詹盈盈,楊文霞,劉迎新*(.浙江工業(yè)大學藥學院催化加氫研發(fā)基地,浙江 杭州 3003;.山東鐵雄冶金科技有限公司,山東 鄒平 5600)
?
碳基固體酸的制備與應用研究進展
詹盈盈1,楊文霞2,劉迎新1*
(1.浙江工業(yè)大學藥學院催化加氫研發(fā)基地,浙江杭州310032;2.山東鐵雄冶金科技有限公司,山東鄒平256200)
摘要:碳基固體酸材料具有制備簡單、熱穩(wěn)定性好、質子酸性強、催化活性高等優(yōu)點,已成為國內外固體酸催化劑研究的熱點。本文綜述了碳基固體酸的制備方法及其應用,不同制備條件對碳基固體酸酸性的影響。
關鍵詞:常規(guī)碳基固體酸;介孔碳基固體酸;納米碳基固體酸
隨著人們對環(huán)保和綠色化工過程的關注度越來越高,人們選擇更有前景的固體酸催化劑代替液體無機酸。碳基固體酸催化劑是一種新型的固體酸催化劑,可以解決目前工業(yè)上采用液體無機酸(如硫酸和鹽酸等)作為酸催化劑存在的產物分離困難、腐蝕設備、污染環(huán)境等問題。近年來,因碳基固體酸具有很高的酸密度和熱穩(wěn)定性,并且其表面具有良好的疏水性,其酸活性位不會被水溶劑或反應生成的水侵蝕而流失,化學穩(wěn)定性較好而作為一類新型的固體酸催化劑引起了越來越多科研工作者的重視。此外,此類材料可以由價格低廉且可再生的生物質及其衍生物[1-2]通過簡單的方法制備,生產成本較低。碳基固體酸作為一類強Br準nsted酸催化劑在酯化、縮合、水解等酸催化反應中表現出比固體超強酸、酸性樹脂等常規(guī)固體酸更高的催化活性和穩(wěn)定性[3-8]。
傳統的常規(guī)碳基固體酸材料的制備方法:將各種含碳化合物在高溫N2氛圍下熱解碳化后,加入濃硫酸/發(fā)煙硫酸在N2氛圍下磺化,冷卻至室溫后用大量去離子水洗滌直至濾液中檢測不到SO42-,將過濾所得物真空干燥即為碳基固體酸。日本東京工業(yè)大學的Okamura等[4]和Nakajima等[9]采用傳統的制備方法在400°C下N2氛圍下碳化右旋葡萄糖,再用發(fā)煙硫酸(15% SO3)在200°C下磺化15 h,用SEM、TEM、XRD表征結果發(fā)現:制備所得的碳基固體酸的酸負載量為1.34 mmol/g,酯化乙醇和乙酸的效果也高于全氟磺酸(酸度為0.8 mmol/g)和鈮酸(酸度為0.3 mmol/g)等固體酸。Zong等[10]將右旋葡萄糖在400°C高溫N2氛圍下不完全碳化15 h形成含有不定型碳材料,再用濃硫酸在150°C磺化15 h,此催化劑催化甲醇/乙醇和植物油中的游離脂肪酸(收率高達95%),對比傳統的固體酸鈮酸(收率為15%),催化效果優(yōu)勢很明顯。Hu等[11]用Fe3+磁化過的木質素在通N2下400°C煅燒碳化1 h,所得的碳基材料用濃硫酸在150°C下磺化10 h,得到的磺化磁性碳基固體酸在100°C下的DMSO溶劑里催化果糖1 h,收率就高達53.7%,表明此催化劑的活性好。雖然傳統的制備方法制備的碳基固體酸的酸度和催化性能都比其他的固體酸有很大的優(yōu)勢,但是很顯然,傳統的制備碳基固體酸的方法存在步驟多、周期長、條件苛刻、廢液多,且產物分離存在繁冗復雜的問題。
科研人員提出了新的可以直接由含碳化合物一步反應制得碳基固體酸的制備方法。Xiao 等[12]將糠醛和對甲苯磺酸水溶液在180°C的水熱反應釜中加熱4 h,制得的碳基固體酸酸度為1.8 mmol/g;經BET表征表明:此碳基固體酸的比表面積遠遠高于傳統制備方法制備的碳基固體酸;經SEM表征表明:此法所制的碳基固體酸為微孔碳球,用于催化乙酸和丁醇的酯化反應也表現出很高的催化活性。Zhang等[13]用D-glucose和對甲苯磺酸水溶液在聚四氟乙烯內襯的高壓水熱反應釜180°C下反應24 h,制備碳基固體酸,Wang等[14]用80%的此催化劑催化果糖脫水為5-HMF,用DMSO作溶劑在130°C反應1.5 h就可達到91.2%收率,結果表明此類催化劑有很好的酸催化性能。制備常規(guī)碳基固體酸的新方法既很有效地解決了傳統制備方法存在的問題,而且制備的碳基固體酸的酸度和催化性能也與傳統方法制備的碳基固體酸相當,絲毫沒有減弱。
在眾多類型的碳材料中,介孔碳[15]材料有比表面積和孔體積巨大,孔隙率高,介孔形狀多樣化,在一定范圍內孔徑尺寸可調,孔壁組成、結構和性質可調,通過優(yōu)化合成條件可得高熱穩(wěn)定性和水熱穩(wěn)定性,有利于反應物擴散,非常適合作催化劑載體等優(yōu)點而備受關注。介孔碳基固體酸的制備方法有兩類:一類是先制備出介孔碳材料后,再酸化,如Aldana等[16]用Starbon-300介孔碳用濃硫酸/氯磺酸在80°C磺化15 h制備介孔碳基固體酸;另一類是直接在制備介孔材料時同時酸化[17]。介孔碳基固體酸可以應用于吸收輻射物質[18]、催化劑(二聚[19]、酯化[17,24,27,29,36]、脫水[32]、縮醛)等。
2.1軟模板法
軟模板法[20]是指使用并無預先已形成有序介孔結構的有機分子作為合成模板,包括生物大分子、表面活性劑等。表面活性劑分子可以與無機或有機分子之間通過非共價鍵自發(fā)形成熱力學穩(wěn)定且結構有序的超分子結構。有機高分子可以從合成的角度調變分子尺寸,從而控制通過自組裝得到超晶格的拓撲結構。Hou等[21]采用本法考察了酚醛樹脂和F127的比例、碳化溫度、HCl濃度,經XRD、TEM等各種表征得最優(yōu)的介孔碳基固體酸為:酚醛樹脂和F127質量比為3.5,碳化溫度為600°C,HCl濃度為2 mol/L,經濃硫酸在200°C磺化16 h后,制備出了有序的正六邊形磺化介孔碳基固體酸。Villa等[22]用酚醛樹脂溶液中直接加入磷酸制備介孔碳基固體酸,催化果糖脫水為5-HMF反應,結果表明:P-O濃度越高,催化劑活性越好,但5-HMF的選擇性降低,而且低濃度的P-O減少了5-HMF轉變?yōu)橐阴1岷透乘岬雀碑a物,催化劑活性好,穩(wěn)定性實驗表明催化劑的失活是因為在果糖脫水生成5-HMF過程生成副產物腐殖酸和水溶性的副產物附著在了催化劑的活性中心上,阻礙催化劑的酸催化過程,實驗為5%的果糖水溶液,催化劑的用量為果糖的50%,在300 kPa的氮氣壓力下,120℃下反應8 h,5-HMF收率最高達70%。Li等[23]采用軟模板法通過調節(jié)F127和酚醛樹脂的比列來形成不同的介孔碳納米材料的形態(tài),經表征得出結果,當F127的含量為12%時形成桿狀的介孔碳納米材料,9%時為蠕蟲狀的介孔碳納米材料,6%時為球形的介孔碳納米材料。
軟模板法相對來說合成過程簡單且易控制,如通過改變所用模板劑的種類和反應物比例等,可以有效地控制產物的結構以及孔道尺寸,而且成本低廉,但是軟模板法制備的介孔碳材料的孔道相對于硬模板法制備的碳材料較易坍塌。
2.2硬模板法
硬模板法[20]是指使用預先已制備好的介孔原材料作為硬模板,通過在原模板主體孔道中填充目標前驅物后,除去原有硬模板而獲得反相復制的介孔結構。因為原模板材料的孔壁尺度在2~ 50 nm,除去原材料模板后獲得的目標材料的孔道也處于2~50 nm。常用的硬模板劑有SBA-15[18,24]、SBA150[25]等。Zhang等[18]以蔗糖為碳源,SBA-15為模板,在550°C下碳化后用50%的發(fā)煙硫酸磺化(0.3 g介孔碳材料放入5 mL發(fā)煙硫酸),經TEM表征,可以清晰的看到六角中孔通道,平均孔徑大小為8 nm,表明此方法制備磺化介孔碳基固體酸很成功。Xing等[24]以SBA-15型硅基材料為硬模板,以蔗糖為碳前驅物,經400°~900°C高溫碳化、氫氟酸水溶液除SiO2后制得CMK-3型介孔碳,然后在60°C下用SO3/H2SO4蒸氣對介孔碳進行磺酸化,制得比表面積大于1000 m2/g的介孔碳基固體酸。Geng等[25]以價廉的γ-Al2O3(SBA150)為硬模板和間苯二酚呋喃樹脂為碳源,經苯磺酸磺化制備得比表面積高達(1000 m2/g)的介孔碳基固體酸催化油酸和甲醇酯化反應,在65°C下反應1.25 h,收率高達77.7%,表明此催化劑活性高且重復六次使用活性沒有明顯的降低。Janaun等[26]對比研究了先磺化后除模板的磺化介孔碳基固體酸和先除模板后磺化的介孔碳基固體酸,研究結果表明:先除模板后磺化的催化劑的酸度強于先磺化后除模板的,催化油酸和甲醇酯化的結果與催化劑的酸度呈正比,原因在于先磺化后除模板的介孔碳材料的孔道里未被發(fā)煙硫酸磺化。
硬模板法普適性強,可用來合成很多軟模板法難以制備的材料,如介孔金屬單質和氧化物、介孔碳化物和介孔氮化物等,但其缺點是制備過程冗長繁瑣,花費高。
納米碳材料[27]是指分散相尺度至少有一維小于100 nm的碳材料。納米碳材料具有金屬材料的導電和導熱性,陶瓷材料的耐熱和耐腐蝕性,紡織纖維的柔軟可編織性,以及高分子材料的輕質、易加工等性能,使得碳納米材料具有廣泛的應用。從1990年美國巴爾的摩召開的第一屆國際納米科技會議上,真正提出納米科學的概念以來,碳納米技術的研究一直相當活躍,現已制備出多種多樣納米碳材料,如納米碳結晶、針狀/球狀/棒狀/桶狀納米碳材料等。
3.1碳納米微球固體酸
現有制備納米碳材料的方法有:水熱法[28]、電弧法[29]、激光蒸發(fā)法[30]、熱解法[31-32]、化學氣相沉積法[33-35]等,其中因化學氣相沉積法的制備工藝簡單,設備投入少,成本低,操作簡單方便,適于大規(guī)模生產等優(yōu)點顯示出工業(yè)應用前景,倍受關注。Qiu等[33]采用化學氣相沉積法直接高溫裂解煤氣,制備出大量高純度的球形納米碳結構,其具體方法過程:石英管放置于電阻爐中,通N2將電阻爐程序升溫至900°C,然后換通煤氣100 mL/min,保持60 min,反應結束后,換通氮氣保護,制備納米碳微球,經過各種表征表明:此納米碳微球為完整的實心球形結構,石墨化程度低,且為無序排列。Xiong等[34-35]采用此法制備碳納米微球,經表征結果表明:此法制備出的納米碳微球直徑為900±50 nm,比表面積< 5 m2/g,將納米碳微球經HNO3酸化后,再負載Fe元素后制備的催化劑用于催化CO和H2生成液態(tài)燃料的費托合成,具有很好的催化活性。在使用化學沉積法制備碳球的過程中,許多含碳化合物作為制備碳球的原料氣體:甲烷[36]、甲苯[37]、環(huán)己烷以及乙烯[38]等,經過碳化都可裂解成為納米或微米級碳球。
3.2石墨烯型碳基固體酸
石墨烯是一種新型二維納米碳材料,是世上已知的最薄、最堅硬的納米材料,顯示出其巨大的商業(yè)化潛能,而將石墨烯作為載體制備固體酸,也顯示出其高效的酸度和酸活性。Dilantha 等[39]采用改良Hummers法制備氧化石墨烯,再用氯磺酸磺化氧化石墨烯制備磺化石墨烯固體酸催化劑,表征結果表明:磺化石墨烯中含有-COOH、-OH和-SO3H等官能團,磺酸根密度為2.2 mmol·g-1;將其應用于催化纖維二糖的水解反應,結果表明磺化石墨烯盡管酸性強度和密度較低,但催化活性與H2SO4相當。Ji等[40]采用Hummers法制備純化氧化石墨烯,再用重氮苯磺酸和H3PO4水溶液磺化氧化石墨烯制備磺化石墨烯催化劑,表征結果表明:此磺化石墨烯催化劑有高度的石墨化和清晰的扭曲石墨烯薄層;經酸堿中和滴定法,酸度為1.55 mmol·g-1;將制備所得催化劑催化乙酸乙酯的水解反應,結果表明磺化石墨烯催化活性高于全氟磺酸,但略低于H2SO4,但重復使用5次,其催化性能完全沒有降低。
碳基固體酸具有結構可控、孔徑可調、酸位密度高、可高活性催化多種化學反應、穩(wěn)定性好等優(yōu)良特性。隨著碳基固體酸催化劑研究的深入,其顯著拓展豐富了眾多不同類型碳材料的廣泛應用--催化劑、電容器、吸收輻射污染等,為碳材料提供了應用前景。
參考文獻:
[1] Yan L,Liu N,Wang Y,et al. Production of 5-hydroxymethylfurfural from corn stalk catalyzed by corn stalk-derived carbonaceous solid acid catalyst [J]. Bioresour. Tech nol.,2014,173: 462-466.
[2] Kang S M,Chang J,Fan J. One step preparation of sulfonated solid catalyst and its effect in esterification reaction [J]. Chinese Journal of Chemical Engineering,2014,22 (4): 392-387.
[3] Hara M,Yoshida T,Takagaki A,et al. A carbon material as a strong protonic acid[J]. Angew. Chem. Int. Ed.,2004,43(22): 2955-2958.
[4] Okamura M,Takagaki A,Toda M,et al. Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon[J]. Chem. Mater.,2006,18(13): 3039-3045.
[5] Mo X H,López D E,Suwannakarn K,et al. Activation and deactivation characteristics of sulfonated carbon catalysts[J]. J. Catal.,2008,254(2): 332-338.
[6] Stein A,Wang Z Y,Fierke M A. Functionalization of porous carbon materials with designed pore architecture[J]. Adv. Mater.,2009,21(3): 265-293.
[7] Zhang B H,Ren W J,Liu X H,et al. Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst[J]. Catalysis Communications,2010,11(7): 629-632.
[8] Liang X Z,Zeng M F,Qi C Z. One-step synthesis of carbon functionalized with sulfonic acid groups using hydrothermal carbonization[J]. Carbon,2010,48(6): 1844-1848.
[9] Nakajima K,Hara M,Hayashi S. Environmentally benign production of chemicals and energy using a carbon-based strong solid acid[J]. Journal of the American Ceramic Society,2007,90(12): 3725-3734.
[10] Zong M H,Duan Z Q,Lou W Y,et al. Preparation of a sugar catalyst and its use for highly efficient production of biodiesel[J]. Green Chemistry,2007,9(5): 434-437.
[11] Hu L,Tang X,Wu Z,et al. Magnetic lignin-derived carbonaceous catalyst for the dehydration of fructose into 5-hydroxymethylfurfural in dimethylsulfoxide[J]. Chemical Engineering Journal,2015,263: 299-308.
[12] Xiao H Q,Guo Y X,Liang X Z,et al. One-step synthesis of a novel carbon-based strong acid catalyst through hydrothermal carbonization[J]. Monatsh. Chem.,2010,141 (8): 929-932.
[13] Zhang B H,Ren J W,Liu X H,et al. Novel sulfonated carbonaceous materials from p-toluenesulfonic acid/glucose as a high-performance solid-acid catalyst[J]. Catalysis Communications,2010,11(7): 629-632.
[14] Wang J J,Xu W J,Ren J W,et al. Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid[J]. Green Chemistry,2011,13 (10): 2678-2681.
[15]劉玉榮.介孔碳材料的合成及應用[M].北京:國防工業(yè)出版社,2012.
[16] Aldana Pérez A,Lartundo-Rojas L,Gómez R,et al. Sulfonic groups anchored on mesoporous carbon Starbons-300 and its use for the esterification of oleic acid[J]. Fuel,2012,100: 128-138.
[17] Chang B B,Fu J,Tian Y L,et al. Soft-template synthesis of sulfonated mesoporous carbon with high catalytic activity for biodiesel production[J]. RSC Adv.,2013,3(6): 1987-1994.
[18] Zhang Z B,Yu X F,Cao X H,et al. Adsorption of U(VI)from aqueous solution by sulfonated ordered mesoporous carbon [J]. Journal of Radioanalytical and Nuclear Chem istry,2014,301(3): 821-830.
[19] Suganuma S,Nakajima K,Kitano M,et al. SO3H-bearing mesoporous carbon with highly selective catalysis[J]. Microporous and Mesoporous Materials,2011,143(2-3): 443-450.
[20] Dong X F,Cao D L,Li Y,et al. Study on synthesis of ordered mesoporous materials by soft template method[J]. Chemical Engineer,2010,5: 43-45.
[21] Hou K K,Zhang A F,Gu,L,et al. Efficient synthesis and sulfonation of ordered mesoporous carbon materials[J]. Journal of Colloid and Interface Science,2012,377(1): 18-26.
[22] Villa A,Schiavoni M,Fulvio P F,et al. Phosphorylated mesoporous carbon as effective catalyst for the selective fructose dehydration to HMF[J]. Journal of Energy Chemistry,2013,51(41): 10368-10372.
[23] Li M,Xue J. Ordered mesoporous carbon nanoparticles with well-controlled morphologies from sphere to rod via a soft-template route[J]. Journal of Colloid and Interface Science,2012,377(1): 169-175.
[24] Xing R,Liu Y M,Wang Y,et al. Active solid acid catalysts prepared by sulfonation of carbonization -controlled mesoporous carbon materials [J]. Micropor. Mesopor. Mater.,2007,105(1-2): 41-48.
[25] Geng L,Yu G,Wang Y,et al. Ph-SO3H-modified mesoporous carbon as an efficient catalyst for the esterification of oleic acid[J]. Applied Catalysis A: General,2012,427-428: 137-144.
[26] Janaun J,Ellis N. Role of silica template in the preparation of sulfonated mesoporous carbon catalysts[J]. Applied Catalysis A: General,2011,394(1-2): 25-31.
[27]沈曾民.新型炭材料[M].北京:化學工業(yè)出版社,2003.
[28] Chen L F,Liang H W,Lu Y,et al. Synthesis of an attapulgite clay@carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water[J]. Carbon,2011,27(14): 8998-9004.
[29] Jiang P,Yao K F. Carbon nano onions prepared by arc discharge in water[J]. New Carbon Materials,2007,22 (4): 332-336.
[30] Maser W K,Benito A M,Muoz E,et al. Production of carbon nanotubes by CO2-laser evaporation of various carbonaceous feedstock[J]. Nanotechnology,2001,12(2): 147-151.
[31] Younggeun C,Youngkwon K,Kyung Y K,et al. A composite electrolyte membrane containing high-content sulfonated carbon spheres for protonexchange membrane fuel cells[J]. Carbon,2011,49: 1367-1373.
[32] Tian X N,Su,F B,Zhao X S. Sulfonated polypyrrole nanospheres as a solid acid catalyst[J]. Green Chemistry,2008,10(9): 951-956.
[33] Qiu J S,Li Q X,Wang Z Y,et al. CVD synthesis of coalgas-derived carbon nanotubes and nanocapsules containing magnetic iron carbide and oxide[J]. Carbon,2006,44 (12): 2565-2568.
[34] Xiong H F,Moyo M,Motchelaho M A M,et al. Fischer-Tropsch synthesis over model iron catalysts supported on carbon spheres: The effect of iron precursor,support pretreatment,catalyst preparation method and promoters [J]. Applied Catalysis A: General,2010,388(1-2): 168-178.
[35] Xiong H F,Motchelaho M A M,Moyo M,et al. Correlating the preparation and performance of cobalt catalysts supported on carbon nanotubes and carbon spheres in the Fischer-Tropsch synthesis[J]. Journal of Catalysis,2011,278(1): 26-40.
[36] Govindaraj A,Sen R,Nagaraju B V,et al. Carbon nanospheres and tubules obtained by Pyrolysis of hydrocarbons[J]. Philos. Mag. Lett.,1997: 76(5): 363-367.
[37] Qian H S,Han F M,Zhang B,et al. Noncatalytiec CVD preparation of carbonspheres with a specific size [J]. Car bon,2004,42(4): 761-766.
[38] Jin Y Z,Gao C,Hsu W K,et al. Large-scale synthesis and characterization of carbon spheres prepared by direct pyrolysis of hydrocarbons[J]. Carbon,2005,43(9): 1944-1953.
[39] Dilantha T,Pan R,He X,et al. Synthesis of sulfonated graphene oxide solid acid catalyst and its catalytic activity evaluation[J]. Industrial Catalysis,2014,22(9): 676-679.
[40] Ji J Y,Zhang G H,Chen H Y, et al. Sulfonated graphene as water-tolerant solid acid catalyst[J]. Chem. Sci., 2011, 2: 484-487.
Progress in Preparation and Application of Carbon-based Solid Acid Catalysts
ZHAN Ying-ying1, YANG Wen-xia2, LIU Ying-xin1*
(1. Research and Development Base of Catalytic Hydrogenation, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou , Zhejiang 310032, China; 2. Shandong Tiexiong Metallurgical Technology Co., Ltd., Zouping , Shandong 256200, China)
Abstract:Carbon-based solid acids have received more and more attention as promising solid acid catalysts owing to their easy preparation, high thermal stability, high acid density, and high catalytic performance. In this paper, the preparation methods and the application of carbon-based solid acid catalysts were summarized, and the effects of preparation conditions on their performance were reviewed.
Keywords:general carbon-based solid acid; mesoporous carbon-based solid acid; nano carbon-based solid acid
*通訊作者:劉迎新。E-mail:yxliu@zjut.edu.cn。
作者簡介:詹盈盈(1990-),女,浙江衢州人,碩士生。E-mail:1529014986@qq.com。
文章編號:1006-4184(2016)1-0021-05
修回日期:2015-05-20