石小軍 綜述, 江 華 審校
(同濟大學(xué)附屬東方醫(yī)院老年醫(yī)學(xué)科,上海 200120)
?
·綜 述·
胰腺腫瘤干細(xì)胞研究進展
石小軍 綜述, 江 華 審校
(同濟大學(xué)附屬東方醫(yī)院老年醫(yī)學(xué)科,上海 200120)
胰腺導(dǎo)管腺癌(pancreatic ductal adenocarcinoma, PDAC)是最常見的胰腺癌病理類型,亦是預(yù)后最差的惡性腫瘤。近年來胰腺腫瘤干細(xì)胞(pancreatic cancer stem cell, PCSC)的研究取得了諸多進展,PCSC與胰腺腫瘤的侵襲、轉(zhuǎn)移及復(fù)發(fā)都有著直接聯(lián)系。本研究將從PCSC的相關(guān)標(biāo)志物、腫瘤微環(huán)境及靶向治療等角度對近年來PCSC的相關(guān)研究進展作一綜述。
胰腺腫瘤; 腫瘤干細(xì)胞; 標(biāo)志物; 腫瘤微環(huán)境
胰腺導(dǎo)管腺癌(pancreatic ductal adenocarci-noma, PDAC)是胰腺癌中最常見的病理類型,預(yù)后極差。由于缺乏有效的治療手段,30年來PDAC的生存率一直沒有明顯改觀,5年生存率低于5%[1]。腫瘤干細(xì)胞(cancer stem cell, CSC)是腫瘤細(xì)胞群中一小部分具有自我更新、無限增殖和多向分化潛能的細(xì)胞[2]。越來越多的證據(jù)表明胰腺腫瘤干細(xì)胞(pancreatic cancer stem cell, PCSC)在PDAC的發(fā)生、發(fā)展過程中扮演著非常重要的角色。PCSC促進腫瘤的侵襲、轉(zhuǎn)移和復(fù)發(fā),且與腫瘤放化療耐受密切相關(guān)[3-4]。本研究將從PCSC標(biāo)志物、腫瘤微環(huán)境及靶向治療三方面對PCSC作用機制及臨床應(yīng)用作一綜述。
腫瘤標(biāo)志物是由腫瘤細(xì)胞產(chǎn)生,特征性反映腫瘤生物學(xué)特性的一類物質(zhì)。當(dāng)前研究主要通過腫瘤標(biāo)志物來篩選PCSC,然而由于PCSC與正常干細(xì)胞的表面標(biāo)志物類似,使得PCSC的分離鑒別存在困難,故尋找特異的PCSC表面分子標(biāo)志十分重要。
1.1 CD24、EPCAM
胰腺癌中較早發(fā)現(xiàn)的PCSC表面標(biāo)志包括CD44、CD24、表皮黏附分子(epithelial cell adhesion molecule, EPCAM)。與沒有分選過的腫瘤細(xì)胞相比,異種移植模型中CD44+CD24+EPCAM+的細(xì)胞成瘤率更高,與來源腫瘤的組織形態(tài)學(xué)、細(xì)胞異質(zhì)性等特征更相像。與CD44-CD24-EPCAM-相比,CD44+CD24+EPCAM+細(xì)胞在經(jīng)過皮下或原位種植后能夠繼續(xù)保持原有特性[3],同時CD44+CD24+EPCAM+細(xì)胞還表現(xiàn)出對吉西他濱更強的耐藥性[5]。近年來,CD44、CD24、EPCAM在PCSC的相關(guān)研究中僅作為分選標(biāo)志物,未見相關(guān)功能研究。
1.2 CD133、CXCR4
CD133亦可作為PCSC的鑒別標(biāo)志之一[4]。研究發(fā)現(xiàn)正常胰腺導(dǎo)管上皮并不表達(dá)CD133,而在部分胰腺導(dǎo)管癌患者外周血中可同時檢出CD133和角蛋白,并發(fā)現(xiàn)其與組織分級、淋巴管侵犯,淋巴轉(zhuǎn)移相關(guān);同時,CD133+胰腺癌患者5年生存率明顯低于CD133-患者[6]。體外功能試驗提示CD133可能通過上調(diào)上皮-間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition, EMT)相關(guān)轉(zhuǎn)錄因子ERK、Slug和Snail的表達(dá),促進胰腺癌細(xì)胞發(fā)生EMT,進而促進遷徙和轉(zhuǎn)移[7],CD133+胰腺癌細(xì)胞比CD44+CD24+細(xì)胞表現(xiàn)出更強的成瘤和轉(zhuǎn)移潛能。此外,CD133+胰腺癌細(xì)胞對吉西他濱的耐受性也明顯增強。
CXCR4是SDF-1、CXCL12的細(xì)胞因子受體,通常在CD133+細(xì)胞表達(dá)。有報道[8]稱CXCR4與其配體SDF-1結(jié)合后可誘導(dǎo)胰腺癌細(xì)胞株發(fā)生EMT,增強轉(zhuǎn)移能力。Hermann等[4]發(fā)現(xiàn)CD133+CXCR4+的細(xì)胞亞群比CXCR4-細(xì)胞亞群的轉(zhuǎn)移能力更強。清除CD133+CXCR4+細(xì)胞亞群可明顯降低腫瘤的復(fù)發(fā)率。
1.3 ALDH
Ginestier等[9]首次利用乙醛脫氫酶(aldehyde dehydrogenase, ALDH)為標(biāo)記物篩選出乳腺癌干細(xì)胞,隨后ALDH作為標(biāo)記物在肺癌、前列腺癌、結(jié)直腸癌及胰腺癌等腫瘤中應(yīng)用。Rasheed等[10]發(fā)現(xiàn)ALDH+胰腺癌細(xì)胞成瘤能力比未經(jīng)分選的胰腺癌細(xì)胞或是ALGH-細(xì)胞更強,基于269例胰腺癌組織樣本的免疫組化研究也得到類似的結(jié)果,ALDH在轉(zhuǎn)移灶中的表達(dá)高于原發(fā)灶,同時ALDH陽性的腫瘤遠(yuǎn)期生存率也較低;且ALDH+CD44+CD24+的PCSC可以表達(dá)一系列間質(zhì)特征的基因,提示這類細(xì)胞具有潛在轉(zhuǎn)移能力。此外,單純ALDH+腫瘤干細(xì)胞的侵襲性遠(yuǎn)比CD44+CD24+腫瘤干細(xì)胞或非CSC高,提示ALDH在腫瘤進展過程中發(fā)揮重要作用[5]。ALDH介導(dǎo)的環(huán)磷酰氨代謝、烷基化逆轉(zhuǎn)可能是腫瘤耐藥的機制之一[11],體內(nèi)實驗也證實ALDH+細(xì)胞對吉西他濱有相對耐藥性。
1.4 c-Met
可作為惡性膠質(zhì)瘤干細(xì)胞表面標(biāo)志的c-Met在PCSC中發(fā)揮著類似的作用,c-Met與PDAC細(xì)胞的遷移,侵襲,轉(zhuǎn)移有關(guān)。Li等[12]發(fā)現(xiàn)c-Met+CD44+細(xì)胞轉(zhuǎn)移性能遠(yuǎn)比c-Met-細(xì)胞強,且c-Met的靶向藥物卡博替尼能夠抑制PCSC成球,同時抑制腫瘤生長和轉(zhuǎn)移[13]。
胰腺腫瘤微環(huán)境不僅包括腫瘤細(xì)胞之間的相互作用,也包括了腫瘤細(xì)胞和胰腺細(xì)胞的相互作用,諸如星形細(xì)胞、內(nèi)分泌細(xì)胞以及浸潤的免疫細(xì)胞等。這一復(fù)雜的細(xì)胞間關(guān)系促進了腫瘤的生長,維持著部分腫瘤的干細(xì)胞特性,甚至?xí)绊懟熕幬锏男Ч?/p>
2.1 PCSC與普通胰腺癌細(xì)胞的相互作用
通過成球培養(yǎng)和CD133-篩選獲得的PCSC能夠表達(dá)大量TGF-β超家族成員,包括Activin、Nodal以及活化了的SMAD4。與重組Activin或Nodal共培養(yǎng)可以提高成球率,同時啟動胚胎干細(xì)胞關(guān)鍵蛋白Nanog的轉(zhuǎn)錄。Activin或Nodal信號需要和相應(yīng)受體諸如Alk-4、Alk-7或SMAD4結(jié)合才能發(fā)揮作用,阻斷了其中任意一個便能顯著降低成球率。將Alk-4、Alk-7表達(dá)抑制后的PCSC植入模型鼠體內(nèi),可以增加吉西他濱的藥物敏感性同時延長模型鼠的生存時間[14]。PCSC通過釋放Nodal和Activin與周邊其他胰腺癌細(xì)胞相互作用的機制已經(jīng)被闡述的比較明了,但尚有一些調(diào)控機制未被闡明。例如,有將近半數(shù)的胰腺癌組織存在SMAD4低表達(dá),PCSC通過其他調(diào)控信號通路進行自我更新和生長的機制有待進一步研究。
2.2 PCSC與細(xì)胞外基質(zhì)的相互作用
除PCSC表達(dá)的Nodal和Activin與腫瘤細(xì)胞的相互作用外,細(xì)胞外基質(zhì)釋放Nodal對PCSC功能的促進作用也逐漸被發(fā)現(xiàn)。胰腺基質(zhì)表達(dá)的Activin和Nodal能夠促進干細(xì)胞成球[15],甚至可以促使Nodal基因敲除的PCSC細(xì)胞株在移植鼠體內(nèi)成瘤,增強PCSC的耐藥性[14],表明腫瘤細(xì)胞周圍基質(zhì)對PCSC亦有作用。
2.3 PCSC與胰腺星形細(xì)胞的相互作用
胰腺星形細(xì)胞可以通過分泌血管內(nèi)皮生長因子(vascular endothelial growth factor, VEGF)和肝細(xì)胞生長因子(hepatocyte growth factor, HGF)促進腫瘤新生血管生成,HGF還可在體外促進c-MetHigh的PCSC生長和自我更新。胰腺星形細(xì)胞高表達(dá)的SDF-1是PCSC表面CXCR4的配體,二者結(jié)合后能促進PCSC的遷徙,浸潤和增殖[16]。表達(dá)CXCR4的細(xì)胞比較容易種植于高表達(dá)SDF-1的組織中[17],因此CD133+/CXCR4+細(xì)胞很難定植于表達(dá)SDF-1的組織中形成轉(zhuǎn)移灶[4]。
靶向清除CSC克隆是一種有效的臨床治療手段,但有任何一組亞克隆殘留,都將可能造成腫瘤的復(fù)發(fā)[18]。因此,為了有效清除所有不同類型的CSC克隆,必須作用于多個不同的靶點[19]來徹底清除殘余CSC,從根本上消除腫瘤復(fù)發(fā)的可能性。針對PCSC特有的表面標(biāo)志和關(guān)鍵信號通路的靶向治療研究已取得了一定的進展。
3.1 PCSC靶向治療相關(guān)表面分子
以PCSC表面標(biāo)志物作為藥物作用靶點是當(dāng)前研究的熱點。已有研究[13]發(fā)現(xiàn),c-Met抑制劑卡博替尼可以有效增加吉西他濱的抗腫瘤能力。DR5亦在PCSC表面大量表達(dá)。將DR5激動劑,替加珠單抗與吉西他濱連用可顯著抑制PDCSC的生長,延緩腫瘤進展[20]。Gu等[21]發(fā)現(xiàn),CD133+的PCSC對二甲雙胍較為敏感,二甲雙胍能夠選擇性清除CD133+的PCSC,其中的分子機制可能與mTOR和Erk的激活有關(guān)。另一個與疾病較差預(yù)后相關(guān)的細(xì)胞表面蛋白,Mucin(MUC1)黏蛋白經(jīng)常與CD133、CD44、CD24同時出現(xiàn)在PDCSC中,提示MUC1可能是藥物作用的潛在靶點[22],其具體機制有待進一步研究。
3.2 PCSC靶向治療相關(guān)信號通路
由于PCSC和正常干細(xì)胞具有類似的功能,因此早期的靶向治療研究基本都著眼于發(fā)育途徑例如Notch、Hedgehog、Bmil及Nodal/Activin等,其中Notch通路被認(rèn)為能夠促進胰腺上皮細(xì)胞內(nèi)的成瘤和腫瘤進展[23],該觀點已有動物模型證實[24]。一系列γ分泌酶抑制劑(GSIs),能夠通過抑制γ分泌酶依賴性Notch受體清除來阻斷Notch通路,繼而抑制腫瘤的生長,提示Notch通路是對抗PCSC的潛在靶點[25-27]。Hedgehog通路在PDAC中被激活,并且通過調(diào)節(jié)細(xì)胞分化、組織極性、細(xì)胞增殖等維持CSC的存在[21,28]。抑制Hedgehog通路已被證實能夠抑制PCSC的生長[29-30]。Nodal和Activin是在胚胎發(fā)育過程中表達(dá)的一種分泌性蛋白,與中胚層形成及胚胎干細(xì)胞性狀的維持有關(guān),使用ALK4受體拮抗劑抑制Nodal/activin通路可有效減少CD133+細(xì)胞數(shù)量,同時逆轉(zhuǎn)吉西他濱耐藥性[14]。在L3.6pl細(xì)胞裸鼠皮下種植模型中,Lonardo等[14]分別以吉西他濱單藥、吉西他濱聯(lián)合Nodal/activin通路抑制劑SB431542、吉西他濱聯(lián)合Nodal/activin通路抑制劑SB431542和Hedgehog通路抑制劑CUR199691來抑制移植瘤生長,實驗結(jié)果表明: 和吉西他濱單藥、吉西他濱聯(lián)合Nodal/activin通路抑制劑SB431542相比,吉西他濱聯(lián)合Nodal/activin通路抑制劑SB431542和Hedgehog通路抑制劑CUR199691可以迅速抑制腫瘤進展,并且在隨后的3個多月內(nèi)維持腫瘤穩(wěn)定;吉西他濱單藥應(yīng)用后腫瘤細(xì)胞的成球能力比三藥聯(lián)合處理后的更強;同時,三藥聯(lián)合應(yīng)用后腫瘤細(xì)胞都表現(xiàn)為高分化形態(tài),流式細(xì)胞計數(shù)顯示CD133+或CD133+/CD44+細(xì)胞數(shù)量明顯減少,這一結(jié)果提示吉西他濱聯(lián)合Nodal/activin和Hedgehog通路抑制可以明顯抑制PCSC的生長,延長無進展生存時間。
PCSC與PDAC的進展、復(fù)發(fā)、治療及預(yù)后都有著密不可分的關(guān)系。深入研究PCSC的表面標(biāo)志、內(nèi)部信號通路及其與腫瘤微環(huán)境的交互作用是進一步促進PDAC臨床診療進步的關(guān)鍵。由于PCSC亞群的活化信號通路多種多樣,多重靶向藥物將是應(yīng)對CSC的重要策略。近年來,PCSC相關(guān)研究已經(jīng)取得了相當(dāng)可觀的成就,這些成果將有望用于改善胰腺癌患者的診治與預(yù)后。
[1] Siegel R, Naishadham D, Jemal A. Cancerstatistics[J]. CA Cancer J Clin, 2013,63(1): 11-30.
[2] Reya T, Morrison SJ, Clarke MF, et al. Stem cells, cancer, and cancer stem cells[J]. Nature, 2001, 414(6859): 105-111.
[3] Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells[J]. Cancer Res, 2007,67(3): 1030-1037.
[4] Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer[J]. Cell Stem Cell, 2007,1(3): 313-323.
[5] Shah AN, Summy JM, Zhang J, et al. Development and characterization of gemcitabine-resistant pancreatic tumor cells[J]. Ann Surg Oncol, 2007,14(12): 3629-3637.
[6] Maeda S, Shinchi H, Kurahara H, et al. CD133 expression is correlated with lymph node metastasis and vascular endothelial growth factor-C expression in pancreatic cancer[J]. Br J Cancer, 2008,98(8): 1389-1397.
[7] Ding Q, Miyazaki Y, Tsukasa K, et al. CD133 facilitates epithelial-mesenchymal transition through interaction with the ERK pathway in pancreatic cancer metastasis[J]. Mol Cancer, 2014,13: 15.
[8] Li X, Ma Q, Xu Q, et al. SDF-1/CXCR4 signaling induces pancreatic cancer cell invasion and epithelial-mesenchymal transition in vitro through non-canonical activation of Hedgehog pathway[J]. Cancer Lett, 2012,322(2): 169-176.
[9] Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome[J]. Cell Stem Cell, 2007,1(5): 555-567.
[10] Rasheed ZA, Yang J, Wang Q, et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma[J]. J Natl Cancer Inst, 2010,102(5): 340-351.
[11] Rovira M, Scott SG, Liss AS, et al. Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas[J]. Proc Natl Acad Sci U S A, 2010,107(1): 75-80.
[12] Li Y, Li A, Glas M, et al. c-Met signaling induces a reprogramming network and supports the glioblastoma stem-like phenotype[J]. Proc Natl Acad Sci U S A, 2011,108(24): 9951-9956.
[13] Hage C, Rausch V, Giese N, et al. The novel c-Met inhibitor cabozantinib overcomes gemcitabine resistance and stem cell signaling in pancreatic cancer[J]. Cell Death Dis, 2013,4: e627.
[14] Lonardo E, Hermann PC, Mueller MT, et al. Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy[J]. Cell Stem Cell, 2011,9(5): 433-446.
[15] Masamune A, Kikuta K, Watanabe T, et al. Hypoxia stimulates pancreatic stellate cells to induce fibrosis and angiogenesis in pancreatic cancer[J]. Am J Physiol Gastrointest Liver Physiol, 2008,295(4): G709-717.
[16] Gao Z, Wang X, Wu K, et al. Pancreatic stellate cells increase the invasion of human pancreatic cancer cells through the stromal cell-derived factor-1/CXCR4 axis[J]. Pancreatology, 2010,10(2-3): 186-193.
[17] Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis[J]. Nature, 2001,410(6824): 50-56.
[18] Balic A, Dorado J, Alonso-Gomez M, et al. Stem cells as the root of pancreatic ductal adenocarcinoma[J]. Exp Cell Res, 2012,318(6): 691-704.
[19] Liu C, Tang DG. MicroRNA regulation of cancer stem cells[J]. Cancer Res, 2011,71(18): 5950-5954.
[20] Rajeshkumar NV, Rasheed ZA, Garcia-Garcia E, et al. A combination of DR5 agonistic monoclonal antibody with gemcitabine targets pancreatic cancer stem cells and results in long-term disease control in human pancreatic cancer model[J]. Mol Cancer Ther, 2010,9(9): 2582-2592.
[21] Gu D, Liu H, Su GH, et al. Combining hedgehog signaling inhibition with focal irradiation on reduction of pancreatic cancer metastasis[J]. Mol Cancer Ther, 2013,12(6): 1038-1048.
[22] Curry JM, Thompson KJ, Rao SG, et al. The use of a novel MUC1 antibody to identify cancer stem cells and circulating MUC1 in mice and patients with pancreatic cancer[J]. J Surg Oncol, 2013,107(7): 713-722.
[23] De La OJ, Emerson LL, Goodman JL, et al. Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia[J]. Proc Natl Acad Sci USA, 2008,105(48): 18907-18912.
[24] Garcia A, Kandel JJ. Notch: a key regulator of tumor angiogenesis and metastasis[J]. Histol Histopathol, 2012,27(2): 151-156.
[25] Mullendore ME, Koorstra JB, Li YM, et al. Ligand-dependent Notch signaling is involved in tumor initiation and tumor maintenance in pancreatic cancer[J]. Clin Cancer Res, 2009,15(7): 2291-2301.
[26] Palagani V, El Khatib M, Kossatz U, et al. Epithelial mesenchymal transition and pancreatic tumor initiating CD44+/EpCAM+ cells are inhibited by gamma-secretase inhibitor IX[J]. PLoS One, 2012,7(10): e46514.
[27] Yabuuchi S, Pai SG, Campbell NR, et al. Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer[J]. Cancer Lett, 2013,335(1): 41-51.
[28] Berman DM, Karhadkar SS, Maitra A, et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours[J]. Nature, 2003,425(6960): 846-851.
[29] Jimeno A, Feldmann G, Suarez-Gauthier A, et al. A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development[J]. Mol Cancer Ther,2009,8(2): 310-314.
[30] Huang FT, Zhuan-Sun YX, Zhuang YY, et al. Inhibition of hedgehog signaling depresses self-renewal of pancreatic cancer stem cells and reverses chemoresistance[J]. Int J Oncol, 2012,41(5): 1707-1714.
Advance in pancreatic cancer stem cell research
SHIXiao-jun,JIANGHua
(Dept. of Geriatric Medicine, East Hospital, Tongji University, Shanghai 200120, China)
Pancreatic ductal adenocarcinoma(PDAC) is the most common histopathological type of pancreatic cancer with a poor prognosis. Pancreatic cancer stem cell(PCSC) are considered a direct connection with the invasion, metastasis and recurrence of PDAC. This article reviews the recent research progress on the bio-markers, tumor microenvironment of PCSC and it’s potential application in targeted therapy.
pancreatic cancer; cancer stem cells; bio-markers; tumor microenvironment
10.16118/j.1008-0392.2016.04.024
2015-05-30
上海浦東新區(qū)衛(wèi)生系統(tǒng)領(lǐng)先人才(PWR12012-01)
石小軍(1981—),男,主治醫(yī)師,碩士研究生.E-mail: lemon0901@sina.com
江 華.E-mail: huajiang2013@#edu.cn
R 735.9
A
1008-0392(2016)04-0119-05