008,31(4):648-653.
[10]劉文.有限非齊次馬氏鏈隨機(jī)轉(zhuǎn)移概率調(diào)和平均的一個(gè)強(qiáng)極限定理[J].數(shù)學(xué)物理學(xué)報(bào),2000,20(1):81-84.
[11]嚴(yán)加安,測度論講義[M].北京:科學(xué)出版社,2004:107.
The Equivalent Definition of Second-Order
T-indexed Markov Chains
JIJin-li,SHIZhi-yan,YANGWei-guo
(Faculty of Science, Jiangsu University, Zhenjiang 212013, China)
Abstract:T-indexed stochastic processes have been one of the research directions in probability theory,which have draw wide attention of probability theory,physics,computer science and so on in recent years.There have been some works on tree-indexed stochastic processes at home and abroad.Tree-indexed Markov chain is a kind of important model of tree-indexed stochastic processes.Benjiamini and Peres firstly give the definition of Markov chains.Yang,Chen and Wang give the equivalent definition of t-indexed Markov chains.Yang have studied the strong laws of large numbers and Asymptotic Equipartition Property (AEP) for Markov chains field on trees and studied the strong limit theorem of t-indexed Markov chains.In order to study series of related problems about t-indexed stochastic processes efficiently,this paper presents the equivalent definition of second-order t-indexed Markov chains and proves the equivalence of it.
Key words:equivalent definition; tree; Markov chains; T-indexed Markov Chains; tree-indexed stochastic processes
[基金項(xiàng)目]國家自然科學(xué)基金資助課題(11071104,11226210); 江蘇大學(xué)高級人才啟動基金(11JDG116);江蘇省教育廳統(tǒng)計(jì)應(yīng)用研究基地;2014年江蘇大學(xué)統(tǒng)計(jì)學(xué)校級重點(diǎn)學(xué)科
[收稿日期]2014-11-20
[中圖分類號]O211.6
[文獻(xiàn)標(biāo)識碼]A
[文章編號]1672-1454(2015)02-0010-04