彭 靚,葉 萍,謝曉英,朱亞飛
(贛南醫(yī)學(xué)院 1.2014級碩士研究生;2.2015級碩士研究生;3.第一附屬醫(yī)院婦產(chǎn)科,江西 贛州 341000)
上皮性卵巢癌侵襲轉(zhuǎn)移機(jī)制相關(guān)microRNA的研究進(jìn)展*
彭 靚1,葉 萍2,謝曉英3,朱亞飛3
(贛南醫(yī)學(xué)院 1.2014級碩士研究生;2.2015級碩士研究生;3.第一附屬醫(yī)院婦產(chǎn)科,江西 贛州 341000)
microRNA是一類進(jìn)化上保守的非編碼小分子RNA,其具有參與轉(zhuǎn)錄后基因表達(dá)調(diào)控的功能,與腫瘤發(fā)生發(fā)展、診斷、治療等多個環(huán)節(jié)密切相關(guān),是近年來研究熱點(diǎn)。在所有婦科惡性腫瘤中,上皮性卵巢癌(Epithelial ovarian cancer,EOC)是導(dǎo)致女性死亡的主要原因,對婦女生命造成嚴(yán)重威脅。本文就上皮性卵巢癌侵襲轉(zhuǎn)移機(jī)制相關(guān)microRNA的研究進(jìn)展做一綜述。
microRNA;上皮性卵巢癌;轉(zhuǎn)移;侵襲
卵巢癌是女性生殖器常見的三大惡性腫瘤之一,上皮性卵巢癌(Epithelial ovarian cancer,EOC)占卵巢原發(fā)性惡性腫瘤的85%~90%,死亡率居各類婦科腫瘤之首。最新數(shù)據(jù)表明,預(yù)計(jì)2015年國內(nèi)有2.25萬卵巢惡性腫瘤死亡病例,相當(dāng)于平均每天62人死于卵巢癌,并且,卵巢癌的發(fā)病率和死亡率10余年來均有上升趨勢[1]。侵襲轉(zhuǎn)移是導(dǎo)致惡性腫瘤患者死亡最為關(guān)鍵的因素之一[2]。因此,研究上皮性卵巢癌的侵襲轉(zhuǎn)移機(jī)制有著重要意義。本綜述概括了近幾年microRNA在上皮性卵巢癌侵襲轉(zhuǎn)移機(jī)制的相關(guān)研究進(jìn)展。
miRNA(microRNA)是一大小約22 nt的內(nèi)源性RNA,其基因的轉(zhuǎn)錄初產(chǎn)物(pri-miRMA)在細(xì)胞核內(nèi)被Drosha-DGCR8復(fù)合體切割成長度大約為65 nt的具有頸環(huán)結(jié)構(gòu)的miRNA前體(pre-miRNA),pre-miRNA通過與Exportin-5/RanG結(jié)合由核內(nèi)轉(zhuǎn)移至胞質(zhì),并被Dicer酶切割成大約為22 nt的miRNA duplex。miRNA duplex的一股RNA鏈與Argonaute蛋白組裝成誘導(dǎo)沉默復(fù)合體(the RNA-induced silencing complex,RISC)。RISC中的miRNA可以結(jié)合到靶mRNA3′非翻譯區(qū),導(dǎo)致翻譯的抑制或靶基因的降解[3-5]。miRNA參與多種生物學(xué)過程,包括腫瘤。miRNA參與人類腫瘤的第一個證據(jù)是在慢性淋巴細(xì)胞白血病中,miR-15a和miR-16-1被確定為腫瘤抑制因子[6]。此后,miRNA在各類的癌癥中均有報(bào)道,包括上皮性卵巢癌。miRNA與上皮性卵巢癌發(fā)生發(fā)展、診斷、治療等多個環(huán)節(jié)密切相關(guān)。如miR-200a高表達(dá)與腫瘤組織學(xué)和分期有關(guān),淋巴結(jié)轉(zhuǎn)移患者中miR-200c水平顯著升高,血清中的miR-200a和miR-200c未來可能成為診斷卵巢癌的腫瘤標(biāo)志物[7]。
腫瘤的侵襲轉(zhuǎn)移過程包括癌細(xì)胞從原發(fā)腫瘤病灶上分離脫落,侵入并穿過微血管壁,在血循環(huán)中隨血流漂游、轉(zhuǎn)運(yùn),又再穿出血管壁并在新的部位種植、增殖等一系列過程。上皮性卵巢癌的侵襲轉(zhuǎn)移是一個復(fù)雜的、動態(tài)的過程,其與腫瘤微環(huán)境、細(xì)胞粘附、腫瘤血管生成、上皮間質(zhì)轉(zhuǎn)化、原癌基因和抑癌基因等密切相關(guān)。
早在1889年,Steven Paget提出了“種子和土壤”的假說,他認(rèn)為建立一個肥沃的“土壤”(微環(huán)境)是為傳播“種子”(腫瘤細(xì)胞)的關(guān)鍵[8]。作為腫瘤細(xì)胞生長的土壤,腫瘤微環(huán)境為腫瘤細(xì)胞的發(fā)生、發(fā)展、轉(zhuǎn)移等提供了保障[9]。腫瘤微環(huán)境(tumor microenvironment,TME)是由非惡性細(xì)胞結(jié)構(gòu)成分、各種分子和癌細(xì)胞周圍的化學(xué)物質(zhì)構(gòu)成的復(fù)雜網(wǎng)絡(luò)。它充當(dāng)了腫瘤轉(zhuǎn)移啟動子的作用[10]。惡性腫瘤細(xì)胞迅速生長增殖和高代謝狀態(tài)造成組織周圍缺氧微環(huán)境,腫瘤細(xì)胞通過改變基因表達(dá),使其在缺氧條件下能繼續(xù)存活甚至進(jìn)行增殖。缺氧環(huán)境對腫瘤細(xì)胞具有促轉(zhuǎn)移作用。某些microRNA的表達(dá)改變可能與上皮性卵巢癌的轉(zhuǎn)移機(jī)制有關(guān)。
腫瘤細(xì)胞的黏附在EOC侵襲轉(zhuǎn)移方面發(fā)揮作用。腫瘤細(xì)胞通過連接蛋白和細(xì)胞粘附分子如β1整合素和上皮鈣粘蛋白(E-cadherin) 16、17介導(dǎo),可以防止正常組織瘤性轉(zhuǎn)化,確保穩(wěn)定的組織結(jié)構(gòu)[11]。細(xì)胞粘附到細(xì)胞基質(zhì)和內(nèi)皮細(xì)胞在腫瘤轉(zhuǎn)移至關(guān)重要[12]。
血管生成(Angiogenesis)是指現(xiàn)有血管形成新的微血管過程[13]。在諸多刺激血管形成因素中,最重要的是血管內(nèi)皮生長因子(VEGF),腫瘤細(xì)胞可通過產(chǎn)生 VEGF誘導(dǎo)新生血管形成。已有多項(xiàng)研究表明miRNAs參與腫瘤血管生成的調(diào)節(jié)[13-14]。
上皮間質(zhì)轉(zhuǎn)化(Epithelial-mesenchymal transition,EMT)是在胚胎發(fā)育過程中間充質(zhì)細(xì)胞的形成和遷移到靶器官的生理過程,其亦涉及癌細(xì)胞的侵襲和轉(zhuǎn)移[15]。EMT過程中,上皮細(xì)胞失去細(xì)胞極性和細(xì)胞粘附力,立方上皮細(xì)胞轉(zhuǎn)變?yōu)榧忓N形纖維細(xì)胞形態(tài),獲得遷移和侵襲特性。惡性腫瘤轉(zhuǎn)移至遠(yuǎn)隔部位后,癌細(xì)胞可發(fā)生間質(zhì)上皮轉(zhuǎn)化(Epithelial-mesenchymal transition,MET)來重建細(xì)胞間連接及細(xì)胞骨架從而形成轉(zhuǎn)移灶。間質(zhì)上皮轉(zhuǎn)化從某種程度上講是EMT逆過程[16]。miR-200家族的表達(dá)異常(miR-200a、miR-200b,miR-200c,miR-141和miR-429)與卵巢癌上皮間質(zhì)轉(zhuǎn)化密切相關(guān)[17]。
此外,基因功能異常通常直接參與上皮性卵巢癌的發(fā)生發(fā)展過程,如原癌基因的激活和抑癌基因的突變等。
3.1 上皮性卵巢癌缺氧微環(huán)境相關(guān)microRNA 研究發(fā)現(xiàn)卵巢癌細(xì)胞在缺氧條件下miR-199a-3p表達(dá)下調(diào)[18]。轉(zhuǎn)染miR-199a-3p前體至卵巢癌細(xì)胞,肝細(xì)胞生長因子受體(hepatocyte growth factor receptor,c-met)蛋白表達(dá)下降并抑制卵巢癌細(xì)胞增殖、粘附和侵襲。miR-199a-3p表達(dá)量增加顯著抑制癌細(xì)胞在異種移植模型中的腹膜播散。Joshi,Hemant P等研究[19]也表明在缺氧條件下miR-199a表達(dá)水平下調(diào)。miR-199a可通過介導(dǎo)缺氧誘導(dǎo)因子(hypoxia inducible factor, HIF)水平變化來影響賴氨酰氧化酶(lysyloxidase,LOX)的表達(dá),而LOX水平與卵巢癌患者的無進(jìn)展生存期負(fù)相關(guān)。
國外學(xué)者[20]發(fā)現(xiàn)在缺氧條件下miR-630表達(dá)上調(diào)并且Dicer酶的表達(dá)下調(diào)。使用二油酰磷脂酰膽堿納米脂質(zhì)體轉(zhuǎn)染miR-630至卵巢癌原位小鼠模型中會增加腫瘤的生長和轉(zhuǎn)移,Dicer表達(dá)量隨之下調(diào)。Anti-miR-630和抗血管內(nèi)皮生長因子抗體聯(lián)合使用治療小鼠導(dǎo)致Dicer表達(dá)上調(diào),腫瘤的生長和轉(zhuǎn)移顯著降低。這些研究使我們對缺氧條件下miRNA的下調(diào)有了新的認(rèn)識,治療卵巢癌的思路有所擴(kuò)寬。
3.2 上皮性卵巢癌細(xì)胞黏附相關(guān)microRNA miR-506可以增加E-cadherin表達(dá),抑制細(xì)胞遷移和侵襲,并通過作用SNAI 2(snail family zinc finger 2),防止轉(zhuǎn)化生長因子β誘導(dǎo)上皮-間質(zhì)轉(zhuǎn)化。在人卵巢癌細(xì)胞中,miR-506 表達(dá)與SNAI 2和vimentin下降相關(guān), 增加 E-cadherin, 有利于預(yù)后。納米粒子輸送miR-506進(jìn)卵巢癌原位小鼠模型導(dǎo)致E-cadherin蛋白表達(dá)量增加并抑制腫瘤的生長[21]。
基質(zhì)金屬蛋白酶7(MMP7)是一種降解細(xì)胞外基質(zhì)成分的蛋白酶,其在腫瘤細(xì)胞中過表達(dá),促進(jìn)腫瘤細(xì)胞的侵襲轉(zhuǎn)移。MiR-543可以結(jié)合MMP7 mRNA的3'-UTR來抑制MMP7的翻譯,而胎盤生長因子抑制miR-543,并激活MMP7介導(dǎo)的腫瘤侵襲[22]。
Ezrin蛋白是細(xì)胞骨架與細(xì)胞膜之間的連接蛋白,與微絨毛的形成和細(xì)胞形態(tài)的維持、運(yùn)動、黏附及生存有關(guān)。高侵襲性卵巢癌細(xì)胞中Ezrin mRNA和蛋白均高表達(dá),增加miR-183和miR-22表達(dá)可抑制Ezrin蛋白水平,它們可能具有Ezrin基因介導(dǎo)的抑制卵巢癌細(xì)胞浸潤轉(zhuǎn)移的潛在功能[23]。
3.3 上皮性卵巢癌的血管形成相關(guān)microRNA Li J等[24]前期運(yùn)用比較蛋白組學(xué)的方法發(fā)現(xiàn)VEGF下調(diào)Ezrin蛋白和核纖層蛋白LaminA/C的表達(dá),這一結(jié)果用qPCR 和Western blotting方法進(jìn)行了驗(yàn)證。通過transwell小室實(shí)驗(yàn)和AnnexinⅤ-FITC方法,發(fā)現(xiàn)VEGF增強(qiáng)卵巢癌細(xì)胞的侵襲性和抑制細(xì)胞凋亡。使用雙熒光素酶報(bào)告系統(tǒng)發(fā)現(xiàn)miR-205靶向作用于Ezrin 和Lamin A/C。暴露于VEGF,MiR-205表達(dá)上調(diào)。MiR-205可促進(jìn)卵巢癌細(xì)胞增殖侵襲。
相比正常卵巢組織,miR-497在卵巢癌組織中的表達(dá)水平低。低水平的miR-497表達(dá)與微血管密度增高密切相關(guān),表明miR-497表達(dá)水平下調(diào)可能促進(jìn)腫瘤血管的形成。miR-497可以通過直接作用于血管內(nèi)皮生長因子A,間接參與血管內(nèi)皮生長因子受體2介導(dǎo)的PI3K/AKT和MAPK/ERK通路[25]。
3.4 上皮性卵巢癌的上皮間質(zhì)轉(zhuǎn)化相關(guān)microRNA Chen D等[26]比較上皮性卵巢癌CD117+CD44+腫瘤干細(xì)胞與非CD117+CD44+腫瘤干細(xì)胞的miR-200c表達(dá)量,CD117+CD44+腫瘤干細(xì)胞miR-200c表達(dá)量相對減少。他們通過構(gòu)建慢病毒過表達(dá)載體,獲得穩(wěn)定表達(dá)miR-200c 的上皮性卵巢癌CD117+CD44+腫瘤干細(xì)胞株,miR-200c的穩(wěn)定過表達(dá)導(dǎo)致了鋅指 E-盒結(jié)合,同源異形盒 1(zinc finger E-box binding homeobox 1,ZEB-1)蛋白和Vimentin蛋白表達(dá)水平顯著下調(diào),E-cadherin蛋白的水平上調(diào),并使腫瘤干細(xì)胞的集落形成率、遷移、侵襲能力下降。此外,miR-200c過表達(dá)可通過抑制EMT顯著抑制裸鼠CD117+CD44+腫瘤干細(xì)胞移植瘤的生長和肺轉(zhuǎn)移。而ZEB-1的下調(diào)也表現(xiàn)出miR-200c在CD117+CD44+腫瘤干細(xì)胞中過表達(dá)相同的功效。這些研究表明可通過介導(dǎo)CD44+CD117+腫瘤干細(xì)胞的EMT來用于上皮性卵巢癌臨床治療。
miR-429在卵巢癌細(xì)胞株OCI-984中異常過表達(dá)。使用miR-429寡核苷酸序列脂質(zhì)體2000轉(zhuǎn)染方法使 OCI-984過量表達(dá)miR-429,miR-429的過表達(dá)引起的形態(tài)、功能和分子變化與間充質(zhì)細(xì)胞向上皮細(xì)胞轉(zhuǎn)化相一致,轉(zhuǎn)換細(xì)胞對順鉑的敏感性顯著增加[27]。靶向增加或減少外源性microRNA如miR-429來增強(qiáng)鉑類藥物敏感性,這可能是降低卵巢癌轉(zhuǎn)移和復(fù)發(fā)的有效策略。
3.5 上皮性卵巢癌抑癌基因、促癌基因相關(guān)microRNA 多項(xiàng)研究表明miR-34家族直接受p53的調(diào)節(jié)[28-30],然而,miR-34家族在上皮性卵巢癌的作用尚不清楚。Li R等[31]使用RT-PCR定量檢測60個卵巢癌樣品miR-34a的表達(dá)量,相比癌旁組織,miR-34a在卵巢癌組織中下調(diào)。與正常人輸卵管上皮細(xì)胞比較,miR-34a表達(dá)水平在卵巢癌細(xì)胞系中顯著降低。轉(zhuǎn)染miR-34a的卵巢癌細(xì)胞的增殖、遷移顯著被抑制。miR-34a過度表達(dá)抑制酪氨酸激酶(AXL)表達(dá),這表明miR-34a可作為腫瘤抑制因子,可能是通過抑制AXL來抑制在上皮性卵巢癌的進(jìn)展。
運(yùn)用real-time PCR技術(shù),證實(shí)了miR-21在人卵巢癌組織和細(xì)胞株中顯著高表達(dá),miR-21過表達(dá)水平與組織學(xué)類型、臨床分期、淋巴結(jié)轉(zhuǎn)移密切相關(guān),通過miR inhibitor下調(diào)miR-21,導(dǎo)致細(xì)胞增殖、遷移侵襲能力下降。并且下調(diào)miR-21水平顯著增加卵巢癌抑制因子PTEN(phosphatase and tensin homolog deleted on chromosome ten)表達(dá)[32]。
上述實(shí)驗(yàn)表明microRNA可通過參與促進(jìn)或抑制卵巢癌癌基因的表達(dá)來促進(jìn)上皮性卵巢癌的轉(zhuǎn)移。
綜上所述,卵巢癌侵襲轉(zhuǎn)移是多因素作用的結(jié)果,microRNA在上皮性卵巢癌中的侵襲轉(zhuǎn)移方面有著重要意義。然而,目前關(guān)于microRNA的轉(zhuǎn)移機(jī)制研究大多為細(xì)胞株實(shí)驗(yàn),動物實(shí)驗(yàn)少。究其原因,動物實(shí)驗(yàn)周期長,構(gòu)建模型困難。而研究主要集中于對單個microRNA功能的探索,與其它分子的交互作用研究甚少,今后可嘗試構(gòu)建microRNA網(wǎng)絡(luò)。隨著科學(xué)技術(shù)的發(fā)展,研究者們關(guān)于microRNA在上皮性卵巢癌侵襲轉(zhuǎn)移機(jī)制中的深入研究,我們相信,microRNA會對卵巢癌早期發(fā)現(xiàn)、早期診療提供新思路,對降低卵巢癌的死亡率,改善預(yù)后有重要意義。
[1] Wanqing Chen,Rongshou Zheng,Peter D Baade, et al.Cancer Statistics in China, 2015[J].Ca Cancer J Clin,2016,66(2):115-32.
[2] Valastyan S,Weinberg RA.Tumor metastasis: Molecular insights and evolving paradigms[J]. Cell, 2011,147(2):275-292.
[3] Bartel DP. Micrornas: Target recognition and regulatory functions[J]. Cell, 2009,136(2):215-233.
[4] Slezak-Prochazka I, Durmus S, Kroesen B-J, et al. Micrornas, macrocontrol: Regulation of mirna processing[J]. RNA, 2010,16(6):1087-1095.
[5] Zeng Y. Principles of micro-rna production and maturation[J]. Oncogene, 2006,25(46):6156-6162.
[6] Calin GA,Dumitr CD,Shimizu MF,et al.Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J]. P Natl Acad Sci USA,2002,99(24):15524-15529.
[7] Zuberi M,Mir R,Das J,et al. Expression of serum miR-200a, miR-200b, and miR 200c as candidate biomarkers in epithelial ovarian cancer and their association with clinicopathological features[J].Clin Transl Oncol,2015,17(10): 779-787.
[8] Gao D,Vahdat LT,Wong S,et al.Microenvironmental regulation of epithelial-mesenchymal transitions in cancer[J].Cancer Res,2012,72(19):4883-9.
[9] Wood SL, Pernemalm M,Crosbie PA, et al.The role of the tumor-microenvironment in lung cancer-metastasis and its relationship to potential therapeutic targets[J]. Cancer treatment reviews,2014,40(4): 558-66.
[10] Gould CM, Courtneidge SA. Regulation of invadopodia by the tumor microenvironment[J]. Cell Adh Migr, 2014,8(3):226-235.
[11] Joyce JA, Pollard JW. Microenvironmental regulation of metastasis[J]. Nat Rev Cancer, 2009,9(4):239-252.
[12] Yates CM, McGettrick HM, Nash GB, et al. Adhesion of tumor cells to matrices and endothelium[J].Methods Mol Biol,2014,1070:57-75.
[13] Welti J, Loges S, Dimmeler S, et al. Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer[J].J Clin Invest, 2013,123(8):3190-3200.
[14] Anand S, Cheresh DA.Emerging Role of Micro-RNAs in the Regulation of Angiogenesis[J].Genes Cancer,2011,2(12):1134-1138.
[15] Davidson B,Trope CG,Reich R. Epithelial mesenchymal transition in ovarian carcinoma[J]. Front Oncol,2012,2(33):123.
[16] Hugo H,Ackland ML,Blick T, et al.Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression[J].J Cell Physiol, 2007,213(2):374-83.
[17] Koutsaki M, Spandidos DA, Zaravinos A. Epithelial-mesenchymal transition-associated mirnas in ovarian carcinoma, with highlight on the mir-200 family: Prognostic value and prospective role in ovarian cancer therapeutics[J].Cancer Lett, 2014,351(2):173-181.
[18] Kinose Y,Sawada K,Nakamura K, et al. The hypoxia-related microRNA miR-199a-3p displays tumor suppressor functions in ovarian carcinoma[J].Oncotarget,2015,6(13):11342-56.
[19] Joshi HP, Subramanian IV, Schnettler EK, et al. Dynamin 2 along with microrna-199a reciprocally regulate hypoxia-inducible factors and ovarian cancer metastasis[J]. P Natl Acad Sci USA,2014,111(14):5331-5336.
[20] Rupaimoole R, Ivan C, Yang D, et al. Hypoxia-upregulated microRNA-630 targets Dicer, leading to increased tumor progression[J].Oncogene,2016,2:1-9.
[21] Yang D, Sun Y, Hu LM, et al. Integrated analyses identify a master microrna regulatory network for the mesenchymal subtype in serous ovarian cancer [J]. Cancer Cell, 2013,23(2):186-199.
[22] Song N, Liu H, Ma X, et al. Placental growth factor promotes metastases of ovarian cancer through mir-543-regulated mmp7[J]. Cell PhysiolBiochem,2015,37(3):1104-1112.
[23] Li J, Liang S-H, Lu X. potential role of ezrin and its related microrna in ovarian cancer invasion and metastasis[J].Zhonghua Fu Chan Ke Za Zhi, 2010,45(10):787-792.
[24] Li J, Li L, Li Z, et al. The role of mir-205 in the vegf-mediated promotion of human ovarian cancer cell invasion[J].Gynecol Oncol,2015,137(1):125-133.
[25] Wang W,Ren F,Wu Q,et al.Microrna-497 suppresses angiogenesis by targeting vascular endothelial growth factor a through the pi3k/akt and mapk/erk pathways in ovarian cancer[J].Oncol Rep,2014,32(5):2127-2133.
[26] Chen D,Zhang Y,Wang J,et al.Microrna-200c overexpression inhibits tumorigenicity and metastasis of cd117(+)cd44(+) ovarian cancer stem cells by regulating epithelial-mesenchymal transition[J].J Ovarian Res,2013,6:50.
[27] Wang L, Mezencev R, Svajdler M, et al. Ectopic over-expression of mir-429 induces mesenchymal-to-epithelial transition (met) and increased drug sensitivity in metastasizing ovarian cancer cells[J]. Gynecol Oncol, 2014,134(1):96-103.
[28] He L, He XY, Lim LP, et al. A microrna component of the p53 tumour suppressor network[J]. Nature, 2007,447(7148):1130-U1116.
[29] Ye Z, Fang J, Dai S, et al. Microrna-34a induces a senescence-like change via the down-regulation of sirt1 and up-regulation of p53 protein in human esophageal squamous cancer cells with a wild-type p53 gene background[J]. Cancer Lett, 2016,370(2):216-221
[30] Zhang D G, Zheng J N, Pei D S. P53/microrna-34-induced metabolic regulation: New opportunities in anticancer therapy[J]. Mol Cancer, 2014,13(1):1-7.
[31] Li R,Shi X,Ling F, et al. MiR-34a suppressesovarian cancer proliferation and motility by targeting AXL.[J].Tumour Biol,2015,36(9):7277-83.
[32] Lou Y, Yang X, Wang F, et al. Microrna-21 promotes the cell proliferation, invasion and migration abilities in ovarian epithelial carcinomas through inhibiting the expression of pten protein[J]. Int J Mol Med,2010,26(6):819-827.
Research Advances of MicroRNA in Invasion and Metastasis Mechanism of Epithelial Ovarian Cancer
PENGLiang1,YEPing2,XIEXiao-ying3,ZHUYa-fei3
(1.Master'sGraduateStudent,Grade2014; 2.Master'sGraduateStudent,Grade2015; 3.Dept.ofObstetricsandGynecology,theFirstAffiliatedHospitalofGannanMedicalUniversity,Ganzhou,Jiangxi341000)
MicroRNA is a kind of evolutionary conserved non encoding small molecule RNA,which has the function in the post transcriptional regulation of gene expression. It closely relates with tumor development, diagnosis, treatment and other aspects. It is the hot spot of research in recent years. In all gynecological malignant tumors, epithelial ovarian cancer accounts for a major cause of death, which causes serious threat to women's lives. In this paper, the research progress of microRNA in epithelial ovarian cancer invasion and metastasis is reviewed.
microRNA;epithelial ovarian cancer; metastasis; invasion
R730.231
A
1001-5779(2016)06-0989-04
10.3969/j.issn.1001-5779.2016.06.050
2016-04-20)(責(zé)任編輯:劉仰斌)
*通訊作者: 謝曉英,女,教授,主任醫(yī)師,碩士生導(dǎo)師。E-mail:xiexiaoying603@126.com