国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

熱休克蛋白70在急性胰腺炎中的作用

2016-03-09 20:49:06洪育蒲綜述王衛(wèi)星審校
海南醫(yī)學(xué) 2016年11期
關(guān)鍵詞:腺泡活化胰腺炎

洪育蒲 綜述 王衛(wèi)星 審校

(武漢大學(xué)人民醫(yī)院普外科,湖北 武漢 430060)

·綜 述·

熱休克蛋白70在急性胰腺炎中的作用

洪育蒲 綜述 王衛(wèi)星 審校

(武漢大學(xué)人民醫(yī)院普外科,湖北 武漢 430060)

熱休克蛋白(HSPs)是廣泛存在于生物體內(nèi)的高度保守的一類應(yīng)激蛋白。HSP對(duì)各種刺激具有迅速的反應(yīng)能力,發(fā)揮抗炎、抗氧化、抗細(xì)胞凋亡以及分子伴侶等作用,在細(xì)胞的生長(zhǎng)發(fā)育、代謝分化、基因轉(zhuǎn)錄、維持組織細(xì)胞的自穩(wěn)和環(huán)境適應(yīng)性方面扮演著重要角色。而其中最受研究者關(guān)注的是HSP70,其在生理狀態(tài)下少量表達(dá),可通過熱預(yù)處理、藥物以及基因轉(zhuǎn)染等方法誘導(dǎo)其產(chǎn)生,從而發(fā)揮細(xì)胞保護(hù)作用。本文就HSP70在急性胰腺炎中的作用以及相關(guān)機(jī)理的研究進(jìn)展做一綜述。

熱休克蛋白;急性胰腺炎;機(jī)理

急性胰腺炎(Acute pancreatitis,AP)是多種病因引起的胰腺內(nèi)消化酶激活,導(dǎo)致胰腺組織自身消化的局部炎癥反應(yīng),病情較重者可進(jìn)展為全身炎癥反應(yīng)綜合征(Systemic inflammatory response syndrome,SIRS),并可伴有其他器官功能改變,甚至發(fā)生多器官功能障礙綜合征(MODS),是常見的急腹癥。

熱休克蛋白(Heat shock protein,HSP)廣泛存在于人、動(dòng)物、植物和微生物細(xì)胞中,是一類具有重要的生理功能和結(jié)構(gòu)上高度保守的多肽類蛋白質(zhì)分子家族[1]。HSP在蛋白質(zhì)的合成、折疊、凝集、轉(zhuǎn)運(yùn)和降解起到重要的分子伴侶作用,在維持細(xì)胞的自穩(wěn)和環(huán)境適應(yīng)性等方面扮演著重要角色。機(jī)體遭受組織損傷、缺血、缺氧、病原微生物感染、炎癥等均可引起細(xì)胞的應(yīng)激反應(yīng),從而誘導(dǎo)HSP的表達(dá),以維持細(xì)胞的正常生理功能,故又稱應(yīng)激蛋白[2]。其中HSP70是HSP家族中的重要成員,目前已知其結(jié)構(gòu)上最為保守,在大多數(shù)生物細(xì)胞中含量最多,且在機(jī)體應(yīng)激反應(yīng)中最為敏感。近年來一系列研究發(fā)現(xiàn),HSP70具有能保護(hù)細(xì)胞免受刺激損傷,促進(jìn)受損細(xì)胞自身進(jìn)行修復(fù)以及抗炎等作用,在急性胰腺炎保護(hù)中發(fā)揮著重要作用?,F(xiàn)就HSP70在急性胰腺炎中的保護(hù)作用的研究進(jìn)展予以綜述。

1 HSP70概述

1.1 HSP70的分類及結(jié)構(gòu) HSP70家族主要包含4類蛋白質(zhì)[3]:(1)誘導(dǎo)型HSP70,又稱HSP72,存在于細(xì)胞核,在正常細(xì)胞內(nèi)表達(dá)較少,其表達(dá)在細(xì)胞受到應(yīng)激原刺激后迅速增加,HSP70.1是編碼它的主要基因之一;(2)結(jié)構(gòu)型HSP70,即HSC70(Heat shock cognate protein 70)又稱HSP73,存在于胞漿,是在哺乳動(dòng)物所有細(xì)胞內(nèi)均能表達(dá)的結(jié)構(gòu)蛋白,發(fā)生應(yīng)激后僅有少量增加;(3)葡萄糖調(diào)節(jié)蛋白75(Glucose regulated protein 75,GRP75),是位于線粒體內(nèi)的分子伴侶,參與調(diào)控線粒體穩(wěn)態(tài)和致癌作用,又稱為死亡蛋白(Mortalin)[4];(4)葡萄糖調(diào)節(jié)蛋白78(GRP78),是位于內(nèi)質(zhì)網(wǎng)的伴侶蛋白,參與調(diào)控鈣穩(wěn)態(tài)與細(xì)胞凋亡,又稱為免疫球蛋白重鏈結(jié)合蛋白(Immunoglobulin heavy chain binding protein,BiP)。其中,HSP72和HSP73具有高度的序列同源性和相似的生物化學(xué)特性。

HSP70蛋白的一級(jí)結(jié)構(gòu)可分為3個(gè)功能域[5]:近N端為高度保守的氨基酸序列,分子量約44 kDa,為核苷酸結(jié)合域(Nucleotide biding domain,NBD),具有ATP酶活性,其保守性比羧基端更高,與不同生物的HSP70所共有的生化特性有關(guān);緊接著為保守的氨基酸序列,分子量約16 kDa,為多肽結(jié)合功能域(Polypeptide biding domain,PBD);近C端包含有結(jié)構(gòu)不明確的氨基酸序列,分子量約10 kDa,參與特定的蛋白底物相互作用。

1.2 HSP70的生物學(xué)特性及合成 HSP70家族具有以下生物學(xué)特性:(1)所有HSP70的ATP親和性較高,ATP酶活性較弱,NBD與ATP結(jié)合后發(fā)生構(gòu)象改變促使蛋白底物與PBD解離,ATP-HSP70對(duì)靶蛋白的親和性更高,形成HSP70蛋白復(fù)合體后穩(wěn)定結(jié)合[6];(2)其他HSP或細(xì)胞因子對(duì)HSP70蛋白復(fù)合體的形成起到輔助作用[7];(3)在蛋白穩(wěn)定構(gòu)象的形成、運(yùn)輸或降解過程中,HSP70需選擇性結(jié)合某些多肽或特殊蛋白;(4)HSP70家族具有結(jié)構(gòu)上高度保守的鈣調(diào)素結(jié)合域,保護(hù)靶蛋白不被降解[8]。

HSP70的合成主要受熱休克轉(zhuǎn)錄因子(Heat shock transcription factor 1,HSF1)的調(diào)控。在無應(yīng)激狀態(tài)下,HSF1以單體形式與HSP70結(jié)合形成復(fù)合物而使得活性受到抑制。當(dāng)細(xì)胞受到刺激,細(xì)胞內(nèi)的變性蛋白增加時(shí),HSF1單體從復(fù)合物上解離形成三聚體使得HSF1能夠轉(zhuǎn)位到核內(nèi),在核內(nèi)HSF1通過其絲氨酸殘基的磷酸化結(jié)合到HSP基因上的啟動(dòng)子熱休克元件上,從而激活HSP的轉(zhuǎn)錄及后續(xù)的翻譯過程[9-10]。

2 HSP70在急性胰腺炎中的作用

Frossard等[11]研究表明用電熱墊將大鼠體溫升高至42℃維持20 min,可以誘導(dǎo)胰腺內(nèi)HSP70表達(dá)增加,防止超大劑量蛙皮素引起的胰腺腺泡損傷,阻止胰蛋白酶原活化與胰蛋白酶激活肽(TAP)產(chǎn)生。此外,HSP70在精氨酸和?;悄懰徕c誘導(dǎo)的急性胰腺炎動(dòng)物模型中也有保護(hù)作用[12-13]。

Bhagat等[14]應(yīng)用HSP70反義引物注射到大鼠體內(nèi),熱應(yīng)激誘導(dǎo)的HSP70表達(dá)受到抑制,超大劑量蛙皮素刺激得以恢復(fù)激活胰腺內(nèi)胰蛋白酶原的能力,淀粉酶(AMY)和TAP水平升高,使得熱應(yīng)激預(yù)處理失去保護(hù)作用,同時(shí)在未經(jīng)熱應(yīng)激預(yù)處理的大鼠中,HSP70反義引物加劇了胰腺炎的嚴(yán)重程度。并且進(jìn)一步以熱休克因子-1(HSF-1)敲除和HSP70過表達(dá)轉(zhuǎn)基因小鼠來證明HSP70的保護(hù)作用[15],HSF-1敲除小鼠胰腺炎程度較野生型小鼠嚴(yán)重,HSP70過表達(dá)轉(zhuǎn)基因小鼠胰腺炎得到緩解。Hwang等[16]報(bào)道,在蛙皮素注射前,HSP70.1基因敲除小鼠與野生型小鼠相比,前者胰蛋白酶基礎(chǔ)活性、酶原與溶酶體的組織蛋白酶B比例均增高,進(jìn)而可自發(fā)性發(fā)生胰蛋白酶原激活。由亞砷酸鈉誘導(dǎo)的HSP70在大鼠胰腺內(nèi)高效表達(dá),緩解了蛙皮素和精氨酸誘發(fā)的急性胰腺炎損傷[17]。Meng等[18]用 42℃生理鹽水腹腔灌洗30 min作為熱應(yīng)激誘導(dǎo)HSP70在胰腺內(nèi)高表達(dá),明顯降低血清AMY、腫瘤壞死因子(TNF-α)、白介素-6(IL-6)及TAP水平,使得胰腺組織損傷減輕。

3 HSP70在急性胰腺炎中的作用機(jī)理

目前,大量研究支持HSP70在胰腺炎發(fā)生發(fā)展過程中發(fā)揮著重要的保護(hù)作用,但是具體機(jī)理尚未完全闡明?,F(xiàn)有研究認(rèn)為HSP70主要通過以下兩種機(jī)理發(fā)揮胰腺保護(hù)作用。

3.1 抑制溶酶體酶和消化酶原的共區(qū)域化 在正常條件下,消化酶原和溶酶體水解酶均在腺泡細(xì)胞粗面內(nèi)質(zhì)網(wǎng)合成,分別經(jīng)高爾基體各自形成分泌泡并轉(zhuǎn)運(yùn)至相應(yīng)的消化酶原顆粒和溶酶體中。Steer等[19]首次發(fā)現(xiàn)在胰腺炎中,胰腺內(nèi)的消化酶和溶酶體水解酶發(fā)生轉(zhuǎn)運(yùn)障礙。兩種酶同時(shí)出現(xiàn)在細(xì)胞內(nèi)的吞噬囊泡中,當(dāng)囊泡破裂時(shí),活化的胰酶釋放,造成胰腺自我消化和胰腺炎的發(fā)生。有研究表明,HSP70可以阻止溶酶體組織蛋白酶B和消化酶原的共區(qū)域化,削弱腺泡細(xì)胞的酶原活化,減輕胰腺炎程度[16]。此前,Rakonczay等[20]報(bào)道熱應(yīng)激預(yù)處理誘導(dǎo)的HSP70表達(dá),不能對(duì)胰腺內(nèi)直接注射胰蛋白酶誘導(dǎo)的壞死性胰腺炎發(fā)揮保護(hù)作用,提示HSP一定程度上是通過阻礙胰酶活化而使胰腺炎緩解。

有研究者在細(xì)胞實(shí)驗(yàn)中發(fā)現(xiàn),縮膽囊素誘導(dǎo)的溶酶體組織蛋白酶B再分布和酶原活化依賴于鈣離子濃度的病理性上升,螯合細(xì)胞內(nèi)的鈣離子可阻止共區(qū)域化的發(fā)生[21-22]。這提示HSP70可能通過調(diào)節(jié)細(xì)胞內(nèi)鈣離子穩(wěn)態(tài),干擾引起酶原活化和胰腺炎發(fā)生的細(xì)胞內(nèi)蛋白轉(zhuǎn)運(yùn)過程。

胰蛋白酶原的活化還與自噬的發(fā)生有關(guān)[23-26]。LC3B-Ⅱ是自噬小體的通用標(biāo)記物,自噬發(fā)生時(shí),LC3B-Ⅱ的表達(dá)與自噬小泡水平的增加相對(duì)應(yīng)[27]。HSP70水平的升高可以顯著抑制胰腺炎大鼠LC3B-Ⅱ的表達(dá),并減少胰腺腺泡細(xì)胞自噬小體和自噬溶酶體的生成[28]。進(jìn)一步研究表明,HSP70可通過Akt-mTOR途徑發(fā)揮對(duì)自噬的抑制作用,HSF1表達(dá)減少使得自噬的基礎(chǔ)水平增加。HSP70活化蛋白激酶Akt,使得mTOR(Mammalian target of rapamycin,哺乳動(dòng)物類雷帕霉素靶蛋白)發(fā)生磷酸化,磷酸化的mTOR與銜接蛋白R(shí)APTOR結(jié)合形成復(fù)合體mTORC1[29]。mTORC1不僅可以抑制自噬的表達(dá),還參與了HSF1的活化,進(jìn)而促進(jìn)HSP70的表達(dá)[30],降低了胰蛋白酶活性而減輕胰腺炎損傷程度。

3.2 下調(diào)NF-κB,限制炎癥介質(zhì)產(chǎn)生 NF-κB是一種多功能核轉(zhuǎn)錄因子,可以通過調(diào)節(jié)許多炎癥因子(TNF-α,IL-1,IL-6,IL-8)來作用于炎癥反應(yīng),而這些炎癥因子又可以反過來激活NF-κB,形成一個(gè)正反饋。在靜息細(xì)胞中,NF-κB與抑制因子IκBα結(jié)合形成無活性的復(fù)合體而存在于胞漿中,當(dāng)細(xì)胞受外來刺激時(shí),IκBα被IκB激酶(IKK)磷酸化,繼而經(jīng)泛素化途徑降解,使得NF-κB的核轉(zhuǎn)位信號(hào)暴露并移位至細(xì)胞核內(nèi)與親和力高的DNA序列結(jié)合,激活下游靶基因的轉(zhuǎn)錄[31]。由于IκBα基因的轉(zhuǎn)錄啟動(dòng)區(qū)包含3個(gè)NF-κB結(jié)合位點(diǎn),在NF-κB激活的同時(shí),IκBα也被誘導(dǎo)而大量表達(dá),并與NF-κB結(jié)合,從而終止NF-κB活化,這構(gòu)成了NF-κB激活的負(fù)反饋途徑[32]。

Altavilla等[33]研究表明,在急性胰腺炎早期階段,胰腺釋放的TNF-α、IL-1、IL-6及IL-8等炎癥介質(zhì)的異常反應(yīng)不僅造成胰腺局部損傷,還會(huì)引起一系列“瀑布式”級(jí)聯(lián)效應(yīng),甚至發(fā)生SIRS和MODS[34]。Long等[35]報(bào)道,NF-κB在胰腺炎發(fā)生時(shí)迅速被激活,在NF-κB基因敲除小鼠胰腺炎模型中,胰腺炎嚴(yán)重程度顯著降低。Baumann等[36]在IKK2組成激活與IKK2顯性失活的轉(zhuǎn)基因小鼠中應(yīng)用蛙皮素誘導(dǎo)急性胰腺炎,發(fā)現(xiàn)IKK2顯性失活的小鼠胰腺局部炎癥較野生型小鼠明顯減輕,IKK2組成激活的胰腺炎小鼠的TNF-α、IL-1及ICAM-1水平較野生型小鼠明顯升高,但蛙皮素誘導(dǎo)的離體腺泡內(nèi)胰酶活化在兩組轉(zhuǎn)基因小鼠之間沒有顯著差異。Ji等[37]在細(xì)胞實(shí)驗(yàn)中發(fā)現(xiàn)細(xì)胞內(nèi)活化的胰蛋白酶不能激活NF-κB及其下游炎癥介質(zhì)的釋放,而外源性胰蛋白酶可顯著增強(qiáng)腺泡細(xì)胞的NF-κB活性。以上研究提示腺泡細(xì)胞內(nèi)胰蛋白酶原活化與NF-κB激活在胰腺損傷時(shí)可能是兩個(gè)相對(duì)獨(dú)立的過程。此外,F(xiàn)rossard等[38]發(fā)現(xiàn)HSP70在高熱預(yù)處理的胰腺細(xì)胞中高表達(dá),與此同時(shí)NF-κB活化延遲。Zhu等[39]研究表明,42℃生理鹽水連續(xù)腹腔灌洗可以誘導(dǎo)大鼠胰腺表達(dá)HSP70增加,降低血清TNF-α及IL-8水平。轉(zhuǎn)基因小鼠過表達(dá)HSP72可以通過減弱NF-κB通路信號(hào),加快胰腺組織損傷修復(fù)[40]。因此,一些研究者認(rèn)為HSP70可能通過下調(diào)NF-κB活性來限制炎癥因子的產(chǎn)生,減少了炎癥因子對(duì)NF-κB的正反饋激活,進(jìn)而減輕胰腺炎病情。

HSP主要通過以下途徑抑制NF-κB的活性:首先,熱休克反應(yīng)可以降低IκB/NF-κB通路上游的NF-κB誘導(dǎo)激酶、IL-1受體相關(guān)激酶的溶解性,進(jìn)而抑制IKK的激活,并增加細(xì)胞內(nèi)磷酸酶的活性,進(jìn)而降低IκBα的磷酸化水平,抑制IκBα的降解[41]。其次,IκBα的啟動(dòng)子內(nèi)含有熱休克元件,使得IκBα基因的轉(zhuǎn)錄與HSP基因同時(shí)進(jìn)行,且熱休克反應(yīng)在后轉(zhuǎn)錄水平也促進(jìn)IκBα基因的表達(dá)[42]。此外,HSP可競(jìng)爭(zhēng)性抑制NF-κB經(jīng)核孔復(fù)合體進(jìn)入細(xì)胞核內(nèi)[43]。HSP70亦可促進(jìn)核內(nèi)NF-κB亞單位p65蛋白的降解來抑制NF-κB促炎信號(hào)[44],阻礙胰腺炎的發(fā)生發(fā)展。

4 結(jié) 語

綜上所述,HSP70作為一種重要的細(xì)胞保護(hù)因子,其表達(dá)增加可抑制胰蛋白酶原活化與限制炎癥級(jí)聯(lián)反應(yīng),減少胰腺腺泡壞死及全身炎癥反應(yīng)的發(fā)生,從而緩解急性胰腺炎的病情進(jìn)展。

目前關(guān)于HSP70在急性胰腺炎及其他炎癥發(fā)生發(fā)展過程中的作用的研究大多集中在離體細(xì)胞和動(dòng)物實(shí)驗(yàn)中,在人體上的研究很少。HSP70在急性胰腺炎的作用機(jī)制仍有待進(jìn)一步闡明,為開發(fā)應(yīng)用非毒性藥物或基因工程等手段誘導(dǎo)HSP70表達(dá)發(fā)揮臟器保護(hù)作用提供新的途徑。

[1]Borges TJ,Wieten L,Van Herwijnen MJC,et al.The anti-inflammatory mechanisms of Hsp70[J].Front Immunol,2012,3:95.

[2]Lindquist S.The heat-shock response[J].Annu Rev Biochem,1986, 55:1151-1191.

[3]Welch WJ.Mammalian stress response:cell physiology,structure/ function of stress proteins,and implications for medicine and desease [J].Physiol Rev,1992,72(4):1063-1081.

[4]Amick J,Schlanger SE,Wachnowsky C,et al.Crystal structure of the nucleotide-binding domain of mortalin,the mitochondrial Hsp70 chaperone[J].Protein Science,2014,23(6):833-842.

[5]Michelini ET,Flynn GC.The unique chaperone operon of thermotoga maritima:Cloning and initial characterization of a functional Hsp70 and small heat shock protein[J].Journal of Bacteriology, 1999,181(14):4237-4244.

[6]Mayer MP.Gymnastics of molecular chaperones[J].Molecular Cell, 2010,39(3):321-331.

[7]Kampinga HH,Craig EA.The HSP70 chaperone machinery:J proteins as drivers of functional specificity[J].Nature Reviews Molecular Cell Biology,2010,11(8):579-592.

[8]Rh B.Heat shock proteins in relation to medicine[J].Molecular Aspects of Medicine,1993,14(2):83-165.

[9]Ortner V,Ludwig A,Riegel E,et al.An artificial HSE promoter for efficient and selective detection of heat shock pathway activity[J]. Cell Stress Chaperones,2015,20(2):277-288.

[10]Powers MV,Workman P.Inhibitors of the heat shock response:biology and pharmacology[J].FEBS letters,2007,581(19):3758-3769.

[11]Frossard JL,Bhagat L,Lee HS,et al.Both thermal and non-thermal stress protect against caerulein induced pancreatitis and prevent trypsinogen activation in the pancreas[J].Gut,2002,50(1):78-83.

[12]Rakonczay Z,Takacs T,Ivanyi B,et al.The effects of hypo-and hyperthermic pretreatment on sodium taurocholate-induced acute pancreatitis in rats[J].Pancreas,2002,24(1):83-89.

[13]Tashiro M,Ernst SA,Edwards J,et al.Hyperthermia induces multiple pancreatic heat shock proteins and protects against subsequent arginine-induced acute pancreatitis in rats[J].Digestion,2002,65(2): 118-126.

[14]Bhagat L,Singh VP,Song AM,et al.Thermal stress-induced HSP70 mediates protection against intrapancreatic trypsinogen activation and acute pancreatitis in rats[J].Gastroenterology,2002,122(1):156-165.

[15]Bhagat L,Van Acker GJ,Manzoor R.Targeted deletion of heat shock factor(HSF-1)exacerbates the severity of secretagogue-induced pancreatitis[J].Pancreas,2002,25:421-426.

[16]Hwang JH,Ryu JK,Yoon YB,et al.Spontaneous activation of pancreas trypsinogen in heat shock protein 70.1 knock-out mice[J].Pancreas,2005,31(4):332-336.

[17]Bhagat L,Singh VP,Dawra RK,et al.Sodium arsenite induces heat shock protein 70 expression and protects against secretagogue-induced trypsinogen and NF-kappaB activation[J].J Cell Physiol, 2008,215(1):37-46.

[18]Meng K,Liu QS,Dou Y,et al.Prior peritoneal lavage with hot 0.9% saline induces HSP70 expression and protects against cerulein-induced acute pancreatitis in rats[J].Mol Biol Rep,2013,40(2): 1443-1449.

[19]Steer ML,Meldolesi J,Figarella C.Pancreatitis.The role of lysosomes[J].Dig Dis Sci,1984,29(10):934-938.

[20]Rakonczay Z,Takacs T,Ivanyi B,et al.Induction of heat shock proteins fails to produce protection against trypsin-induced acute pancreatitis in rats[J].Clin Exper Med,2002,2(2):89-97.

[21]Petersen OH.Ca2+-induced pancreatic cell death:roles of the endoplasmic reticulum,zymogen granules,lysosomes and endosomes[J]. Journal of Gastroenterology and Hepatology,2008,23 Suppl 1: S31-S36.

[22]Raraty M,Ward J,Erdemli G,et al.Calcium-dependent enzyme activation and vacuole formation in the apical granular region of pancreatic acinar cells[J].Proceedings of the National Academy of Sciences of the United States ofAmerica,2000,97(24):13126-13131.

[23]Xu B,Bai B,Sha S,et al.Interleukin-1beta induces autophagy by affecting calcium homeostasis and trypsinogen activation in pancreatic acinar cells[J].International Journal of Clinical and Experimental Pathology,2014,7(7):3620-3631.

[24]Gukovsky I,Pandol SJ,Mareninova OA,et al.Impaired autophagy and organellar dysfunction in pancreatitis[J].Journal of Gastroenterology and Hepatology,2012,27(Suppl 2):27-32.

[25]Ohmuraya M,Yamamura K.Autophagy and acute pancreatitis:a novel autophagy theory for trypsinogen activation[J].Autophagy,2008, 4(8):1060-1062.

[26]Hashimoto D,Ohmuraya M,Hirota M,et al.Involvement of autophagy in trypsinogen activation within the pancreatic acinar cells[J]. The Journal of Cell Biology,2008,181(7):1065-1072.

[27]Barth S,Glick D,Macleod KF.Autophagy:assays and artifacts[J].J Pathol,2010,221(2):117-124.

[28]Kim JN,Lee HS,Ryu SH,et al.Heat shock proteins and autophagy in rats with cerulein-induced acute pancreatitis[J].Gut Liver,2011,5 (4):513-520.

[29]Dokladny K,Zuhl MN,Mandell M,et al.Regulatory coordination between two major intracellular homeostatic systems:heat shock response and autophagy[J].J Biol Chem,2013,288(21):14959-14972.

[30]Chou SD,Prince T,Gong JL,et al.mTOR is essential for the proteotoxic stress response,HSF1 activation and heat shock protein synthesis[J].PLoS One,2012,7(6):9.

[31]Hinz M,Arslan SC,Scheidereit C.It takes two to tango:IkappaBs, the multifunctional partners of NF-kappaB[J].Immunological Reviews,2012,246(1):59-76.

[32]Moss BL,Elhammali A,Fowlkes T,et al.Interrogation of inhibitor of nuclear factor kappaB alpha/nuclear factor kappaB(IkappaBalpha/ NF-kappaB)negative feedback loop dynamics:from single cells to live animals in vivo[J].The Journal of Biological Chemistry,2012, 287(37):31359-31370.

[33]Altavilla D,Famulari C,Passaniti M,et al.Attenuated cerulein-induced pancreatitis in nuclear factor-kappa B-deficient mice[J].Lab Invest,2003,83(12):1723-1732.

[34]Bhatia M.Acute pancreatitis as a model of SIRS[J].Frontiers in Bioscience,2009,14:2042-2050.

[35]Long J,Song N,Liu XP,et al.Nuclear factor-kappaB activation on the reactive oxygen species in acute necrotizing pancreatitic rats[J]. World J Gastroenterol,2005,11(27):4277-4280.

[36]Baumann B,Wagner M,Aleksic T,et al.Constitutive IKK2 activation in acinar cells is sufficient to induce pancreatitis in vivo[J].The Journal of Clinical Investigation,2007,117(6):1502-1513.

[37]Ji B,Gaiser S,Chen X,et al.Intracellular trypsin induces pancreatic acinar cell death but not NF-kappaB activation[J].The Journal of Biological Chemistry,2009,284(26):17488-17498.

[38]Frossard JL,Pastor CM,Hadengue A.Effect of hyperthermia on NF-kappa B binding activity in cerulein-induced acute pancreatitis[J]. Am J Physiol-Gastroint Liver Physiol,2001,280(6):G1157-G1162.

[39]Zhu L,Cheng S,Qin Y,et al.Influence of peritoneal lavage with warm saline on HSP70 expression in rat pancreas[J].Hainan Med J, 2013,24(16):2341-2343.

[40]Lunova M,Zizer E,Kucukoglu O,et al.Hsp72 overexpression accelerates the recovery from caerulein-induced pancreatitis[J].PLoS One,2012,7(7):e39972.

[41]Lee KH,Hwang YH,Lee CT,et al.The heat-shock-induced suppression of the IkappaB/NF-kappaB cascade is due to inactivation of upstream regulators of IkappaBalpha through insolubilization[J].Experimental Cell Research,2004,299(1):49-56.

[42]Wong HR,Dunsmore KE,DenenbergAG.Transcriptional and post-transcriptional regulation of I kappa B alpha gene expression by heat shock[J].Crit Care Med,2000,28(12):A38.

[43]Wu L,Hu C,Huang M,et al.Heat shock transcription factor 1 attenuates TNFalpha-induced cardiomyocyte death through suppression of NFkappaB pathway[J].Gene,2013,527(1):89-94.

[44]Tanaka T,Shibazaki A,Ono R,et al.HSP70 mediates degradation of the p65 subunit of nuclear factor kappa B to inhibit inflammatory signaling[J].Sci Signal,2014,7(356):ra119.

Research progress of heat shock protein 70 in acute pancreatitis.

HONG Yu-pu,WANG Wei-xing.Department of General Surgery,Renmin Hospital of Wuhan University,Wuhan 430060,Hubei,CHINA

Heat shock proteins(HSPs)are a highly conserved group of stress proteins which exist in virtually all known organisms.HSPs possess rapid reactive potency to all kinds of stimulus,and have effects on anti-inflammation,anti-oxidation,anti-apoptosis,as well as molecular chaperones.These proteins play an essential role in a variety of cellular activities including cell growth and development,metabolism and differentiation,gene transcription,intracellular homeostasis and environmental adaptability.HSP70 is attracting the most attention among HSPs,which express at a lower degree in physiological condition than induced by prior thermal stress,drug,gene transfection,and consequently exert cytoprotection.Research progresses of HSP70 about its effects and related mechanisms in acute pancreatitis were reviewed in this article.

Heat shock proteins;Acute pancreatitis;Mechanism

R657.5+1

A

1003—6350(2016)11—1823—04

10.3969/j.issn.1003-6350.2016.11.033

2015-11-16)

國(guó)家自然科學(xué)基金(編號(hào):81370562、81300356)

王衛(wèi)星。E-mail:sate.llite@163.com

猜你喜歡
腺泡活化胰腺炎
一種改進(jìn)的小鼠原代胰腺細(xì)胞的解離與培養(yǎng)方法
無Sn-Pd活化法制備PANI/Cu導(dǎo)電織物
免疫組化抗體CPA1對(duì)胰腺腺泡細(xì)胞癌的診斷具有高敏感性和特異性
小學(xué)生活化寫作教學(xué)思考
孕期大補(bǔ)當(dāng)心胰腺炎
艾塞那肽誘導(dǎo)大鼠胰腺腺泡細(xì)胞損傷機(jī)制的實(shí)驗(yàn)研究
急性胰腺炎致精神失常1例
基于B-H鍵的活化對(duì)含B-C、B-Cl、B-P鍵的碳硼烷硼端衍生物的合成與表征
中西醫(yī)結(jié)合治療急性胰腺炎55例
妊娠合并急性胰腺炎30例的中西醫(yī)結(jié)合治療
贵德县| 泸定县| 富川| 黄山市| 滨海县| 涡阳县| 库尔勒市| 攀枝花市| 增城市| 土默特左旗| 城步| 平舆县| 高碑店市| 耒阳市| 正宁县| 福鼎市| 金阳县| 册亨县| 台江县| 达拉特旗| 宣城市| 商城县| 昌邑市| 社会| 贡觉县| 常德市| 仪征市| 定边县| 定南县| 扎兰屯市| 天水市| 祁阳县| 平乡县| 简阳市| 乐陵市| 聊城市| 江川县| 南平市| 宁波市| 米易县| 三穗县|