饒梓葉,蘇 暢,李 林,2,項(xiàng)勇樑,周敏玲,徐建良,陳奕宏,李玉科,2
(1.杭州師范大學(xué)理學(xué)院 浙江 杭州 310036; 2.杭州師范大學(xué)杭州市量子物質(zhì)重點(diǎn)實(shí)驗(yàn)室, 浙江 杭州 310036)
?
Sr1-xLnxFBiS2(Ln=La,Ce)體系的超導(dǎo)電性
饒梓葉1,蘇暢1,李林1,2,項(xiàng)勇樑1,周敏玲1,徐建良1,陳奕宏1,李玉科1,2
(1.杭州師范大學(xué)理學(xué)院 浙江 杭州 310036; 2.杭州師范大學(xué)杭州市量子物質(zhì)重點(diǎn)實(shí)驗(yàn)室, 浙江 杭州 310036)
摘要:在新發(fā)現(xiàn)的SrFBiS2體系摻雜稀土元素鑭和鈰,利用固相反應(yīng)法成功合成出Sr0.5Ln0.5FBiS2(Ln=La,Ce)多晶樣品.通過(guò)X射線衍射、電阻和磁化強(qiáng)度測(cè)量,發(fā)現(xiàn)母體樣品SrFBiS2是一個(gè)半導(dǎo)體,通過(guò)La或者Ce摻雜后,Sr0.5Ln0.5FBiS2(Ln=La,Ce)在2.8K展現(xiàn)出大塊超導(dǎo)電性.同時(shí),研究發(fā)現(xiàn)Sr0.5Ce0.5FBiS2先在7.5K形成鐵磁序,然后在2.8K進(jìn)入超導(dǎo)態(tài),是一個(gè)鐵磁超導(dǎo)體.這些結(jié)果對(duì)研究BiS2基超導(dǎo)機(jī)制以及鐵磁與超導(dǎo)共存的內(nèi)在聯(lián)系具有重要意義.
關(guān)鍵詞:超導(dǎo)電性;摻雜; BiS2基超導(dǎo)體;鐵磁超導(dǎo)體
最近報(bào)道了一個(gè)新的BiS2基化合物SrFBiS2[16],它與LaOFeAs和SrFFeAs類(lèi)似,都是通過(guò)SrF層替換LaO層從而得到新的同構(gòu)化合物.通過(guò)電阻率測(cè)試SrFBiS2顯示出半導(dǎo)體行為,可能是新的超導(dǎo)體的母體.因此,本文在SrFBiS2系統(tǒng)中Sr位摻雜稀土元素La和Ce,體系在Tc為2.8K出現(xiàn)超導(dǎo)電性,而且在Sr0.5Ce0.5FBiS2樣品體系經(jīng)歷了7.5K的鐵磁轉(zhuǎn)變與2.8K的超導(dǎo)電性兩種序共存的奇特現(xiàn)象.
1樣品的制備和測(cè)試
SrFBiS2和Sr0.5Ln0.5FBiS2(Ln=La,Ce)多晶樣品是采用傳統(tǒng)的固相反應(yīng)法合成.初始原料為高純度(≧99.9%)的La和Ce粉,SrF2粉末、SrS粉末、Bi粉末、和S粉末.首先合成中間產(chǎn)物L(fēng)n2S3(Ln=La,Ce),按化學(xué)計(jì)量比將用到的La粉(Ce粉)與S粉混合均勻,將樣品置于石英管中抽真空密封,然后在600 ℃燒結(jié)10 h;第二步,將中間產(chǎn)物L(fēng)n2S3(Ln=La,Ce)與SrF2、SrS、Bi粉、S粉按化學(xué)計(jì)量比稱量,在瑪瑙研缽中混合均勻后壓片,抽真空密封.然后將密封好的樣品放在高溫爐中800 ℃燒結(jié)10 h.
樣品的晶體結(jié)構(gòu)特征是在室溫下用Cu靶材的D/MaxrA粉末X射線衍射(XRD)來(lái)確定.用Rietveld擬合的方法來(lái)獲得晶格常數(shù).電阻率的測(cè)試是用內(nèi)置He3制冷的Quatum Design PPMS-9系統(tǒng)用標(biāo)準(zhǔn)的四引線法測(cè)量,測(cè)試溫度范圍為0.4~300K.樣品的直流磁化率與溫度的關(guān)系是通過(guò)Quatum Design MPMS-7系統(tǒng)測(cè)試完成.
圖1 SrFBiS2和Sr0.5Ln0.5FBiS2(Ln=La,Ce)樣品的粉末X射線衍射圖譜及SrFBiS2的晶體結(jié)構(gòu)簡(jiǎn)圖Fig. 1 X-ray diffraction pattern of the SrFBiS2powder, the Sr0.5Ln0.5FBiS2(Ln=La,Ce) powder andthe schematic map of SrFBiS2crystal structure
2結(jié)果與討論
X射線衍射是確定樣品質(zhì)量的一種重要方法,圖1(a)是母體SrFBiS2和Sr0.5Ln0.5FBiS2(Ln=La,Ce)樣品的粉末X射線衍射圖譜.從圖1(a)可以看出,三個(gè)樣品的主要衍射峰都能夠通過(guò)P4/nmm空間結(jié)構(gòu)的四方晶體結(jié)構(gòu)進(jìn)行很好的指標(biāo)化,少量未能指標(biāo)化的衍射峰是Bi2S3雜相.通過(guò)Rietveld擬合計(jì)算出雜相Bi2S3在母體SrFBiS2、Sr0.5La0.5FBiS2和Sr0.5Ce0.5FBiS2中的含量分別是15%、12%和10%.擬合出的母體SrFBiS2的晶格常數(shù)與之前的報(bào)道[13]一致,而Sr0.5La0.5FBiS2和Sr0.5Ce0.5FBiS2樣品的晶格參數(shù)與母體化合物相比,原胞體積分別減小了3.4%和4.1%,表明La和Ce確實(shí)摻雜進(jìn)晶格中(晶體參數(shù)等數(shù)據(jù)見(jiàn)表1).
表1 SrFBiS2、Sr0.5La0.5FBiS2和Sr0.5Ce0.5FBiS2樣品的晶格常數(shù)和原胞體積
圖2是母體SrFBiS2和Sr0.5Ln0.5FBiS2(Ln=La,Ce)樣品的電阻率與溫度的關(guān)系圖.對(duì)于母體樣品SrFBiS2隨溫度降低電阻率顯示出熱激發(fā)行為,在溫度區(qū)間2~300K沒(méi)有發(fā)現(xiàn)電阻率的異常.在溫度區(qū)間100~300K通過(guò)擬合熱激發(fā)公式ρ(Τ)=ρ0exp(Εa/κΒΤ)計(jì)算出熱激發(fā)能Εa為38.2meV,這與之前的研究[16]一致.當(dāng)Sr位被La(或Ce)部分替換(x=0.5)時(shí),高溫時(shí)樣品的電阻率行為與母體一樣,保持類(lèi)似半導(dǎo)體行為,但Sr0.5Ln0.5FBiS2(Ln=La,Ce)樣品電阻率的數(shù)量級(jí)大大降低,其激活能也隨摻雜逐漸減小,這是由于電子的引入導(dǎo)致帶隙減小的緣故.進(jìn)一步降低溫度,可以清楚地看到樣品的電阻率在2.8K急劇減小到零,樣品出現(xiàn)超導(dǎo)電性.這些結(jié)果表明,將La和Ce摻雜到晶格中引入載流子,能夠使體系出現(xiàn)超導(dǎo)電性.
圖2 母體SrFBiS2和Sr0.5Ln0.5FBiS2(Ln=La,Ce)樣品的電阻率與溫度的關(guān)系Fig. 2 Temperature dependence of resistivity of matrixSrFBiS2andSr0.5Ln0.5FBiS2(Ln=La,Ce) samples
圖3 不同磁場(chǎng)強(qiáng)度下Sr0.5Ce0.5FBiS2樣品的電阻率與溫度的關(guān)系Fig. 3 Temperature dependence of resistivity of sampleSr0.5Ce0.5FBiS2under several constant magnetic fields
隨著磁場(chǎng)強(qiáng)度增加,超導(dǎo)轉(zhuǎn)變會(huì)變得更寬,Tc則趨向更低溫.從圖 3可以看到,當(dāng)磁場(chǎng)強(qiáng)度達(dá)到1T時(shí)超導(dǎo)被完全抑制,此時(shí)樣品電阻率表現(xiàn)為近似半導(dǎo)體行為.當(dāng)磁場(chǎng)強(qiáng)度增加至9 T時(shí),樣品電阻率顯示出負(fù)的磁阻,這進(jìn)一步證明鐵磁序與超導(dǎo)共存于該樣品中.選擇電阻率為正常態(tài)電阻率90%時(shí)的溫度為樣品Tc,文章研究了樣品的上臨界場(chǎng)μ0Ηc2(Τ)與溫度的關(guān)系(圖3中小圖).根據(jù)金茲堡-朗道理論,上臨界場(chǎng)Ηc2與溫度的關(guān)系滿足公式:
Hc2=Hc2(0)(1-t2)(1+t2),
(1)
公式中t表示T/Tc.根據(jù)這個(gè)模型擬合出Sr0.5Ce0.5FBiS2樣品的上臨界場(chǎng)是1.03T.
為了進(jìn)一步研究樣品的超導(dǎo)特性,本文測(cè)試了樣品在5 Oe磁場(chǎng)強(qiáng)度環(huán)境零場(chǎng)冷(ZFC)和場(chǎng)冷(FC)兩種模式下的直流磁化率與溫度的關(guān)系.可以看到Sr0.5La0.5FBiS2樣品顯示出很強(qiáng)的抗磁信號(hào),由磁化率所決定樣品的Tc與電阻率測(cè)試樣品Tc一致,說(shuō)明樣品的質(zhì)量和純度很高.對(duì)于Sr0.5Ce0.5FBiS2樣品,低于7.5K時(shí)可以看到磁化率快速地增加,ZFC和FC明顯分開(kāi),這是Ce的4f電子形成的長(zhǎng)程鐵磁有序或者是形成小的鐵磁簇[17]所導(dǎo)致.當(dāng)溫度繼續(xù)下降,可以看到2.8K時(shí)由超導(dǎo)轉(zhuǎn)變引起的ZFC和FC數(shù)據(jù)明顯減小.這進(jìn)一步說(shuō)明鐵磁有序與超導(dǎo)確實(shí)存在于Sr0.5Ce0.5FBiS2樣品中.
測(cè)試Sr0.5Ce0.5FBiS2樣品在不同溫度下的磁滯回線(圖5)可以進(jìn)一步驗(yàn)證樣品的鐵磁性.在2K時(shí)可以看到清晰的磁滯回線,說(shuō)明在這個(gè)樣品中確實(shí)存在著鐵磁有序.隨溫度升高,樣品的磁滯回線逐漸收縮并在10K時(shí)消失,這與圖4中樣品的磁化率測(cè)試結(jié)果一致.在更高強(qiáng)度磁場(chǎng)情況下(圖5中小圖)可以看到Sr0.5Ce0.5FBiS2樣品磁化強(qiáng)度單調(diào)增加,然后趨于飽和.最大的飽和磁矩為0.95μB,這與具有鐵磁關(guān)聯(lián)[18-19]的CeFe(Ru)PO[19-21]和CeO0.95F0.05FeAs1-xPx[18]相似.
圖4 Sr0.5Ln0.5FBiS2(Ln=La,Ce)樣品的磁化率與溫度的關(guān)系圖Fig. 4 Temperature dependence of magnetic susceptibilityfor Sr0.5Ln0.5FBiS2(Ln=La,Ce) samples
圖5 不同溫度下Sr0.5Ce0.5FBiS2樣品的等溫磁化曲線Fig. 5 Isothermal magnetization of Sr0.5Ce0.5FBiS2at several different temperatures
3結(jié)論
本文通過(guò)固相反應(yīng)法成功合成了具有ZrCuSiAs晶體結(jié)構(gòu)類(lèi)型的多晶樣品SrFBiS2和Sr0.5Ln0.5FBiS2(Ln=La,Ce).通過(guò)XRD射線衍射、電阻率和磁化強(qiáng)度測(cè)試,發(fā)現(xiàn)樣品SrFBiS2和Sr0.5Ln0.5FBiS2(Ln=La,Ce)的電阻率在高溫部分表現(xiàn)出半導(dǎo)體行為,其激活能大小隨摻雜的增加而減小.進(jìn)一步降低溫度,Sr0.5Ln0.5FBiS2(Ln=La,Ce)樣品在2.8K時(shí)出現(xiàn)超導(dǎo)轉(zhuǎn)變,且磁化率測(cè)試出現(xiàn)較強(qiáng)的邁斯納效應(yīng)證實(shí)其大塊的超導(dǎo)體.在Sr0.5Ce0.5FBiS2樣品中發(fā)現(xiàn)了在7.5K的鐵磁序與2.8K時(shí)的超導(dǎo)電性共存的奇特現(xiàn)象.這些研究結(jié)果對(duì)進(jìn)一步理解BiS2基超導(dǎo)機(jī)制和配對(duì)對(duì)稱性提供重要的參考價(jià)值.
參考文獻(xiàn):
[1] BEDNORZ J G, MULLER K A. Possible High Tc Superconductivity in the Ba-La-Cu-O System[J]. Z Phys B,1986,64(2):189-193.
[2] ARDAVAN A, BROWN S, KAGOSHIMA S, et al. Recent Topics of Organic Superconductors[J]. J Phys Soc Jpn,2012,81(1):011004.
[3] NAGAMATSU J, NAKAGAWA N, MURANAKA T, et al. Superconductivity at 39K in magnesium diboride[J]. Nature,2001,410(6824):63-64.
[4] KAMIHARA Y, WATANABE T, HURANO M, et al. Iron-Based Layered Superconductor La[O1-xFx]FeAs (x=0.05-0.12) with Tc=26 K[J].J Am Chem Soc,2008,130(11):3296-3297.
[5] MIZUGUCHI Y, FUJIHISA H, GOTOH Y, et al. BiS2-based layered superconductor Bi4O4S3[J]. Phys Rev B,2012,86(22): 220510.
[6] MIZUGUCHI Y, DEMURA S, DEGUCHI K, et al. Superconductivity in Novel BiS2-Based Layered Superconductor LaO1-xFxBiS2[J].J Phys Soc Jpn,2012,81(11):114725.
[7] DEMURA S, MIZUGUCHI Y, DEGUCHI K, et al. New Member of BiS2-Based Superconductor NdO1-xFxBiS2[J]. J Phys Soc Jpn,2013,82(3):033708.
[8] AWANA V P S, KUMAR A, JHA R, et al. Appearance of superconductivity in new BiS2based layered LaO0.5F0.5BiS2[J]. Solid StateCommun. 2013,157:21-23.
[9] XING J, LI S, DING X, et al. Superconductivity appears in the vicinity of semiconducting-like behavior in CeO1-xFxBiS2[J].Phys Rev B, 2012, 86(21):214518.
[10] JHA R, KUMAR A, SINGH S K, et al. Synthesis and superconductivity of new BiS2based superconductor PrO0.5F0.5BiS2[J]. J Supercond Nov Magn,2013,26(3):499-502.
[11] WANG G T, LIU C, ZHANG H P, et al. The electronic structure of novel BiS2-based layered superconductor [J].Physica C, Superconductivity, 2013, 495:114-117.
[12] LI B, XING Z W, HUANG G Q. Phonon spectra and superconductivity of the BiS2based compounds LaO1-xFxBiS2[J].Europhys Lett,2013,101(4):47002.
[13] WOLOWIEC C T, YAZICI D, WHITE B D, et al. Pressure-induced enhancement of superconductivity and suppression of semiconducting behavior in LnO0.5F0.5BiS2(Ln=La,Ce) compounds [J].Phys Rev B,2013, 88(6):064503.
[14] LIANG Y, WU X, TSAI W F, et al. Pairing symmetry in layered BiS2compounds driven by electron-electron correlation [J]. Frontiers Phys,2014,9(2):194-199.
[15] YILDIRIM T. Ferroelectric soft phonons, charge density wave instability, and strong electron-phonon coupling in BiS2layered superconductors: A first-principles study[J]. Phys Rev B,2013, 87(2):020506.
[16] LEI H, WANG K, ABEYKOON M, et al. New Layered Fluorosulfide SrFBiS2[J]. Inorg Chem, 2013,52(18):10685-10689.
[17] PANMAND R P, KULKARNI M V, VALANT M, et al. Quantum confinement of Bi2S3in glass with magnetic behavior [J].AIP Adv,2013,3(2):022123.
[18] LUO Y K, HAN H, JIANG S, et al. Interplay of superconductivity and Ce 4f magnetism in CeFeAs1-xPxO0.95F0.05[J]. Phys Rev B,2011,83(5):054501.
[19] BRüNING E M, KRELLNER C, BAENITZ M, et al. CeFePO: A heavy fermion metal with ferromagnetic correlations[J]. Phys Rev Lett,2008,101(11):117206.
[20] KRELLNER C, KINI N S, BRüNING E M, et al. CeRuPO: A rare example of a ferromagnetic Kondo lattice[J]. Phys Rev B,2007,76(10):104418.
[21] CHI S X, ADROJA D T, GUIDI T, et al. Crystalline Electric Field as a Probe for Long-Range Antiferromagnetic Order and Superconducting State of CeFeAsO1-xFx[J]. Phys Rev Lett,2008,101(21): 217002.
第15卷第1期2016年1月杭州師范大學(xué)學(xué)報(bào)(自然科學(xué)版)JournalofHangzhouNormalUniversity(NaturalScienceEdition)Vol.15No.1Jan.2016
Superconductivity in Sr1-xLnxFBiS2(Ln=La,Ce) System
RAO Ziye1, SU Chang1, LI Lin1,2, XIANG Yongliang1, ZHOU Minling1, XU Jianliang1,
CHEN Yihong1, LI Yuke1,2
(1.School of Science, Hangzhou Normal University, Hangzhou 310036, China; 2.Hangzhou Key Laboratory of Quantum Matter,
Hangzhou Normal University, Hangzhou 310036, China)
Abstract:Through solid state reaction method, the Sr0.5Ln0.5FBiS2(Ln=La,Ce) polycrystalline samples are synthesized using rare earth elements Lanthanum and Cerium doping into Sr site. The X-ray diffraction measurement, electrical transport and magnetic susceptibility measurements show that the parent sample SrFBiS2is a semiconductor. La or Ce doping can induce superconductivity at about 2.8 K in Sr0.5Ln0.5FBiS2(Ln=La,Ce). Meanwhile, Sr0.5Ce0.5FBiS2not only orders ferromagnetically below 7.5K, but exhibits superconductivity at 2.8K, implying the coexistence of superconductivity and ferromagnetism. Those findings play an important role in studying the superconducting mechanism in the BiS2-based superconductors as well as the relationship between superconductivity and ferromagnetism.
Key words:superconductivity; doping; BiS2-based superconductors; ferromagnetic superconductor
文章編號(hào):1674-232X(2016)01-0057-05
中圖分類(lèi)號(hào):O469
文獻(xiàn)標(biāo)志碼:A
doi:10.3969/j.issn.1674-232X.2016.01.011
通信作者:李玉科(1982—),男,副教授,博士,主要從事超導(dǎo)和強(qiáng)關(guān)聯(lián)體系研究.E-mail:yklee@hznu.edu.cn
基金項(xiàng)目:國(guó)家級(jí)大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃創(chuàng)新項(xiàng)目(201510346011).
收稿日期:2015-07-16