国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

變異鏈球菌groE操縱子及其表達與調(diào)控

2016-03-11 02:41王一舟張雅琪牛雪微張志民吉林大學(xué)口腔醫(yī)院牙體牙髓病科長春130021
國際口腔醫(yī)學(xué)雜志 2016年3期
關(guān)鍵詞:調(diào)控

王一舟 張雅琪 牛雪微 張志民吉林大學(xué)口腔醫(yī)院牙體牙髓病科 長春 130021

?

變異鏈球菌groE操縱子及其表達與調(diào)控

王一舟 張雅琪 牛雪微 張志民
吉林大學(xué)口腔醫(yī)院牙體牙髓病科 長春 130021

[摘要]變異鏈球菌耐受口腔內(nèi)多種環(huán)境的變化,主要依賴于多種熱休克蛋白基因的表達。其中,groE操縱子表達的GroES-GroEL蛋白可輔助新合成的以及變性的蛋白質(zhì)折疊、組裝、轉(zhuǎn)運和降解,從而影響細胞的代謝。變異鏈球菌groE操縱子位于1 834 692~1 832 649位點,包括σA型啟動子、分子伴侶表達反向重復(fù)序列(CIRCE)、groES和groEL及終止子,在進化上高度保守,其表達受熱、酸、乙醇和過氧化氫等多種應(yīng)激環(huán)境的誘導(dǎo),受CtsR 和HrcA蛋白的雙重負性調(diào)節(jié)。groE操縱子的調(diào)控有HrcA-CIRCE系統(tǒng)負調(diào)控假說和CtsR的負調(diào)控兩種方式,但其具體調(diào)控機制尚未在變異鏈球菌中得到充分證實。從分子水平上研究變異鏈球菌groE操縱子的結(jié)構(gòu)和調(diào)控機制,有助于進一步闡明細胞的生理過程,為了解細胞在應(yīng)激和病變狀態(tài)下的分子調(diào)節(jié)機制打下基礎(chǔ)。

[關(guān)鍵詞]變異鏈球菌;groE操縱子;熱休克蛋白基因;調(diào)控

變異鏈球菌是口腔主要致齲菌,定植于人類牙面菌斑生物膜,可承受持續(xù)的宿主防御反應(yīng)并適應(yīng)口腔內(nèi)急劇的環(huán)境變化,包括可利用的營養(yǎng)、糖類和酸堿度變化[1]。變異鏈球菌已演化出多種生理和遺傳適應(yīng)性,使其在動態(tài)環(huán)境中獲得最優(yōu)化的生長[2],其中包括分解代謝多種糖類,耐受應(yīng)激環(huán)境尤其是酸環(huán)境的能力[3],而這種能力主要取決于細菌多種熱休克蛋白(heat shock protein,HSP)基因的表達[4],包括現(xiàn)研究較為深入的groE操縱子。groE操縱子可表達出GroEL分子伴侶,輔助新合成的以及變性的蛋白質(zhì)折疊、組裝、轉(zhuǎn)運和降解,從而影響細胞的代謝[5]。本文就變異鏈球菌groE操縱子的結(jié)構(gòu)、表達和調(diào)控等研究進展作一綜述。

1  groE操縱子的結(jié)構(gòu)

1.1groE操縱子的分子結(jié)構(gòu)

groE操縱子結(jié)構(gòu)有高度保守性,一般含groES 和groEL兩個結(jié)構(gòu)基因,且多數(shù)具有相同的順序[6]。變異鏈球菌groE操縱子基因查找于基本局部比對搜索工具,位于1 834 692~1 832 649位點,與dnaK操縱子具有相反的轉(zhuǎn)錄方向,包括σA型啟動子、分子伴侶表達反向重復(fù)序列(controlling inverted repeated of chaperone expression,CIRCE)、groES和groEL及終止子。groES基因(288 bp)編碼含有95個氨基酸相對分子質(zhì)量為1.0×104的多肽。groEL基因(1 626 bp)編碼含有542個氨基酸相對分子質(zhì)量為5.7×104的多肽。兩基因相距111 bp。距離groES轉(zhuǎn)錄起始位點5’端48個核苷酸處有一個單獨的轉(zhuǎn)錄起始點(PgroE),距離5’端57個核苷酸處有一個σA型啟動子(TTGACT-N6-TACAAT)。以groEL基因片段為探針的RNA印跡法分析顯示出一個2.1 kb的單獨轉(zhuǎn)錄印記,而預(yù)期的groEL-ES雙順反轉(zhuǎn)錄產(chǎn)物的分子大小約為2.1 kb。即groEL能由PgroE實現(xiàn)與groES共轉(zhuǎn)錄。CIRCE起始于距離-10元件3’端11 bp處,終止于距groES起始密碼子19 bp處,是具有高度保守型性的發(fā)夾結(jié)構(gòu)[7]。

1.2groE操縱子的保守性

groE操縱子在鏈球菌中有高度同源性。Hung等[8]通過對5種鏈球菌的8個血清型菌株groE操縱子進行一些列研究發(fā)現(xiàn),groES序列的核苷酸一致性為61.5%~100%,他們推定其蛋白質(zhì)的氨基酸一致性為53.7%~100%。其中,變異鏈球菌的3種血清型與表兄鏈球菌(舊稱遠緣鏈球菌)d、g血清型有最高的相似性;而groEL序列則具有77.7%~99.9%的核苷酸一致性及90.5%~100%的氨基酸一致性。groES和groEL的間隔具有菌種特異性,范圍為111~310 bp,其中變異鏈球菌最小為111 bp;而位于結(jié)構(gòu)基因上游的CIRCE元件則廣泛地存在于細菌中,且具有高度保守性[9]。

2 groE操縱子的表達與調(diào)控

2.1groE操縱子的表達

groE操縱子的表達可被多種環(huán)境刺激因素誘導(dǎo),包括熱、酸、乙醇和過氧化氫刺激等[10]。在結(jié)腸埃希菌(俗稱大腸桿菌)中,不同于dnaK操縱子僅對細菌耐受高溫和低溫環(huán)境(>37 ℃或<15 ℃)有重要的作用,groE操縱子對細菌在各種溫度下存活都具有重要意義[11]。變異鏈球菌酸應(yīng)激時,groEL的高表達并不能持久,groEL mRNA 1 d內(nèi)增加約2.5倍(pH5.0),而后質(zhì)量降低至穩(wěn)定狀態(tài)時二者并無明顯差異[12-13]。Lim等[14]發(fā)現(xiàn),光動力治療亦能誘導(dǎo)groE操縱子的表達,其方式類似于滲透應(yīng)力。

2.2groE操縱子的調(diào)控

groE操縱子的調(diào)控在許多細菌及真菌中已有廣泛研究:結(jié)腸埃希菌中需要含有σ32和σE亞基的RNA聚合酶來實現(xiàn)hsp基因反應(yīng)的調(diào)控[15];枯草桿菌則含有4類hsp基因,屬于第一類hsp基因的如dnaK和groE基因,受HrcA-CIRCE系統(tǒng)負調(diào)控;如clpP和clpC基因?qū)儆诘谌恏sp基因,受CtsR的負性調(diào)節(jié)[16]。也曾有研究顯示,低G+C革蘭陽性細菌,如乳酸桿菌、變異鏈球菌和釀膿鏈球菌,其dnaK和groE操縱子hsp基因反應(yīng)受到HrcA和CtsR蛋白的雙重負性調(diào)節(jié)。

2.2.1HrcA-CIRCE系統(tǒng)負性調(diào)控假說早在1989年,Baird等[17]就在結(jié)核雙歧桿菌中發(fā)現(xiàn)了groE操縱子上游含有反向重復(fù)序列,但數(shù)年之后的研究才證實該反向重復(fù)序列是一個熱休克調(diào)控元件,廣泛地存在于細菌、真菌、衣原體和支原體[9,18-20]等微生物中。Zuber等[21]因groE與dnaK操縱子有密切聯(lián)系而將其命名為CIRCE元件。阻遏蛋白HrcA的編碼基因位于dnaK操縱子,在其轉(zhuǎn)錄翻譯并由核糖體釋放后即處于失活狀態(tài)(Hi),不能與操縱子結(jié)合,需要GroE分子伴侶通過酶修飾作用使其復(fù)活(Ha)。Ha可以識別并能夠結(jié)合于特定位置的CIRCE元件,從而抑制groE的轉(zhuǎn)錄。隨著GroE質(zhì)量下降,HrcA以一定速率變回Hi并脫離CIRCE元件[22]。在常溫條件下,GroE系統(tǒng)使大多數(shù)HrcA以Ha形式存在,Ha與groE和dnaK操縱子前端的CIRCE結(jié)合,造成操縱子的低水平轉(zhuǎn)錄。在熱刺激下,HrcA松開與CIRCE的結(jié)合,dnaK和groE操縱子高水平轉(zhuǎn)錄,分子伴侶在5 min內(nèi)快速增加4~6倍至峰值,同時hrcA作為dnaK操縱子的第一個編碼基因,Hi大量形成。隨著groEL基因的轉(zhuǎn)錄,形成的大量GroEL又幫助Hi正確折疊復(fù)活,從而抑制轉(zhuǎn)錄,分子伴侶下降并維持新的穩(wěn)定狀態(tài)。一次HSP反應(yīng)結(jié)束,耗時5~10 min[23]。

GroEL到底是通過什么方式調(diào)控HrcA的活性的,理論上有三種假想:1)HrcA是GroE的底物,需要分子伴侶使其正確折疊或多聚化;2)GroE能影響一個目前未知的蛋白質(zhì),而該蛋白質(zhì)能夠活化HrcA;3)HrcA脫離其操縱子后形成聚合物,需要GroE使其重新分離。在體外,GroEL阻抑HrcA的聚合,證明GroEL能與阻遏物直接相互作用,無需影響其他蛋白質(zhì)[24];因此,人們更傾向于第一種假說;當(dāng)然,這不排除在體外有其他蛋白質(zhì)能調(diào)控HrcA和GroEL間的相互作用。Chen等[25]發(fā)現(xiàn)支原體HrcA具有特殊的C-末端,能與GroEL結(jié)合形成復(fù)合物,從而大大增強HrcA與CIRCE的結(jié)合。在變異鏈球菌中,HrcA和GroEL間的相互作用機制尚在研究之中。

Lemos等[26]通過定向敲除dnaK和groE基因的方法制備了SM12和SM13兩種變異鏈球菌突變體,在SM12中DnaK蛋白降低了95%,在SM13中GroEL蛋白降低了80%。他們發(fā)現(xiàn),SM12中的GroEL蛋白水平是親代的2倍,dnaK中的HrcA蛋白對groE基因表達有負調(diào)控作用。

2.2.2CtsR的負性調(diào)控CtsR被發(fā)現(xiàn)于枯草芽孢桿菌,通過與同向重復(fù)序列(A/GGTCAAA-NANA/GGTCAAA)相結(jié)合,阻抑第三類hsp基因的表達[27]。而后的研究發(fā)現(xiàn),在一些低G+C革蘭陽性細菌中,CtsR亦能調(diào)控hsp18及其dnaK基因的表達。還發(fā)現(xiàn)了受到CtsR和HrcA蛋白雙重調(diào)控的基因,即金黃色葡萄球菌的dnaK操縱子及唾液鏈球菌的clpP基因[28-29],它們同時具有CtsR和HrcA的識別序列[16]。在肺炎雙球菌中,Chastanet等[30]發(fā)現(xiàn),ctsR能與groESL啟動子結(jié)合,但結(jié)合元件并不同于以往的認知。對比肺炎雙球菌與變異鏈球菌groESL基因,發(fā)現(xiàn)了幾乎相同的CtsR結(jié)合目標(biāo)序列,這就有力地支持了在變異鏈球菌中CtsR能負調(diào)控groESL基因。這也與之后在clpC和clpP基因突變株中的試驗結(jié)果相符合[31],但其具體調(diào)控機制尚未在變異鏈球菌中充分證實。

綜上所述,變異鏈球菌groE操縱子是在進化上高度保守的基因,其表達受多種應(yīng)激環(huán)境的誘導(dǎo),包括熱、酸堿度、過氧化氫和乙醇等。目前認為,其表達受CtsR和HrcA蛋白的雙重負性調(diào)節(jié),但CtsR的具體調(diào)控機制尚未在變異鏈球菌中得到證實。從分子水平上研究變異鏈球菌groE操縱子的結(jié)構(gòu)及調(diào)控機制,有助于進一步闡明細胞的生理過程,為了解細胞在應(yīng)激、病變狀態(tài)下的分子調(diào)節(jié)機制打下基礎(chǔ)。

3 參考文獻

[1]Smith EG,Spatafora GA.Gene regulation in S.mutans:complex control in a complex environment[J].J Dent Res,2012,91(2):133-141.

[2]Lemos JA,Abranches J,Burne RA.Responses of cariogenic streptococci to environmental stresses[J].Curr Issues Mol Biol,2005,7(1):95-107.

[3]Kim JN,Ahn SJ,Seaton K,et al.Transcriptional organization and physiological contributions of the relQ operon of Streptococcus mutans[J].J Bacteriol,2012,194(8):1968-1978.

[4]Matsumi Y,F(xiàn)ujita K,Takashima Y,et al.Contribution of glucan-binding protein A to firm and stable biofilm formation by Streptococcus mutans[J].Mol Oral Microbiol,2015,30(3):217-226.

[5]Li Y,Zheng Z,Ramsey A.et al.Analysis of peptides and proteins in their binding to GroEL[J].J Pept Sci,2010,16(12):693-700.

[6]Kim SN,Bae YG,Rhee DK.Dual regulation of dnaK and groE operons by HrcA and Ca++in Streptococcus pneumoniae[J].Arch Pharm Res,2008,31 (4):462-467.

[7]Lemos JA,Chen YY,Burne RA.Genetic and physiologic analysis of the groE operon and role of the HrcA repressor in stress gene regulation and acid tolerance in Streptococcus mutans[J].J Bacteriol,2001,183(20):6074-6084.

[8]Hung WC,Tsai JC,Hsueh PR,et al.Species identification of mutans streptococci by groESL gene sequence[J].J Med Microbiol,2005,54(Pt 9):857-862.

[9]Bao F,Gong L,Shao W.Cloning,sequencing and analysis of dnaK -dnaJ gene cluster of Bacillus megaterium[J].J Basic Microbiol,2008,48(6):448-454.

[10]Jhamb K,Sahoo DK.Production of soluble recombinant proteins in Escherichia coli: effects of process conditions and chaperone co-expression on cell growth and production of xylanase[J].Bioresour Technol,2012,123:135-143.

[11]Matsui R,Cvitkovitch D.Acid tolerance mechanisms utilized by Streptococcus mutans[J].Future Micro-biol,2010,5(3):403-417.

[12]Len AC,Harty DW,Jacques NA.Stress-responsive proteins are upregulated in Streptococcus mutans during acid tolerance[J].Microbiology,2004,150(Pt 5):1339-1351.

[13]Bolean M,Paulino Tde P,Thedei G Jr,et al.Photodynamic therapy with rose bengal induces GroEL expression in Streptococcus mutans[J].Photomed Laser Surg,2010,28(Suppl 1):S79-S84.

[14]Lim B,Miyazaki R,Neher S,et al.Heat shock transcription factor σ32 co-opts the signal recognition particle to regulate protein homeostasis in E.coli[J].PLoS Biol,2013,11(12):e1001735.

[15]Elsholz AK,Michalik S,Zühlke D,et al.CtsR,the Gram-positive master regulator of protein quality control,feels the heat[J].EMBO J,2010,29(21):3621-3629.

[16]Tao L,Chattoraj P,Biswas I.CtsR regulation in mcsAB-deficient Gram-positive bacteria[J].J Bacteriol,2012,194(6):1361-1368.

[17]Baird PN,Hall LM,Coates AR.Cloning and sequence analysis of the 10 kDa antigen gene of Mycobacterium tuberculosis[J].J Gen Microbiol,1989,135 (4):931-939.

[18]Wilson AC,Tan M.Stress response gene regulation in Chlamydia is dependent on HrcA-CIRCE interactions[J].J Bacteriol,2004,186(11):3384-3391.

[19]Wilson AC,Wu CC,Yates JR 3rd,et al.Chlamydial GroEL autoregulates its own expression through direct interactions with the HrcA repressor protein [J].J Bacteriol,2005,187(21):7535-7542.

[20]Chang LJ,Chen WH,Minion FC,et al.Mycoplasmas regulate the expression of heat-shock protein genes through CIRCE-HrcA interactions[J].Biochem Biophys Res Commun,2008,367(1):213-218.

[21]Zuber U,Schumann W.CIRCE,a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis[J].J Bacteriol,1994,176 (5):1359-1363.

[22]López-Larrea C.Sensing in nature.Preface[J].Adv Exp Med Biol,2012,739:v-vvii.

[23]Inoue M,Mitarai N,Trusina A.Circuit architecture explains functional similarity of bacterial heat shock responses[J].Phys Biol,2012,9(6):066003.

[24]Mogk A,Homuth G,Scholz C,et al.The GroE chaperonin machine is a major modulator of the CIRCE heat shock regulon of Bacillus subtilis[J].EMBO J,1997,16(15):4579-4590.

[25]Chen AL,Wilson AC,Tan M.A Chlamydia-specific C-terminal region of the stress response regulator HrcA modulates its repressor activity[J].J Bacteriol,2011,193(23):6733-6741.

[26]Lemos JA,Luzardo Y,Burne RA.Physiologic effects of forced down-regulation of dnaK and groEL expression in Streptococcus mutans[J].J Bacteriol,2007,189(5):1582-1588.

[27]Lemos JA,Burne RA.Regulation and physiological significance of ClpC and ClpP in Streptococcus mutans[J].J Bacteriol,2002,184(22):6357-6366.

[28]van Bokhorst-van de Veen H,Bongers RS,Wels M,et al.Transcriptome signatures of classⅠand Ⅲ stress response deregulation in Lactobacillus plantarum reveal pleiotropic adaptation[J].Microb Cell Fact,2013,18(12):112.

[29]Chastanet A,Msadek T.ClpP of Streptococcus salivarius is a novel member of the dually regulated class of stress response genes in gram-positive bacteria[J].J Bacteriol,2003,185(2):683-687.

[30]Chastanet A,Prudhomme M,Claverys JP,et al.Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival[J].J Bacteriol,2001,183(24):7295-7307.

[31]Chastanet A,F(xiàn)ert J,Msadek T.Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram-positive bacteria[J].Mol Microbiol,2003,47(4):1061-1073

.

(本文采編 王晴)

The groE operon of Streptococcus mutans with its expression and regulation

Wang Yizhou,Zhang Yaqi,Niu Xuewei,Zhang Zhimin.(Dept.of Conservative Dentistry and Endodontics,Hospital of Stomatology,Jilin University,Changchun 130021,China)

This study was supported by the National Natural Science Foundation of China(81170945).

[Abstract]Streptococcus mutans(S.mutans),as one of the primary cariogenic bacteria,can respond to several environmental stresses.This ability mainly depends on the translation and expression of variety of heat shock protein genes.groE operon,one of the best-studied heat shock genes,affects the metabolism of cells by translating the heat shock proteins,groES-groEL,which can mediate the folding,assembly,transport,and degradation of new or misfolding proteins.The groE operon locates in 1 834 692-1 832 649 sites,including a σApromoter,inverted repeat sequence(CIRCE),groES,groEL and a terminator.It is highly conserved,and can be induced to express by stress environment including heat,acid,ethanol and hydrogen peroxide.Both HrcA-CIRCE system and CtsR play a negative regulation role,without a clear mechanism.Studies,about the structure and regulation mechanism of S.mutans groE operon in a molecular level,help to further clarify the physiological process of cells,and lay the foundation for understanding the molecular mechanism of cells under stress and pathological conditions.

[Key words]Streptococcus mutans;groE operon;heat shock protein gene;regulation

[收稿日期]2015-06-27;[修回日期]2015-12-09

[基金項目]國家自然科學(xué)基金(81170945)

[作者簡介]王一舟,碩士,Email:451454855@qq.com

[通信作者]張志民,教授,博士,Email:zhangzm1964@sina.com

[中圖分類號]Q 786

[文獻標(biāo)志碼]A[doi] 10.7518/gjkq.2016.03.021

猜你喜歡
調(diào)控
樓市調(diào)控是否放松
miR-142-5p通過CCND1調(diào)控膽囊癌細胞的增殖和轉(zhuǎn)移
碘-125粒子調(diào)控微小RNA-193b-5p抑制胃癌的增殖和侵襲
心理調(diào)控在中小學(xué)管理中的有效應(yīng)用
如何調(diào)控困意
經(jīng)濟穩(wěn)中有進 調(diào)控托而不舉
電網(wǎng)調(diào)控技術(shù)在電力系統(tǒng)中的應(yīng)用
TGIF2調(diào)控膠質(zhì)瘤細胞的增殖和遷移
順勢而導(dǎo) 靈活調(diào)控
無機氮源對紅曲霉調(diào)控初探
波密县| 光泽县| 美姑县| 灌云县| 巴塘县| 三门峡市| 台中市| 射阳县| 富裕县| 陇西县| 尼木县| 临安市| 改则县| 乡宁县| 乐东| 长汀县| 射洪县| 民勤县| 鹰潭市| 佛冈县| 江津市| 永川市| 射洪县| 三门峡市| 古交市| 绥棱县| 河北区| 太谷县| 永春县| 根河市| 师宗县| 荣成市| 玉屏| 明光市| 孟村| 浏阳市| 金昌市| 崇明县| 公安县| 普宁市| 防城港市|