強(qiáng) 瑋,范雨芳,廖志華**
(1. 西南大學(xué)生命科學(xué)學(xué)院 重慶 400715;2. 西南大學(xué)西藏農(nóng)牧學(xué)院藥用植物聯(lián)合研發(fā)中心 重慶 400715)
托品烷生物堿生物合成與代謝工程研究進(jìn)展*
強(qiáng) 瑋1,2,范雨芳1,2,廖志華1,2**
(1. 西南大學(xué)生命科學(xué)學(xué)院 重慶 400715;2. 西南大學(xué)西藏農(nóng)牧學(xué)院藥用植物聯(lián)合研發(fā)中心 重慶 400715)
托品烷生物堿是醫(yī)藥史上最古老的一類藥物,常用的有莨菪堿(或其外消旋體阿托品)和東莨菪堿,它們都具有顯著的抗膽堿活性,在現(xiàn)代臨床上應(yīng)用相當(dāng)廣泛。目前,市場上托品烷生物堿的供應(yīng)完全依賴植物提取,但藥源植物中生物堿含量往往較低,培育高含量托品烷生物堿的藥源植物成為領(lǐng)域內(nèi)共同追求的目標(biāo),利用生物技術(shù)提高發(fā)根或植株中托品烷生物堿含量成為次生代謝領(lǐng)域的研究熱點(diǎn)。近10年來,托品烷生物堿的生物合成分子生物學(xué)研究取得了重要進(jìn)展,代謝工程也獲得了大量研究成果,本文對這兩方面的研究進(jìn)展進(jìn)行綜述,并對存在的關(guān)鍵問題和未來研究方向進(jìn)行分析和展望。
托品烷類生物堿 生物合成 代謝工程
托品烷生物堿(Tropane Alkaloids,TAs)是少數(shù)茄科植物體內(nèi)存在的一類天然次生代謝產(chǎn)物,因其具有顯著的藥理學(xué)活性,被人們作為傳統(tǒng)藥物使用了近3 000年[1]?,F(xiàn)代臨床使用的是莨菪堿或其外消旋體阿托品、東莨菪堿和藥效稍低的山莨菪堿,它們均為作用于副交感神經(jīng)系統(tǒng)的抗膽堿藥物,主要用于鎮(zhèn)痛、麻醉、抗暈動藥、治療帕金森癥、改善微循環(huán)、戒毒脫癮、治療農(nóng)藥中毒等;以上3種TAs原料藥中,東莨菪堿藥效更強(qiáng),副作用更弱,價(jià)格也更昂貴[2]。目前,全球TAs供應(yīng)完全依賴植物提取,這些藥用植物資源包括茄科Atropa、Datura、Hyoscyamus、Duboisia和Anisodus屬的少數(shù)物種。澳洲毒茄雜交種(Duboisia hybrid)和顛茄(Atropa belladonna)是最重要的兩種TAs資源植物[3],其中顛茄被中國藥典收錄。在大多數(shù)植物中TAs含量尤其是東莨菪堿含量極低,如顛茄中東莨菪堿含量僅為干重的0.01%-0.08%,不能滿足市場需求,所以,利用代謝工程技術(shù)提高資源植物中TAs含量是相關(guān)產(chǎn)業(yè)長期追求的目標(biāo)[2,4]。近年來,在TAs代謝途徑基因克隆和轉(zhuǎn)基因提高TAs合成能力等方面積累了大量的研究成果。同時(shí),梳理TAs生物合成分子生物學(xué)開展20多年來的研究脈絡(luò)也很有必要。因此,本研究對以上內(nèi)容進(jìn)行了綜述和展望。
1991年,第一個(gè)TAs合成途徑基因H6H在Hyoscyamus niger中被克隆[5];2014年,顛茄[6]的轉(zhuǎn)錄組數(shù)據(jù)公開發(fā)表,同時(shí)支路途徑基因AbArAT4被首次克隆和鑒定;2015年, Anisodus acutangulus[7]的轉(zhuǎn)錄組也相繼發(fā)表。迄今為止,托品烷生物堿生物合成的分子生物學(xué)已開展了26年,部分生物合成途徑已基本清晰(圖1)。
1.1 前體腐胺的來源
腐胺可以被催化生成亞精胺和精胺,三者統(tǒng)稱為多胺,它們在植物的生長發(fā)育和抵抗環(huán)境脅迫中起著重要的作用[8]。在少數(shù)茄科植物中,腐胺也是尼古丁和TAs的合成前體。植物中存在兩條腐胺來源途徑:①以鳥氨酸為前體,通過鳥氨酸脫羧酶(Ornithine Decarboxylase,ODC)脫羧直接獲得;②以精氨酸為前體,經(jīng)精氨酸脫羧酶 (Arginine Decarboxylase,ADC)、精胺亞胺基水解酶(Agmatine Iminohydrolase,AIH)和N-甲氨?;钒被饷福∟-carbamoylputrescine Amidohydrolase,CPA)的三步連續(xù)反應(yīng)最終生成腐胺[8]。不同植物中這兩條途徑對下游次生代謝產(chǎn)物合成的貢獻(xiàn)也不同。煙草中,鳥氨酸途徑為尼古丁的合成提供了絕大部分腐胺原料,精氨酸途徑的作用十分有限[9,10];而在Datura屬植物的TAs合成中,精氨酸途徑主要參與了TAs的合成,鳥氨酸的作用其次[11],在Datura inoxia中超表達(dá)ADC基因能夠比超表達(dá)ODC基因合成更多的莨菪堿[12](表1)。所以,次生代謝物合成依賴何種腐胺生源途徑是物種特異的。
圖1 茄科植物中托品烷生物堿生物合成途徑
目前,在TAs資源植物中,ODC基因和ADC基因均僅在D. stramonium被克隆,煙草中也有ADC基因報(bào)道。DsODC編碼431個(gè)氨基酸,具備老鼠ODC中保守的活性氨基酸殘基,缺乏哺乳動物ODC中保守的一段C端延伸鏈,Southern blotting顯示DsODC不止一個(gè)拷貝[13]。植物ODC蛋白一般認(rèn)為定位于胞質(zhì),也有定位于細(xì)胞核的報(bào)道[14]。DsADC基因在水稻中超表達(dá)能顯著提高耐旱能力[15]。煙草的NtADC基因編碼721個(gè)氨基酸,其5’UTR包含一段編碼8個(gè)氨基酸的上游ORF(uORF),該 uORF與DsuORF序列100%保守,表明DsADC和NtADC基因在翻譯水平可能受到復(fù)雜的調(diào)控。NtADC在光合型細(xì)胞中定位于葉綠體,在根中定位于細(xì)胞核[16]。
1.2 PMT:托品烷生物堿合成的起點(diǎn)
N-甲 基-腐 胺 轉(zhuǎn) 移 酶(Putrescine N-methyltransferase,PMT)以S-腺苷甲硫氨酸為輔助底物,催化腐胺的甲基化生成N-甲基-腐胺。PMT能夠?qū)⒊跎x產(chǎn)物(腐胺)引入次生代謝(尼古丁、TAs和非TAs)合成,被認(rèn)為是TAs生物合成的起點(diǎn)[17]。放射性標(biāo)記前體飼喂D. stramonium發(fā)根實(shí)驗(yàn)表明PMT是一個(gè)限速酶[18],在Datura metel和Hyoscyamus muticus中超表達(dá)PMT基因都能顯著提高TAs的合成[19],但是在顛茄中超表達(dá)PMT基因,TAs含量無變化[20]。所以,PMT在TAs合成中是否是限速酶與物種相關(guān)。
PMT基因首次于1994在煙草中克隆[21],隨后根據(jù)cDNA文庫雜交篩選,分別在顛茄和H. niger中克隆到了PMT基因[22]。目前,已有9個(gè)TAs資源植物的PMT基因被克隆,包括:A. belladonna,H. niger, Anisodus tanguticus[23],A. acutangulus[24],Anisodus luridus[25],D. stramonium,D. metel,D. inoxia[26]和Scopolia parviflora[27]。PMT基因通常包含1-2個(gè)家族成員,其中一條特異性地在根中表達(dá)。顛茄中存在兩條PMT基因AbPMT1和AbPMT2,分別編碼336和340個(gè)氨基酸;它們均不受茉莉酸甲酯(Methyl Jasmonate,MeJA)的誘導(dǎo)[22];AbPMT1只在根中表達(dá),且表達(dá)量遠(yuǎn)高于AbPMT2,而AbPMT2在各個(gè)部位均有表達(dá)。H. niger和D. stramonium中僅存在一條PMT基因,都特異性地在根中表達(dá),且都受MeJA的強(qiáng)烈誘導(dǎo)[22,28]。參與TAs合成的PMT基因一般在根中柱鞘細(xì)胞中特異性表達(dá)[22]。
1.3 托品酮:第一個(gè)具備托品烷環(huán)的中間體
N-甲基-腐胺在N-甲基腐胺氧化酶(N-methylputrescine Oxidase,MPO)的催化下生成4-氨基-正丁醛。4-氨基-正丁醛能自發(fā)地環(huán)化生成活性的N-甲基-△1-吡咯啉正離子。N-甲基-△1-吡咯啉正離子在各種代謝物生物合成中起著中心的作用,它與丙酮酸縮合可以形成另一種TAs古豆堿[28];與煙酸發(fā)生縮合生成尼古丁[1];還可以經(jīng)若干步代謝反應(yīng)生成一種可用作麻醉劑的生物堿可卡因[29];在合成莨菪堿的植物中,則經(jīng)過一系列未知的反應(yīng)生成TAs途徑特有的二環(huán)結(jié)構(gòu)前體托品酮。
1.4 TRs:調(diào)控代謝流走向的分支點(diǎn)
托品酮還原酶 (Tropinone Reductase,TR)包括TRI和TRII兩種類型。它們都以托品酮為底物,依賴還原性輔酶II為氫供體,分別立體特異性地還原托品酮C3位的羰基生成托品和假托品,構(gòu)成了TAs生物合成的一個(gè)分支點(diǎn)[30]。托品和假托品在植物體內(nèi)不能相互轉(zhuǎn)化,它們分別是莨菪堿和norTAs打碗花精的合成前體,因此,兩種TRs的酶活就成了調(diào)控代謝流走向和下游TAs含量的一個(gè)重要因素[31]。在顛茄和A. acutangulus中超表達(dá)TRI都能提高TAs含量,證明TRI是一個(gè)可行的TAs代謝工程靶標(biāo)基因[32,33]。兩種TRs對底物托品酮獲得的難易度也是影響TAs含量的另一個(gè)因素。TRII和TAs上下游其它合成酶PMT、H6H均定位在根中柱鞘細(xì)胞,而
TRI主要定位在內(nèi)皮層細(xì)胞,這意味著TRI不能直接獲得底物,托品酮和其產(chǎn)物托品必須往返于兩種不同的細(xì)胞來合成莨菪堿[34]。
表1 托品烷類生物堿代謝工程研究
TRs首次于1993年在D. stramonium中克隆[35]。DsTRI和DsTRII基因組具有相同的組織結(jié)構(gòu),編碼的氨基酸序列一致性高達(dá)64%,但是兩者酶活力表現(xiàn)和底物特異性不同[31]。蛋白晶體結(jié)構(gòu)表明兩者都是同源二聚體,具有幾乎相同的高級結(jié)構(gòu),但是托品酮在底物結(jié)合中心的定向完全相反,造成了兩種還原產(chǎn)物的立體異構(gòu)[36]。TRs的立體特異性是由底物結(jié)合部位少數(shù)幾個(gè)氨基酸決定的,對其定點(diǎn)突變可以反轉(zhuǎn)TRI和TRII之間的立體特異性[37]。目前,已從7個(gè)TAs資源植物中獲得了該基因,包 括:D. stramonium[35],H. niger[31],A. luridus[25],A. acutangulus[32],Hyoscyamus senecionis[38],Withania coagulans[39]和Withania. somnifera[40]。與常見草本資源植物中TRI的根特異性表達(dá)不同,近期在后4種植物中發(fā)現(xiàn)TRI在地上部位也有表達(dá),且已證實(shí)W. somnifera的葉能夠獨(dú)立地合成托品。本實(shí)驗(yàn)室最近從Datura arborea中克隆到一條TRI,發(fā)現(xiàn)也在各部位均有表達(dá),且活性高于DsTRI[41]。
1.5 前體苯乳酸來源的支路途徑
對于莨菪堿的另一合成前體,存在過托品酸和苯乳酸兩種假說。直至1994年,Robins[42]利用同位素示蹤實(shí)驗(yàn)確切地證明了苯丙酮酸和苯乳酸才是莨菪堿的合成前體,而非托品酸,莨菪堿的托品酸結(jié)構(gòu)是在苯乳酸的酯化后通過分子重排形成。2014年,基于對顛茄各組織轉(zhuǎn)錄組數(shù)據(jù)的發(fā)掘,成功克隆了參與苯丙氨酸轉(zhuǎn)氨反應(yīng)生成苯丙酮酸的AbArAT4(Aromatic Amino Acid Aminotransferase,ArAT)基因。AbArAT4特異地在顛茄根中表達(dá),與其它TAs合成途徑基因表達(dá)部位一致[6];AbArAT4在進(jìn)化關(guān)系上明顯區(qū)別于其它植物芳香族氨基酸轉(zhuǎn)氨酶,形成獨(dú)立的一個(gè)分支;AbArAT4缺乏質(zhì)體轉(zhuǎn)運(yùn)肽,預(yù)測定位于胞質(zhì)。在近源物種土豆和番茄中,缺乏AbArAT4的直系同源基因,這與該基因在顛茄中參與次生代謝合成的功能有關(guān)。AbArAT4對底物苯丙氨酸和氨基受體4-羥基苯丙酮酸具有最高的催化效率,而其它芳香族氨基酸轉(zhuǎn)氨酶更偏好于2-酮戊二酸、丙酮酸和草酰乙酸等氨基受體。在顛茄中沉默AbArAT4基因?qū)е螺馆袎A和東莨菪堿含量的顯著下降,托品的大量積累,證明該基因參與了TAs的合成[6]。目前,ArAT基因在其它TAs資源植物中還未見報(bào)道。
1.6 海螺堿分子內(nèi)重排生成莨菪堿
托品與苯乳酸通過酯化縮合生成海螺堿,由海螺堿到莨菪堿的合成涉及到分子同分異構(gòu)化的過程,也即分子重排反應(yīng)。該反應(yīng)的機(jī)制有過長達(dá)十多年的爭議:一派學(xué)者認(rèn)為一種類似于依賴維生素B12的異構(gòu)酶參與了該反應(yīng)[43];另一派學(xué)者則提供了一個(gè)細(xì)胞色素P450催化的氧化產(chǎn)物中間體莨菪醛假說,莨菪醛需再經(jīng)過一個(gè)未知的醇脫氫酶還原生成莨菪堿[44],雙方均提供了相關(guān)的實(shí)驗(yàn)證據(jù)。直到2006年,Covello[45]基于cDNA文庫篩選從H. niger中克隆到了第二種假說中的細(xì)胞色素P450酶基因CYP80F1(又叫l(wèi)ittorine mutase/monooxygenase),確認(rèn)CYP80F1參與了海螺堿的氧化生成莨菪醛,但是參與下一步反應(yīng)的醇脫氫酶仍然未知。HnCYP80F1基因特異性地在莨菪根中表達(dá),沉默HnCYP80F1基因?qū)е螺馆袎A含量大幅下降,海螺堿顯著積累,然而超表達(dá)HnCYP80F1基因?qū)馆袎A含量并無影響,表明在H. niger中HnCYP80F1并不是TAs合成的限速酶。目前,基于同源克隆,已分別從A. luridus和顛茄中克隆到了該基因:AlCYP80F1基因表達(dá)受ASA和UV-B的強(qiáng)烈誘導(dǎo)[25];AbCYP80F1基因表達(dá)僅限制在根組織,與顛茄中TAs合成部位一致[46]。
1.7 H6H:東莨菪堿合成的最后一個(gè)限速酶
莨 菪 堿 6β-羥 化 酶(Hyoscyamine 6 betahydroxylase,H6H)是一種雙功能酶,屬于依賴α-酮戊二酸/鐵離子的雙加氧酶家族,它催化莨菪堿C6位的羥基化生成山莨菪堿(Anisodamine)和山莨菪堿的C6、C7環(huán)氧化兩步連續(xù)反應(yīng)生成東莨菪堿(scopolamine)。體外重組蛋白的酶活測試表明H6H的羥化活性要遠(yuǎn)高于環(huán)氧化活性[47]。H6H是東莨菪堿生物合成的最后一個(gè)限速酶,在多種TAs資源植物中超表達(dá)H6H無一例外的都提高了東莨菪堿的產(chǎn)量[4,48,49]。H6H基因首次于1991在H. niger中被克隆[5],這也是TAs生物合成分子生物學(xué)的開端。到目前為止,已在茄科6個(gè)屬(Atropa、Hyoscyamus、Anisodus、Datura、Brugmansia和Scopolia)的12個(gè)物種中得到了該基因[50],但是只有4個(gè)H6Hs酶蛋白進(jìn)行了酶活力測定,其中顛茄的H6H酶活性偏低,正好可以解釋該物種中東莨菪堿含量顯著低于其它物種[51]。在H. niger[52]、顛茄[53]和D. metal[54]中,H6H蛋白明確定位于根中柱鞘細(xì)胞。但是,近期在A. Acutangulus[55]、H. Senecionis[38]和D. arborea[50]中發(fā)現(xiàn),H6H在根莖葉中均組成性地表達(dá),尤其是DaH6H在老葉中表達(dá)量是須根的5倍,這一現(xiàn)象有待深入的研究。
TAs代謝工程隨著合成途徑基因的克隆穩(wěn)步開展(表1)。第一例TAs代謝工程起始于1992年,Yun等[4]在顛茄中超表達(dá)HnH6H基因,發(fā)現(xiàn)轉(zhuǎn)基因當(dāng)代和子一代植株的莖葉中幾乎全是東莨菪堿,表明H6H是很有效的遺傳改造靶標(biāo)基因。早期的TAs代謝工程聚焦于對H6H和PMT的單基因遺傳改造,后來發(fā)現(xiàn)代謝流控制點(diǎn)酶TRI也是有效的靶標(biāo)基因。超表達(dá)H6H基因無一例外地均提高了東莨菪堿的含量,而PMT在不同的物種中的作用則不盡相同:在D. metel, H. muticus和S. parviflora中超表達(dá)PMT基因均能提高TAs含量[56,57],而在Duboisia hybrid和顛茄中則沒有效果[20,56],說明相同的合成途徑在不同物種中具有不同的調(diào)控方式。
次生代謝物生物合成途徑往往是復(fù)雜的多步酶促反應(yīng),超表達(dá)單個(gè)限速酶基因可能會限制下游的反應(yīng),后續(xù)的多步反應(yīng)也會使效果逐漸減弱,最佳的策略應(yīng)該是同時(shí)超量表達(dá)多個(gè)限速酶基因,形成推拉效應(yīng),使代謝流最大可能地流向目標(biāo)產(chǎn)物。2004年,Zhang首次在H. niger發(fā)根中同時(shí)超表達(dá)兩個(gè)關(guān)鍵酶基因PMT和H6H,使東莨菪堿含量達(dá)到了417 mg·L-1[58],證明了該策略的優(yōu)越性。之后,該策略先后在顛茄和A. acutangulus中進(jìn)行了多次有成效的嘗試,尤其是雙基因轉(zhuǎn)化商業(yè)資源顛茄植株的獲得,使東莨菪堿含量提高了7.3倍[2],為培育高產(chǎn)優(yōu)質(zhì)藥源提供了原材料,具有極大的生產(chǎn)價(jià)值。
TAs的生物合成會受到其它信號途徑的調(diào)節(jié),遺傳改造相關(guān)的信號途徑可能會間接地影響TAs的積累。2013年Asano團(tuán)隊(duì)基于野甘草Scoparia dulcis中外源MeJA刺激胞外Ca2+內(nèi)流產(chǎn)生胞內(nèi)Ca2+級聯(lián)信號,進(jìn)而促進(jìn)野甘草酸Scopadulcic acid合成的信號模型,將該模型中重要的成員Rac GTPase基因在顛茄中超表達(dá),使轉(zhuǎn)基因植株中莨菪堿含量比野生植株提高了2.4倍[59],創(chuàng)造了一種新的TAs代謝工程策略。
TAs生物合成的分子生物學(xué)和代謝工程研究開展了26年,取得了豐富的成果,但是仍然存在一些問題亟需解決。首先,TAs生物合成途徑仍然沒有完全打通,相關(guān)反應(yīng)步驟尚不清楚,涉及到的酶基因尚未克隆。這些盲區(qū)包括1-甲基-△-吡咯啉正離子如何形成托品酮、托品和苯乳酸如何縮合生成海螺堿和苯丙酮酸如何還原生成苯乳酸,其中是否存在限速步驟也值得研究。合成途徑的不完善對TAs合成生物學(xué)的開展也是很大的限制。其次,雖然TAs合成途徑在所有資源植物中都相同,但是其調(diào)控方式可能因物種而異,典型的例子是PMT基因在不同物種中超表達(dá)效果不一。所以在D. stramonium和H. niger等模式植物中的研究成果很可能不能直接應(yīng)用于商業(yè)藥源植物顛茄,相關(guān)的研究必須要在顛茄本物種中取得突破。最后,目前對TAs生物合成的調(diào)控機(jī)制和轉(zhuǎn)運(yùn)機(jī)制還一無所知,相關(guān)的轉(zhuǎn)錄調(diào)控因子和轉(zhuǎn)運(yùn)蛋白也未見報(bào)道。值得期望的是,相關(guān)研究工作正在有序地、積極地開展?;谵D(zhuǎn)錄組數(shù)據(jù)鑒定支路合成途徑基因AbArAT的突破,為TAs研究提供了新思路、新經(jīng)驗(yàn)和大量基礎(chǔ)數(shù)據(jù),是近年來的重大成果。目前,陸續(xù)已有H. niger,顛茄和A. acutangulus共3個(gè)物種進(jìn)行了轉(zhuǎn)錄組測序,我們實(shí)驗(yàn)室也首次獲得了H. niger的MeJA誘導(dǎo)組數(shù)據(jù)(正在發(fā)表),深度發(fā)掘這些基礎(chǔ)數(shù)據(jù)庫,相信很快能在上述問題上取得更多的突破。
1 Oksman-Caldentey K M. Tropane and nicotine alkaloid biosynthesisnovel approaches towards biotechnological production of plant-derived pharmaceuticals. Curr Pharm Biotechnol, 2007, 8(4):203-210.
2 Wang X R, Chen M, Yang C X, et al. Enhancing the scopolamine production in transgenic plants of Atropa belladonna by overexpressing pmt and h6h genes. Physiol Plant, 2011, 143(4):309-315.
3 Oksman-Caldentey K M. Commentary on Verpoorte's review -Engineering the plant cell factory for secondary metabolite production. Transgenic Res, 2000, 9(4):323-343.
4 Yun D J, Hashimoto T, Yamada Y. Metabolic Engineering of Medicinal-Plants - Transgenic Atropa-Belladonna with an Improved Alkaloid Composition. Proc Natl Acad Sci U S A, 1992, 89(24):11799-11803.
5 Matsuda J, Okabe S, Hashimoto T, et al. Molecular-Cloning of Hyoscyamine 6-Beta-Hydroxylase, a 2-Oxoglutarate-Dependent Dioxygenase, from Cultured Roots of Hyoscyamus-Niger. J Biol Chem, 1991, 266(15):9460-9464.
6 Bedewitz M A, Gongora-Castillo E, Uebler J B, et al. A Root-Expressed L-Phenylalanine:4-Hydroxyphenylpyruvate Aminotransferase Is Required for Tropane Alkaloid Biosynthesis in Atropa belladonna. Plant Cell, 2014, 26(9):3745-3762.
7 Cui L J, Huang F F, Zhang D S, et al. Transcriptome exploration for further understanding of the tropane alkaloids biosynthesis in Anisodus acutangulus. Mol Genet Genomics, 2015, 290(4):1367-1377.
8 Gill S, Tuteja N. Polyamines and abiotic stress tolerance in plants. Plant Signal Behav, 2010, 5(1):26-33.
9 Deboer K D, Dalton H L, Edward F J, et al. RNAi-mediated downregulation of ornithine decarboxylase (ODC) leads to reduced nicotine and increased anatabine levels in transgenic Nicotiana tabacum L.. Phytochemistry, 2011, 72(4-5):344-355.
10 Chintapakorn Y, Hamill J D. Antisense-mediated reduction in ADC activity causes minor alterations in the alkaloid profile of cultured hairy roots and regenerated transgenic plants of Nicotiana tabacum. Phytochemistry, 2007, 68(19):2465-2479.
11 Robins R J, Parr a J, Bent E G, et al. Studies on the Biosynthesis of Tropane Alkaloids in Datura-Stramonium L Transformed Root Cultures .1. The Kinetics of Alkaloid Production and the Influence of Feeding Intermediate Metabolites. Planta, 1991, 183(2):185-195.
12 Narula A, Kumar S V, Pande D, et al. Agrobacterium-mediated Transfer of Arginine Decarboxylase and Ornithine Decarboxylase Genes to Datura innoxia Enhances Shoot Regeneration and Hyoscyamine Biosynthesis. J Plant Biochem Biot, 2004, 13(2):127-130.
13 Michael a J, Furze J M, Rhodes M J C, et al. Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA. Biochem J, 1996, 314(1):241-248.
14 N?lke G, Schneider B, Agdour S, et al. Modulation of polyamine biosynthesis in transformed tobacco plants by targeting ornithine decarboxylase to an atypical subcellular compartment. Open Biot J, 2008, 2(1):183-189.
15 Capell T, Bassie L, Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci U S A, 2004, 101(26):9909-9914.
16 Bortolotti C, Cordeiro A, Alcazar R, et al. Localization of arginine decarboxylase in tobacco plants. Physiol Plant, 2004, 120(1):84-92.
17 Biastoff S, Brandt W, Drager B. Putrescine N-methyltransferase - The start for alkaloids. Phytochemistry, 2009, 70(15-16):1708-1718.
18 Palazon J, Navarro-Ocana A, Hernandez-Vazquez L, et al. Application of metabolic engineering to the production of scopolamine. Molecules, 2008, 13(8):1722-1742.
19 Moyano E, Jouhikainen K, Tammela P, et al. Effect of pmt gene overexpression on tropane alkaloid production in transformed root cultures of Datura metel and Hyoscyamus muticus. J Exp Bot, 2003, 54(381):203-211.
20 Rothe G, Hachiya A, Yamada Y, et al. Alkaloids in plants and root cultures of Atropa belladonna overexpressing putrescine N-methyltransferase. J Exp Bot, 2003, 54(390):2065-2070.
21 Hibi N, Higashiguchi S, Hashimoto T, et al. Gene expression in tobacco low-nicotine mutants. Plant Cell, 1994, 6(5):723-735.
22 Suzuki K, Yamada Y, Hashimoto T. Expression of Atropa belladonna putrescine N-methyltransferase gene in root pericycle. Plant Cell Physiol, 1999, 40(3):289-297.
23 Liu T, Zhu P, Cheng K D, et al. Molecular cloning and expression of putrescine N-methyltransferase from the hairy roots of Anisodus tanguticus. Planta Med, 2005, 71(10):987-989.
24 Kai G Y, Zhang Y, Chen J F, et al. Molecular characterization and expression analysis of two distinct putrescine N-methyltransferases from roots of Anisodus acutangulus. Physiol Plant, 2009, 135(2):121-129.
25 Qin B F, Ma L L, Wang Y X, et al. Effects of acetylsalicylic acid and UV-B on gene expression and tropane alkaloid biosynthesis in hairy root cultures of Anisodus luridus. Plant Cell Tissue and Organ Cult, 2014, 117(3):483-490.
26 Teuber M, Azemi M E, Namjoyan F, et al. Putrescine N-methyltransferases - a structure-function analysis. Plant Mol Biol, 2007, 63(6):787-801.
27 Kang Y M, Park D J, Min J Y, et al. Enhanced production of tropane alkaloids in transgenic Scopolia parviflora hairy root cultures overexpressing putrescine N-methyl transferase (PMT) and hyoscyamine-6 beta-hydroxylase (H6H). In Vitro Cell Dev PL, 2011, 47(4):516-524.
28 Deng F. Effects of glyphosate, chlorsulfuron, and methyl jasmonate on growth and alkaloid biosynthesis of jimsonweed (Datura stramonium L.). Pesticide Biochemistry and Phys, 2005, 82(1):16-26.
29 Jirschitzka J, Schmidt G W, Reichelt M, et al. Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae. Proc Natl Acad Sci U S A, 2012, 109(26):10304-10309.
30 Drager B. Tropinone reductases, enzymes at the branch point of tropane alkaloid metabolism. Phytochemistry, 2006, 67(4):327-337.
31 Nakajima K, Oshita Y, Kaya M, et al. Structures and expression patterns of two tropinone reductase genes from Hyoscyamus niger. Biosci Biotechnol Biochem, 1999, 63(10):1756-1764.
32 Kai G Y, Li L, Jiang Y X, et al. Molecular cloning and characterization of two tropinone reductases in Anisodus acutangulus and enhancement of tropane alkaloid production in AaTRI-transformed hairy roots. Biotechnol Appl Biochem, 2009, 54(3):177-186.
33 Richter U, Rothe G, Fabian a K, et al. Overexpression of tropinone reductases alters alkaloid composition in Atropa belladonna root cultures. J Exp Bot, 2005, 56(412):645-652.
34 Nakajima K, Hashimoto T. Two tropinone reductases, that catalyzeopposite stereospecific reductions in tropane alkaloid biosynthesis, are localized in plant root with different cell-specific patterns. Plant Cell Physiol, 1999, 40(11):1099-1107.
35 Nakajima K, Hashimoto T, Yamada Y. Two tropinone reductases with different stereospecificities are short-chain dehydrogenases evolved from a common ancestor. Proc Natl Acad Sci U S A, 1993, 90(20):9591-9595.
36 Nakajima K, Yamashita A, Akama H, et al. Crystal structures of two tropinone reductases: Different reaction stereospecificities in the same protein fold. Proc Natl Acad Sci U S A, 1998, 95(9):4876-4881.
37 Nakajima K, Kato H, Oda J, et al. Site-directed mutagenesis of putative substrate-binding residues reveals a mechanism controlling the different stereospecificities of two tropinone reductases. J Biol Chem, 1999, 274(23):16563-16568.
38 Dehghan E, Ahmadi F S, Ravandi E G, et al. An atypical pattern of accumulation of scopolamine and other tropane alkaloids and expression of alkaloid pathway genes in Hyoscyamus senecionis. Plant Physiol Biochem, 2013, 70:188-194.
39 Kushwaha a K, Sangwan N S, Tripathi S, et al. Molecular cloning and catalytic characterization of a recombinant tropine biosynthetic tropinone reductase from Withania coagulans leaf. Gene, 2013, 516(2):238-247.
40 Kushwaha A K, Sangwan N S, Trivedi P K, et al. Tropine Forming Tropinone Reductase Gene from Withania somnifera (Ashwagandha):Biochemical Characteristics of the Recombinant Enzyme and Novel Physiological Overtones of Tissue-Wide Gene Expression Patterns. Plos One, 2013, 8(9):e74777.
41 Qiang W, Xia K, Zhang Q Z, et al. Functional characterisation of a tropine-forming reductase gene from Brugmansia arborea, a woody plant species producing tropane alkaloids. Phytochemistry, 2016, 127:12-22.
42 Robins R J, Woolley J G, Ansarin M, et al. Phenyllactic acid but not tropic acid is an intermediate in the biosynthesis of tropane alkaloids in Datura and Brugmansia transformed root cultures. Planta, 1994, 194(1):86-94.
43 Ollagnier S, Kervio E, Retey J. The role and source of 5’-deoxyadenosyl radical in a carbon skeletonrearrangement catalyzed by a plant enzyme. FEDS Lett, 1998, 437(3):309-312.
44 Robins R J, Bachmann P, Woolley J G. Biosynthesis of Hyoscyamine Involves an Intramolecular Rearrangement of Littorine. J Chem Soc Perkin Trans 1, 1994, 25(28):615-619.
45 Li R, Reed D W, Liu E W, et al. Functional genomic analysis of alkaloid biosynthesis in Hyoscyamus niger reveals a cytochrome P450 involved in littorine rearrangement. Chem Biol, 2006, 13(5):513-520.
46 Qiang W, Wang Y X, Zhang Q Z, et al. Expression pattern of genes involved in tropane alkaloids biosynthesis and tropane alkaloids accumulation in Atropa belladonna. Zhongguo Zhong Yao Za Zhi, 2014, 39(1):52-58.
47 Hashimoto T, Matsuda J, Yamada Y. Two-step epoxidatiun of hyascyamine to scopolamine is catalyzed by bifunctional hyoscyamine 6β-hydroxylase. FEDS Lett, 1993, 329(1-2):35-39.
48 Dechaux C, Boitel-Conti M. A strategy for overaccumulation of scopolamine in Datura innoxia hairy root cultures. Acta Biol Cracov Bot, 2005, 47(1):101-107.
49 Jouhikainen K, Lindgren L, Jokelainen T, et al. Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root cultures by genetic engineering. Planta, 1999, 208(4):545-551.
50 強(qiáng)瑋,侯艷玲,李笑,等. 木本曼陀羅中催化東莨菪堿生物合成關(guān)鍵步驟的H6H基因克隆與表達(dá)分析. 藥學(xué)學(xué)報(bào), 2015, 50(10):1346-1355.
51 Li J, Van Belkum M J, Vederas J C. Functional characterization of recombinant hyoscyamine 6 beta-hydroxylase from Atropa belladonna. Bioorg Med Chem, 2012, 20(14):4356-4363.
52 Hashimoto T, Hayashi A, Amano Y, et al. Hyoscyamine 6 betahydroxylase, an enzyme involved in tropane alkaloid biosynthesis, is localized at the pericycle of the root. J Biol Chem, 1991, 266(7):4648-4653.
53 Suzuki K, Yun D J, Chen X Y, et al. An Atropa belladonna hyoscyamine 6 beta-hydroxylase gene is differentially expressed in the root pericycle and anthers. Plant Mol Biol, 1999, 40(1):141-152.
54 Pramod K K, Singh S, Jayabaskaran C. Expression of hyoscyamine 6 beta-hydroxylase in the root pericycle cells and accumulation of its product scopolamine in leaf and stem tissues of Datura metel L.. Plant Sci, 2010, 178(2):202-206.
55 Kai G, Chen J, Li L, et al. Molecular cloning and characterization of a new cDNA encoding hyoscyamine 6beta-hydroxylase from roots of Anisodus acutangulus. J Biochem Mol Biol, 2007, 40(5):715-722.
56 Moyano E, Fornale S, Palazon J, et al. Alkaloid production in Duboisia hybrid hairy root cultures overexpressing the pmt gene. Phytochemistry, 2002, 59(7):697-702.
57 Lee O S, Kang Y M, Jung H Y, et al. Enhanced production of tropane alkaloids in Scopolia parviflora by introducing the PMT (putrescine N-methyltransferase) gene. In Vitro Cell Dev Pl, 2005, 41(2):167-172.
58 Zhang L, Ding R X, Chai Y R, et al. Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc Natl Acad Sci U S A, 2004, 101(17):6786-6791.
59 Asano K, Lee J B, Yamamura Y, et al. Enhanced accumulation of atropine in Atropa belladonna transformed by Rac GTPase gene isolated from Scoparia dulcis. Transgenic Res, 2013, 22(6):1249-1255.
60 Singh A, Nirala N K, Das S, et al. Overexpression of odc (ornithine decarboxylase) in Datura innoxia enhances the yield of scopolamine. Acta Physiologiae Plantarum, 2011, 33(6):2453-2459.
61 Zhang L, Yang B, Lu B B, et al. Tropane alkaloids production in transgenic Hyoscyamus niger hairy root cultures over-expressing Putrescine N-methyltransferase is methyl jasmonate-dependent. Planta, 2007, 225(4):887-896.
62 彭靜葉, 彭梅芳. 反義托品酮還原酶Ⅱ基因?qū)θ秩倪z傳轉(zhuǎn)化及生物堿含量測定. 安徽農(nóng)業(yè)科學(xué), 2011, 39(12):6968-6970.
63 Zarate R, E, Jaber-Vazdekis N, Medina B, et al. Tailoring tropane alkaloid accumulation in transgenic hairy roots of Atropa baetica by over-expressing the gene encoding hyoscyamine 6 beta-hydroxylase. Biotechl Lett, 2006, 28(16):1271-1277.
64 Yang C X, Chen M, Zeng L J, et al. Improvement of tropane alkaloids production in hairy root cultures of Atropa belladonna by overexpressing pmt and h6h genes. Plant Omics, 2011, 4(1):29-33.
65 Kai G Y, Yang S, Luo X Q, et al. Co-expression of AaPMT and AaTRI effectively enhances the yields of tropane alkaloids in Anisodus acutangulus hairy roots. Bmc Biotechnol, 2011, 11:43.
66 Kai G Y, Zhang A, Guo Y Y, et al. Enhancing the production of tropane alkaloids in transgenic Anisodus acutangulus hairy root cultures by over-expressing tropinone reductase I and hyoscyamine-6 betahydroxylase. Mol Biosyst, 2012, 8(11):2883-2890.
67 龍世平, 盧衍, 王亞雄, 等. 過表達(dá)內(nèi)源PMT和H6H基因?qū)︻嵡寻l(fā)根托品烷類生物堿合成的影響. 藥學(xué)學(xué)報(bào), 2013, 48(2):243-249.
68 嚴(yán)錚輝, 潘夕春, 強(qiáng)瑋, 等. PMT和H6H雙基因共轉(zhuǎn)化提高三分三托品烷類生物堿質(zhì)量分?jǐn)?shù). 西南大學(xué)學(xué)報(bào)(自然科學(xué)版), 2014, 36(2):21-27.
Advances in Biosynthesis and Metabolic Engineering of Tropane Alkaloids
Qiang Wei1,2, Fan Yufang1,2, Liao Zhihua1,2
(1. School of Life Sciences, Southwest University, Chongqing 400715, China; 2. SWU-TAAHC Medicinal Plant Joint R&D Centre, Agricultural and Animal Husbandry College, Tibet University, Nyingchi of Tibet, Chongqing 860000, China)
Tropane alkaloids, such as hyoscyamine (or its more stable racemate atropine) and scopolamine, are remembered as the oldest drugs in medicine with wide pharmaceutical applications clinically for their mydriatic, antispasmodic, anticholinergic, analgesic and sedative properties. Presently, the supply of tropane alkaloids are entirely rested on their isolation from plant materials, yet the low contents of tropane alkaloids in plants raise the requirement to breed new varieties of high-yield tropane alkaloids and improving the production of tropane alkaloids in hairy root cultures or plants by biotechnology has be a research focus in the field of secondary metabolism. For the past decade, there have been important progresses on biosynthesis of tropane alkaloids and their molecular biology, some new pathway genes have been identified and many achievements have also been acquired in metabolic engineering of tropane alkaloids. This review summarized the recent advances in above aspects, and the problems and orientations of future research are also discussed and proposed.
Tropane alkaloids, biosynthesis, metabolic engineering
10.11842/wst.2016.11.011
R931.6
A
(責(zé)任編輯:馬雅靜,責(zé)任譯審:朱黎婷)
2016-10-25
修回日期:2016-10-25
* 國家自然科學(xué)基金委面上項(xiàng)目(31370333):WRKY類轉(zhuǎn)錄因子在托品烷類生物堿生物合成中的調(diào)控作用研究,負(fù)責(zé)人:廖志華;科學(xué)技術(shù)部國家“863計(jì)劃”項(xiàng)目(2011AA100605):植物代謝產(chǎn)物生物反應(yīng)器產(chǎn)品研發(fā)任務(wù)3-東莨菪堿植物代謝產(chǎn)物生物反應(yīng)器研制,負(fù)責(zé)人:廖志華。
** 通訊作者:廖志華,教授,主要研究方向:植物合成生物學(xué)與代謝工程。
世界科學(xué)技術(shù)-中醫(yī)藥現(xiàn)代化2016年11期