竇潤亮, 郭均鵬, 田祥龍, 宗 超
(天津大學管理與經(jīng)濟學部, 天津 300072)
面向客戶個性化需求的交互式遺傳算法
竇潤亮, 郭均鵬, 田祥龍, 宗 超
(天津大學管理與經(jīng)濟學部, 天津 300072)
針對交互式遺傳算法(IGA)中的評價噪聲問題,提出猶豫度的概念,建立猶豫度調(diào)整機制,并使用刪除策略和修改策略來處理形成初始種群以及交叉、變異過程中產(chǎn)生的約束不滿足個體.通過對汽車操控臺的概念設計問題進行建模,建立人性化交互界面用以驗證本論文提出的方法體系的先進性和合理性.實驗表明,此求解算法能夠有效的降低評價噪聲,加速收斂,降低疲勞度,提高結(jié)果的滿意度.
交互式遺傳算法; 猶豫度; 評價噪聲; 約束處理; 疲勞度
產(chǎn)品市場的競爭,使得產(chǎn)品設計與生產(chǎn)企業(yè)對客戶個性化需求的重視程度日益提高,面向客戶個性化需求的產(chǎn)品配置需要對客戶的需求進行快速、準確響應.如何快速獲取客戶實時需求,建立產(chǎn)品優(yōu)化設計的用戶滿意模型,并將之轉(zhuǎn)換成相應產(chǎn)品的功能需求,是進行產(chǎn)品配置的首要環(huán)節(jié)[1-2].
遺傳算法被廣泛認為是解決此類問題最有效的方法之一.由于遺傳算法不要求被優(yōu)化的目標函數(shù)連續(xù)和可微,并且能在容許的時間內(nèi)找到大規(guī)模優(yōu)化問題的滿意解,自提出以來便引起了國內(nèi)外眾多學者的廣泛關注,在算法的應用和理論研究方面,國內(nèi)諸多學者也進行深入研究,取得了豐碩的研究成果.Ozcelik等人提出一種遺傳算法在工業(yè)路線設計中的應用,指出單元構(gòu)成的重要性[3].Huang等人提出一種基于遺傳算法的具有共性的多層次產(chǎn)品族設計優(yōu)化問題,研制了一種多目標遺傳算法的同步產(chǎn)品變異設計[4].此外,遺傳算法與其他智能算法結(jié)合,拓展了遺傳算法的適用范圍.如遺傳算法與人工神經(jīng)網(wǎng)絡結(jié)合[5],鄒昊飛等人基于兩階段優(yōu)化算法的遺傳算法人工神經(jīng)網(wǎng)絡,并建立相應的預測模型進行實證研究,結(jié)果表明該模型能較大提高神經(jīng)網(wǎng)絡的全局收斂能力和收斂速度[6].遺傳算法與粒子群[7]、蟻群[8]等優(yōu)化算法的結(jié)合等.宋莉波等人針對柔性工作車間調(diào)度問題,提出了一種基于混合遺傳算法的求解方案,并在遺傳進化的過程中增加基于混沌序列的鄰域搜索功能, 以提高遺傳算法的執(zhí)行效率[9].
客戶需求中技術(shù)類和非技術(shù)類需求普遍共存,而非技術(shù)類需求在算法上一般體現(xiàn)為隱性指標,對其響應需要與客戶的頻繁交互,傳統(tǒng)的遺傳算法已經(jīng)對于解決隱性指標的優(yōu)化問題不再適用,從而本文引入交互式遺傳算法(interactive genetic algorithm,IGA).交互式遺傳算法是一種將人的主觀評價值作為個體適應度值的進化算法.特點是融入了人的智能,其個體的適應度值由用戶指定而非通過函數(shù),因而非常適合解決含隱式性能指標的優(yōu)化問題,現(xiàn)已廣泛應用于計算機圖形學[10-11]、工業(yè)設計[12-14]、音樂創(chuàng)作[15]、自動控制與機器人技術(shù)[16]等多個領域.然而IGA也存在限制,由于用戶通過人機界面指定個體的適應度,其頻繁的交互易引起用戶疲勞.因此,如何降低IGA中的用戶疲勞度便成為重點的研究方向.降低IGA用戶疲勞度的研究中,近年來的重點多集中在如何改進進化策略、提高適應值估算的效果[17-19],但是從降低評價誤差入手的研究目前仍然較少.Branke和Beyer等人認為普通遺傳算法中的噪聲主要產(chǎn)生于三方面: 決策變量,適應值的計算和優(yōu)化問題本身[20-21],而Jin和Di等人認為噪聲對進化過程的影響表現(xiàn)為:學習效率低,難以保留學習的信息,決策變量空間的利用能力受限,種群適應度值未隨進化代數(shù)的增加而提高[22,23].但是以上文獻并沒有注重探究用戶在進化過程中評價的心理過程,以及用戶的心理變化對于進化噪聲的影響.考慮到交互式遺傳算法是由人來評價個體的適應值,因此人的心理變化必然會對進化過程和結(jié)果產(chǎn)生影響,尤其是猶豫的感覺.一般優(yōu)化進化算法中的噪聲補償策略主要有3種[21-23]:增大種群規(guī)模,增加采樣次數(shù),取采樣的平均值,改進遺傳算子.因此,重復采樣技術(shù)提高個體適應度值是一般遺傳算法噪聲補償?shù)倪x擇策略.而在交互式遺傳算法中,大量重復地采樣評價,必然造成人的疲勞,從而影響到進度的效果.因而上述補償策略不適合于交互式遺傳算法,必須針對其算法特點和噪聲的特性研究降噪策略.針對于此,本文從研究用戶的評價心理過程出發(fā),提出了猶豫度概念,建立了猶豫度調(diào)整機制來降低噪聲.
在進行仿真實驗時,本文選擇汽車操控臺的概念設計來進行實驗.汽車的操控臺形式多樣,結(jié)構(gòu)比較復雜,用戶在評價時候通常帶有很高的主觀性,這是能突出交互式遺傳算法強大優(yōu)勢的應用領域,而且目前的汽車產(chǎn)品大部分還是處在大批量生產(chǎn)階段,沒有成熟的產(chǎn)品定制模式,因此本文試圖通過此方法,使得用戶能夠參與到汽車產(chǎn)品的設計中,同時相對于制造商,能充分利用企業(yè)自身的設計資源,達到大規(guī)模定制的目的.汽車操控臺的復雜性特點,導致配置算法求解時,在形成染色體的過程中很容易產(chǎn)生不滿足約束的個體,本文采用兩種約束處理策略——刪除策略和修改策略來解決約束問題.通過建立了汽車操控臺的設計系統(tǒng),驗證此方法能夠降低評價誤差,降低用戶疲勞度,提高算法結(jié)果的滿意度.
交互式遺傳算法求解傳統(tǒng)步驟如下:首先對需要優(yōu)化的問題的所有參數(shù)進行編碼,一個字符串代表一個染色體(每個染色體都表示一個可行解),所有染色體的集合稱為種群;然后以隨機方式產(chǎn)生一群初始解,通過人來賦予個體適應值,根據(jù)適應值大小使用遺傳算子(選擇、交叉、變異)對本代中的染色體進行遺傳進化操作,進入下一代種群,再由人來評價個體適應值,如此循環(huán)進化,直至得到滿意解或者強制結(jié)束.
傳統(tǒng)的交互式遺傳算法如圖1所示.
1.1 猶豫度的概念
交互式遺傳算法區(qū)別于普通遺傳算法的最大特點就是其個體的適應值不是由適應值函數(shù)求得,而是來自人的評價,因此,由于人的主觀因素和疲勞度的增加,對于相同的個體在不同的評價階段可能會有不同的適應值,即偏差,或噪聲.
按照交互時間的長短,評價過程可以分為認知階段、中間階段以及疲勞階段3個階段[18].
在用戶評價的認知階段,由于對于目標個體還不明確或者是只對于部分屬性明確,會使得評價結(jié)果與個體的真實適應值產(chǎn)生噪聲.而此時噪聲產(chǎn)生的主要原因是用戶對于理想個體還不明確,而這種對于理想個體“迷茫”的感覺體現(xiàn)在用戶心理就是“猶豫感”.因此,用戶在評價個體時,會產(chǎn)生不同程度的猶豫感.當用戶的理想個體還未明確,用戶的猶豫感比較強;而當用戶的理想個體明確之后,用戶的猶豫感就會比較弱.對于第t代第i個個體xi(t)的猶豫感的強烈程度可用猶豫度hi(t)來表示
(1)
圖1 傳統(tǒng)IGA的算法流程
Fig. 1 Traditional IGA process
1.2 猶豫度調(diào)整機制的原理
將待解決的問題描述為如下形式
maxf(x)
s.t.x∈S
f(x)即是用戶對于個體x評價的適應值,S是個體x的搜索空間.當產(chǎn)生噪聲時,用戶賦予個體xi的適應值f(xi)與其真實的適應值f’(xi)會有偏差,f(xi)≠f’(xi).對于偏差,當f(xi)
(2)
其中d(xi(t),xj)的實際含義是兩個個體xi(t)與xj之間的距離,即基因片段相似的程度.然后,應用此距離,得出與猶豫個體xi(t)距離較近的個體的集合
L(xi(t))={xj|d(xi(t),xj)≤d0,xj∈Ne}
(3)
其中Ne是已評價過的個體的集合,d0是反映兩個體之間距離的臨界值,預先設定.通過計算該集合中個體的平均適應值
驅(qū)動形式 ..................................................................后置后驅(qū)
(4)
來得出猶豫個體xi(t)的近似真實適應值f’(xi(t)),最后,利用此值調(diào)整用戶賦予個體xi(t)的適應值
f(xi(t))=f′(xi(t))
通過此過程,可以找出用戶產(chǎn)生猶豫的個體,并且通過計算與其相似個體的平均適應值來得出其近似的真實適應值f’(xi(t)), 然后調(diào)整其適應值,從而減少正負偏差,加速算法的進行,減少用戶疲勞度.
本文以客戶對于理想個體是否明確作為認識階段的分界點:當客戶對于理想個體不明確時,還處在認識階段,此時在用戶評價個體時應用猶豫度調(diào)整機制;當客戶對于理想個體明確了之后,便進入穩(wěn)定階段,此時不再應用猶豫度調(diào)整機制.
1.3 約束不滿足個體的處理
針對復雜產(chǎn)品特性,應用交互式遺傳算法進行配置求解時,很容易由于不滿足約束條件而產(chǎn)生不合理的個體,因此,約束不滿足問題也是困擾交互式遺傳算法的一個大問題.針對于此,本文應用兩種處理策略:刪除策略和修改策略.如圖2所示.
1)刪除策略是指將不滿足約束的個體直接刪除,不在交互界面中顯示.由于初始種群的生成是從大規(guī)模的種群中篩選出來的,因此大規(guī)模初始種群生成時可以使用刪除策略,將不滿足約束的個體直接刪除,而不會使得優(yōu)秀基因減少.而進化階段由于交互界面的限制,種群較小,如果將不滿足約束的個體直接刪除,可能會是某些優(yōu)秀的基因消失,不利于進化.因此,刪除策略只在生成初始種群時應用.
2)修改策略是指在進化過程中,對于交叉、變異形成的不滿足約束的個體,將其數(shù)量控制在一定范圍之內(nèi)(但不在交互界面中顯示,其適應度默認為平均值),對于超出范圍的個體進行修改.之所以將不滿足約束的個體保留一定數(shù)量,是因為不滿足約束的個體可能包含有具有優(yōu)勢的基因.修改是指根據(jù)事先建立好的約束數(shù)據(jù)庫中儲存的各種約束,按照IF-THEN規(guī)則將其不滿足約束的部件或模塊改成滿足約束的部件或模塊.修改策略應用在種群的進化過程中.
圖2 約束不滿足個體的處理
結(jié)合猶豫度調(diào)整機制和約束不滿足個體的處理方法,本文對于傳統(tǒng)的IGA進行了一些改進,提出基于猶豫度調(diào)整機制的IGA.
2.1 算法步驟
1)在初始階段,如果客戶目標個體的某些屬性已有確定的偏好,則系統(tǒng)會詢問并確定其偏好,從而鎖定基因類型,加速收斂.
2)初始種群的生成.針對復雜產(chǎn)品,如果種群規(guī)模較小,很容易陷入局部收斂,而若種群規(guī)模較大,則會大大增加客戶的疲勞度.本文提出一種折中的方法:隨機生成一個較大規(guī)模的種群,并對其進行交互評價,然后按適應值排序,取適應值高的前n個個體,并且在其余個體中隨機選出m個個體,共同組成初始種群.這個步驟的原理是如果只選擇適應值高的個體,可能會造成存在于適應值低的個體中的優(yōu)秀基因流失,而這個步驟可以有效的解決這個問題.
3)將遺傳進化分為兩階段:目標個體不明確階段和目標個體明確階段.在目標個體不明確階段,對于客戶的交互評價實施猶豫度調(diào)整機制,減少認識階段的噪聲,從而加速收斂.在目標個體明確階段,不再實施猶豫度調(diào)整機制,并提供手動配置功能,方便用戶自主配置.
4)對于約束不滿足的個體處理,在初始種群的生成階段,實施刪除策略;對于進化階段的新種群的生成,實施修改策略.
2.2 算法流程圖
如圖3所示.
圖3 基于猶豫度調(diào)整機制的IGA流程圖
Fig.3 IGA process based on hesitation degree adjusting mechanism
3.1 系統(tǒng)的建立
本文建立了汽車操控臺的概念設計系統(tǒng),以此來驗證算法的性能.
1)編碼模式.本系統(tǒng)用二進制來對操控臺進行編碼.如圖4所示,一條染色體(即一個產(chǎn)品)總體分為6個部分,分別對應操控臺的五大模塊和顏色模塊.每一部分又進一步分為若干基因,每一個基因的二進制代碼均代表一個具體的實例.圖4中中控臺的編碼001001001即代表“第一類GPS導航、DVD音響系統(tǒng)、6寸液晶顯示屏”的實例.
圖4 編碼模式
Fig.4 Coding pattern
2)約束的處理.對于操控臺的約束本文采用IF-THEN的結(jié)構(gòu)來表示,如表1所示.在產(chǎn)生初始種群的過程中,如果所產(chǎn)生的個體不滿足約束,那么直接刪除此個體,此即刪除策略;在進化過程中如果所產(chǎn)生的個體不滿足約束,那么保留一定數(shù)量的不滿足約束個體,以免優(yōu)秀基因流失,對于超出數(shù)量的不滿足約束個體按照約束規(guī)則進行修改,修改方法為用滿足約束的基因替換不滿足約束的基因.
表1 操控臺的部分約束
3)參數(shù)設置.初始大規(guī)模種群數(shù)量N0=45,初始種群中的n=6,m=3考慮到用戶評價每一代的時間和顯示器大小的限制,將每一代種群數(shù)量定為ng=9,截止進化代數(shù)G0=25,交叉與變異概率分別為0.8和0.07,約束修改策略中保留不滿足約束個體數(shù)量為2,適應值取0到100的整數(shù).猶豫度調(diào)整機制中合適的閥值h0和d0通過實驗來確定:在不同的h0和d0的數(shù)值下,系統(tǒng)獨立運行10次并取平均值,運行情況如表2和表3所示,可以看出當d0=0.7和h0=1.1時系統(tǒng)運行的時間最短,評價的代數(shù)也最少,然后通過分析其收斂性,如圖5和圖6,其中,縱坐標fitness是指每一代種群的平均適應值,橫坐標generation指的是系統(tǒng)運行的代數(shù),四條曲線分別代表不同h0和d0取值下的每代平均適應值的走勢,可以看到當d0=0.7和h0=1.1時收斂性也最好,因此可以確定h0和d0取值分別為1.1和0.7.
表2 不同h0的系統(tǒng)運行情況(d0=0.7)
圖5 不同取值的h0對系統(tǒng)的收斂性的影響
d0測試次數(shù)平均代數(shù)平均評價個體數(shù)平均運行時間0.41023.8214.286min52s0.51022.3200.779min18s0.61020.1180.972min25s0.71018.7168.369min46s0.81019.9179.171min12s0.91021.2190.876min08s
圖6 不同取值的d0對系統(tǒng)收斂性的影響
4)交互界面.本系統(tǒng)使用人性化的交互界面,提高客戶評價效率的同時減少疲勞度.如圖7所示,每一代種群數(shù)量為9,且同時顯示“目前最優(yōu)個體”和“上代最優(yōu)個體”兩個個體以供參考.在交互過程中,當客戶對于理想個體明確之后,可以點擊“目標個體明確”按鈕來終止猶豫度調(diào)整機制.
圖7 操控臺定制設計系統(tǒng)交互界面
Fig.7 Console customization system interface
3.2 對比實驗
為了研究此方法對于IGA的貢獻,將傳統(tǒng)IGA(TIGA)與基于猶豫度調(diào)整機制的IGA(HAM-IGA)對比,獨立運行20次.這兩種方法的運行性能如表4所示,HAM-IGA的平均進化代數(shù)只占TIGA的77.6%,運行時間縮短了21.5%,達到了加速收斂的效果,從而減少了用戶的疲勞度.
此后,進行了兩種方法的收斂性分析,如圖8所示,其中,縱坐標fitness指的是每一代種群的平均適應值,橫坐標generation指的是系統(tǒng)運行的代數(shù),兩條曲線分別代表TIGA和HAM-IGA這兩種方法下的每代平均適應值的走勢.從中可以看出,HAM-IGA比TIGA收斂性能要好,尤其是在前期(大概8,9代)效果非常明顯,通過分析HAM的應用對于系統(tǒng)運行的影響,如表5所示,發(fā)現(xiàn)平均在8.3代之前,應用HAM-IGA的系統(tǒng)都在使用HAM,因此證明HAM確實能夠有效降低評價噪聲,從而加速收斂.此外,應用HAM的階段是用戶對于目標個體不明確階段,而停止使用HAM是在用戶對于目標個體明確階段,這兩個階段的評價每代評價時間相差將近一倍,這說明當用戶對于目標個體明確之后,會有目的的來進行評價,從而減少每個個體的評價時間.
最后,進行HAM-IGA與TIGA的滿意度對比,首先將系統(tǒng)的最終結(jié)果分為三類:第一類是由于沒有在規(guī)定代數(shù)能發(fā)現(xiàn)最優(yōu)個體,而由系統(tǒng)強制停止;第二類是由于用戶感到非常疲勞,不愿去找最優(yōu)個體,而選擇比較滿意的個體(cool one);第三類是成功找到了最優(yōu)個體,如圖9所示,其中,橫坐標指的是以上三類情況,縱坐標代表每一類情況在所有測試結(jié)果中所占的比例,從圖中可以看出,第一類和第二類的情況HAM-IGA比TIGA分別少40%和62.5%,而對于第三類情況,HAM-IGA比TIGA提高了100%,由此可以看出,HAM有效的提高了IGA的成功率,提高了用戶的滿意度.
表4 HAM-IGA與TIGA的性能對比
表5 HAM的應用對于系統(tǒng)運行的影響
圖8 HAM-IGA與TIGA的收斂性比較
圖9 HAM-IGA與TIGA滿意度對比
本文在交互式遺傳算法的領域提出猶豫度的概念,根據(jù)此概念建立了猶豫度調(diào)整機制,用于補償由于用戶猶豫產(chǎn)生的評價噪聲,從而改善交互式遺傳算法的首要問題——用戶疲勞度問題.然后選擇汽車操控臺的概念設計作為實驗對象,根據(jù)汽車操控臺的復雜性特點,采用兩種約束處理方法——刪除策略和修改策略以改善交互式遺傳算法的約束滿足問題.最后,基于此方法建立汽車操控臺概念設計系統(tǒng),并通過多次試驗,分析試驗結(jié)果,發(fā)現(xiàn)此方法能夠有效的降低評價過程中,尤其是評價前期中的評價噪聲,從而減少用戶的評價代數(shù)和評價時間,避免由于長時間的評價而產(chǎn)生的用戶疲勞,同時此方法能夠明顯的提高用戶對于系統(tǒng)結(jié)果的滿意度.在后續(xù)的研究中,將繼續(xù)深入研究猶豫度的概念,完善猶豫度調(diào)整機制,更加有效地減少評價噪聲,以提高用戶的滿意度.
[1]唐加福, 汪定偉, 劉士新, 等. 產(chǎn)品優(yōu)化設計的用戶滿意模型[J]. 管理科學學報, 2003, 6(3): 46-51. Tang Jiafu, Wang Dingwei, Liu Shixin, et al. Study on relationships between manager’s behavior and managerial performance[J]. Journal of Management Sciences in China, 2003, 6(3): 45-51.(in Chinese)
[2]經(jīng)有國, 但 斌, 張旭梅, 等. MC 半結(jié)構(gòu)化客戶需求信息表達與處理方法[J]. 管理科學學報, 2011, 14(1): 78-85. Jing Youguo, Dan Bin, Zhang Xumei, et al.X Expressing and processing approach for semi-structured customer needs under mass customization[J]. Journal of Management Sciences in China, 2011, 14(1): 78-85. (in Chinese)
[3]Ozcelik F, Sarac T. A genetic algorithm extended modified sub-gradient algorithm for cell formation problem with alternative routings[J]. International Journal of Production Research, 2012, 50(15): 4025-4037.
[4]Huang G Q, Li L, Schulze L. Genetic algorithm-based optimization method for product family design with multi-level commonality[J]. Journal of Engineering Design, 2008, 19(5): 401-416.
[5]Haq A N, Ramanan T R. A hybrid neural network-genetic algorithm approach for permutation flow shop scheduling[J]. International Journal of Production Research, 2010, 48(14): 4217-4231.
[6]鄒昊飛, 夏國平, 楊方廷. 基于兩階段優(yōu)化算法的神經(jīng)網(wǎng)絡預測模型[J]. 管理科學學報, 2006, 9(5): 28-35. Zou Haofei, Xia Guoping, Yang Fangting. Neural network forecasting model using multi-stage optimization approach based on GMDH and genetic algorithm[J]. Journal of Management Sciences in China, 2006, 9(5): 28-35. (in Chinese)
[7]Kuo R J. Integration of genetic algorithm and particle swarm optimization for investment portfolio optimization[J]. Applied Mathematics & Information Sciences, 2013, 7(6): 2397-2408.
[8]Gao Zhijun. A genetic ant colony algorithm for routing in CPS heterogeneous network[J]. International Journal of Computer Applications in Technology, 2013, 48(4): 288-296.
[9]宋莉波, 徐學軍, 孫延明, 等. 一種求解柔性工作車間調(diào)度問題的混合遺傳算法[J]. 管理科學學報, 2010, 13(11): 49-54. Song Libo, Xu Xuejun, Sun Yanming, et al. A hybrid genetic algorithm for flexible job shop scheduling problem[J]. Journal of Management Sciences in China, 2010, 13(11): 49-54.(in Chinese)
[10]Yoon D M, Kim K J. 3D Game Model and Texture Generation using Interactive Genetic Algorithm[C]. WASA’12 Proceedings of the Workshop at SIGGRAPH Asia, Singapore, 2012: 53-58.
[11]Munteanu C, Morales F C, Ruiz-Alzola J. Speckle reduction through interactive evolution of a general order statistics filter for clinical ultrasound imaging[J]. IEEE Trans. on Biomedical Engineering, 2008, 55(1): 365-369.
[12]Brintrup A M, Ramsden J, Takagi H, et al. Ergonomic chair design by fusing qualitative and quantitative criteria using interactive genetic algorithms[J]. IEEE Trans. on Evolutionary Computation, 2008, 12(3): 343-354.
[13]Nathan-Roberts D, Liu Yili. Investigation of RelativeMobile Phone Size Preference Using Interactive Genetic Algorithms[C]. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, San Diego: 2010: 1807-1811.
[14]Bandte O, Malinchik S. A broad and narrow approach to interactive evolutionary design: An aircraft design example[J]. Applied Soft Computing, 2009, 9(1): 448-455.
[15]Zhu H, Wang S F, Wang Z. Emotional music generation using interactive genetic algorithm[C]. Int Confon Computer Science and Software Engineering, Wuhan, 2008: 345-348.
[16]Babbar-Sebensa M, Minskerb B S. Interactive genetic algorithm with mixed initiative interaction for multi-criteria ground water monitoring design[J]. Applied Soft Computing, 2012, 12: 182-195.
[17]Wang L H. A comparison of three fitness prediction strategies for interactive genetic algorithms[J]. Journal of Information Science and Engineering, 2007, 23(2): 605-616.
[18]Sun Xiaoyan, Gong Dunwei, Zhang Wei. Interactive genetic algorithms with large population and semi-supervised learning[J]. Applied Soft Computing, 2012, 12: 3004-3013.
[19]Babbar-Sebensa M, Minskerb B S. Interactive genetic algorithm with mixed initiative interaction for multi-criteria ground water monitoring design[J]. Applied Soft Computing, 2012, 12: 182-195.
[20]Branke J, Schmidt C. Sequential Sampling in Noisy Environments[M]//Lecture Notes in Computer Science, Berlin: Springer, 2004: 202-211.
[21]Beyer H G. Actuator noise in recombinant evolution strategies on general quadratic fitness models[C]//Proceedings of Genetic and Evolutionary Computation Conf(GECCO2004), Seattle: Springer, 2004: 654-665.
[22]Jin Yaochu, Branke Jürgen. Evolutionary optimization in uncertain environments: A survey[J]. IEEE Transactions on Evolutionary Computation, 2005, 9(3): 303-317.
[23]Di Pietro A, While L. Applying evolutionary algorithms to problems with noisy, time-consuming fitness functions[C]. Proceedings of the 2004 Congress on Evolutionary Computation, Portland: [s.n.], 2004: 1254-1261.
Interactive genetic algorithm based on customer demand
DOURun-liang,GUOJun-peng,TIANXiang-long,ZONGChao
Collage of Management and Economics, Tianjin University, Tianjin 300072, China
s: To solve the problem of evaluation noise in the interactive genetic algorithm (IGA), the concept of hesitancy degree is put forward, hesitancy degree adjustment mechanism is set up, and the deletion strategy and modification strategy are applied to handle the unsatisfied individuals generated in the process of initial population generation, crossover and mutation. By emulating the concept design of car console, the interactive interface with humanization is established to validate the advance and rationality of the method system brought forward in the paper. The experiment shows that the IGA can effectively reduce the evaluation noise, speed up the convergence, lower the fatigue degree and increase users’ satisfaction about the result.
interactive genetic algorithm; hesitancy degree; evaluation noise; constraint handling; fatigue degree
2013-07-16;
2015-11-04.
國家自然科學基金資助項目(71201115).
竇潤亮(1977—), 男, 天津人, 博士, 副教授. Email: drl@tju.edu.cn
F49
A
1007-9807(2016)01-0024-11