国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

談如何使學生的數學知識系統(tǒng)化

2016-03-03 22:05:44江蘇宿遷市實驗學校223800
小學教學參考 2016年26期
關鍵詞:系統(tǒng)化分母小數

江蘇宿遷市實驗學校(223800) 高 蓓

談如何使學生的數學知識系統(tǒng)化

江蘇宿遷市實驗學校(223800) 高蓓

數學是一門邏輯性很強,前后知識聯系很緊密的學科。在數學教學中,教師要注重幫助學生建立新舊知識的聯系,幫助學生形成一定的知識系統(tǒng),使學生的思維更加有序。

小學數學知識系統(tǒng)化有序

弗賴登塔爾說:“數學是系統(tǒng)化了的常識?!痹诮虒W中,教師要幫助學生把零散的數學知識形成知識系統(tǒng),就要使學生的數學知識形成點、線、面,注重溝通新舊知識的聯系,使之系統(tǒng)化。

一、注重新舊知識的聯系,讓知識螺旋式上升

從教材的編排來看,小學數學教材是以螺旋形上升的結構方式來進行編寫的。如分數的初步認識,安排在三年級,而到了五年級,進一步學習分數的意義,新舊知識的聯系就非常密切。因此,在五年級分數的學習中,若能以舊知引出新知,學生就能學得相對輕松。

又如,學習分數的基本性質時,學生通過舉例發(fā)現了“分數的分子和分母同時乘或除以一個相同的數(0除外),分數的大小不變的規(guī)律。”此時,就可以告訴學生:這就是我們今天這一課要學習的分數的基本性質。隨后,我引導學生回顧以前所學的與分數的基本性質類似的性質。學生想到了商不變規(guī)律。接著,我讓學生用除法中商不變的規(guī)律來分析說明分數的基本性質,被除數相當于分數的分子,除數相當于分數的分母,被除數和除數同時乘或除以一個相同的數(0除外),商不變,也就是分數的分子和分母同時乘或除以一個相同的數(0除外)分數大小不變。再接著,我追問:“在小數里有沒有類似的性質?”學生聯想到小數的性質:在小數的末尾添上0或者去掉0,小數的大小不變?!靶档男再|跟分數的基本性質有關么?”我繼續(xù)引導學生聯系小數的性質來分析分數的基本性質,學生通過分析發(fā)現:小數可以化成分母是10、100、1000…的分數,去掉小數末尾的0,就是相當于把這個分數的分子分母同時除以10、100、1000…反之,小數的末尾添上0也就是相當于把這個分數的分子分母同時乘10、100、1000…至此,學生得出結論:無論整數、小數、分數,原來它們的知識都是相通而不是孤立存在的。

數學是一門邏輯性很強,前后知識聯系很緊密的學科。所以,教師要幫助學生建立新舊知識的聯系,促進學生的知識遷移,為學生形成新的知識結構服務。

二、多角度多維度呈現知識,不同知識點間相互滲透

既然數學知識都不是孤立存在的,我們就可以從多個角度去呈現某一知識。例如,在數的認識中,無論是自然數的認識、小數的認識、分數的認識,都可多角度地呈現各種數,使學生對數的認識從感性認識逐漸上升到理性抽象;還可以通過出示數軸,讓學生在數軸上找到各數,使學生對數的認識更深刻、更清晰,進一步發(fā)展學生的數感。

低年級的課堂上也可以滲透高年級的數學知識。比如教學“圖形的認識”,可以滲透“平面圖形”和“立體圖形”的概念,而在高年級的課堂,既可以把低年級的知識進行回顧和整理,如分數加減法教學時,俞正強老師就從整數小數的加減法開始,滲透的是“相同計數單位相加減”的計算法則;也可以滲透更難的數學知識,如教學“用字母表示數”中的a×a可以寫成a2時,我就滲透一些次冪的寫法:a×a×a可以寫成a3,a×a×a×a可以寫成a4……然后告訴學生這是中學里才學習的內容,他們不禁面露喜色,為自己能學習更高級的知識而興奮不已。這樣,學生在學習的過程中能夠邊學邊完善自己的知識系統(tǒng),他們的數學知識便像滾雪球般慢慢增大,而不是散落的沙子。

三、找到知識點的內在聯系,完整呈現知識結構圖

數學知識是有機聯系的,教師不能把這些知識孤立起來。例如,在教學“找規(guī)律”時,學生學習了植樹問題如何解決,在接觸路燈問題、鋸木問題、樓梯問題時,我讓學生思考:這些問題為什么都叫植樹問題?學生會發(fā)現,無論路燈問題、鋸木問題,還是樓梯問題,它們都與植樹問題有共同的特點,都像植樹一樣,按照間隔規(guī)律進行排列,所以,它們的解題策略是相同的。

我還讓學生把每個單元的知識進行整理,并在黑板上將這些知識點畫成一個結構圖,形成一個初步的單元知識系統(tǒng),并要求學生學會自己繪制單元知識樹,使他們將所學的知識點匯集起來,互相聯系,形成知識系統(tǒng)。

比如進行“年月日”單元整理時,首先在時間軸上用1~12各數表示12個月,依次劃出第一、第二、第三、第四季度,再劃出上半年、下半年,結構圖呈現之后,再對學生進行提問:上半年是哪幾個月,下半年包括哪幾個季度?學生在頭腦中也就形成了一個相對穩(wěn)定的單元知識結構圖,再次遇到這類問題,便可以很快解答了。

知識系統(tǒng)化是學習知識最基本的方法,學生唯有梳理好自己的知識系統(tǒng)才能真正掌握所學的知識內容。否則,學習有如盲人摸象,思維凌亂無序,解題也就相對容易產生困難。所以,教師在教學中要幫助學生形成一定的知識系統(tǒng),使學生的思維更加有條理。

(責編童夏)

G623.5

A

1007-9068(2016)26-047

猜你喜歡
系統(tǒng)化分母小數
堅持系統(tǒng)化思維 構建大安全格局
小數加減“四不忘”
“去括號與去分母”能力起航
我國古代的小數
小數的認識
小數的認識
系統(tǒng)化推進回遷提速
杭州(2020年23期)2021-01-11 00:54:44
“去括號與去分母”檢測題
“去括號與去分母”檢測題
電視欄目系統(tǒng)化包裝與宣傳
新聞傳播(2015年7期)2015-07-18 11:09:58
华坪县| 灵宝市| 习水县| 南投市| 玛多县| 会同县| 阜新市| 大竹县| 天台县| 通海县| 井陉县| 滕州市| 南昌县| 威信县| 盐源县| 盐津县| 盐山县| 朝阳市| 舒兰市| 勃利县| 泰州市| 柏乡县| 剑川县| 大渡口区| 漳浦县| 化德县| 金川县| 安陆市| 天镇县| 遵义市| 准格尔旗| 宁明县| 黎城县| 公安县| 敦煌市| 永修县| 姚安县| 金昌市| 米脂县| 两当县| 新和县|