劉勁 丁發(fā)興 龔永智 余志武 李大穩(wěn)
摘 要:進(jìn)行了12個圓鋼管混凝土短柱局壓試驗(yàn),探討混凝土強(qiáng)度等級、局壓面積比對鋼管混凝土短柱局壓極限承載力的影響.試驗(yàn)結(jié)果表明,混凝土強(qiáng)度等級提高,極限承載力增大而延性降低;局壓面積比減小,則承載力越高延性越低.采用合理的材料本構(gòu)關(guān)系,利用ABAQUS有限元軟件建立圓鋼管混凝土短柱局壓的殼實(shí)體三維有限元模型,在試驗(yàn)驗(yàn)證的基礎(chǔ)之上,利用ABAQUS軟件及相應(yīng)的有限元模型探討局壓面積比、含鋼率、鋼材強(qiáng)度和混凝土強(qiáng)度對短柱局壓極限承載力的影響.通過擬合分析提出圓鋼管混凝土短柱局壓極限承載力的實(shí)用計(jì)算公式,將該計(jì)算公式、有限元計(jì)算值、其他學(xué)者提出的計(jì)算公式與筆者試驗(yàn)及其他學(xué)者共47組圓鋼管混凝土短柱局壓試驗(yàn)資料進(jìn)行對比,分析結(jié)果表明,筆者提出的公式計(jì)算結(jié)果與試驗(yàn)結(jié)果相比具有較高的精度.
關(guān)鍵詞:鋼管混凝土;局壓;有限元方法; 極限承載力
中圖分類號:TU398 文獻(xiàn)標(biāo)識碼:A
文章編號:1674-2974(2015)11-0033-08
與傳統(tǒng)的鋼結(jié)構(gòu)或混凝土結(jié)構(gòu)相比,鋼管混凝土柱具有承載力高、延性好和施工便捷等優(yōu)點(diǎn),在建筑和橋梁工程中得到了越來越廣泛的應(yīng)用[1],為此許多學(xué)者對此開展了研究[1-6].鋼管混凝土柱局部受壓是工程使用中常見的一種受力方式,如在橋墩結(jié)構(gòu)中.蔡紹懷[1]進(jìn)行了圓鋼管混凝土中心區(qū)局部承壓試驗(yàn),探討了圓鋼管混凝土試件長度、套箍指標(biāo)、局壓面積比和在局壓區(qū)域配置螺旋箍筋對局壓性能的影響和對局壓極限承載力的提高作用.作者根據(jù)試驗(yàn)測試結(jié)果,采用回歸分析方法得到圓鋼管混凝土局壓極限承載力計(jì)算公式,其研究成果為鋼管混凝土結(jié)構(gòu)技術(shù)規(guī)程 (CECS28:2012)[7-8]所采納.Han等[2~4]對圓鋼管混凝土柱局部受壓下的工作機(jī)理進(jìn)行了研究,結(jié)果表明:端板厚度和局壓面積比對試件承載力及延性有很大的影響,同時截面形式的不同也對試件中鋼管與混凝土的套箍作用有顯著影響;并運(yùn)用ABAQUS軟件對鋼管混凝土短柱局壓進(jìn)行分析,提出鋼管混凝土短柱局壓承載力的簡化計(jì)算方法.
筆者所在課題組采用ABAQUS軟件選取合理的材料本構(gòu)關(guān)系和殼實(shí)體三維有限元建模方法對圓形及圓端形鋼管混凝土軸壓短柱進(jìn)行分析[9-10],可合理體現(xiàn)鋼管對混凝土約束套箍作用,能準(zhǔn)確模擬鋼管混凝土軸壓短柱的力學(xué)性能,該方法可進(jìn)一步應(yīng)用于圓鋼管混凝土短柱局壓力學(xué)性能分析中.為豐富圓鋼管混凝土短柱局壓力學(xué)性能的研究,提出更為簡潔、準(zhǔn)確的承載力公式,本文展開如下工作:1)進(jìn)行12個無端板圓鋼管混凝土短柱局壓試驗(yàn)研究;2)運(yùn)用ABAQUS有限元軟件建立三維有限元模型,對圓鋼管混凝土短柱局壓進(jìn)行建模計(jì)算;3)探討混凝土強(qiáng)度、局壓面積比、含鋼率以及鋼材強(qiáng)度對圓鋼管混凝土短柱局壓極限承載力的影響;4)通過擬合建立圓鋼管混凝土短柱局壓承載力實(shí)用計(jì)算公式,根據(jù)本文及其他學(xué)者提供的試驗(yàn)成果,比較筆者提出的計(jì)算式與其他計(jì)算式之間的精度差異.
1 試驗(yàn)研究
1.1 試驗(yàn)概況
試驗(yàn)共設(shè)計(jì)了12個圓鋼管混凝土試件,名義尺寸為D×t×L=300 mm×4 mm×900 mm,試件信息見表1.其中D為截面直徑,t為鋼管壁厚,L為試件高度,d為圓鋼管混凝土試件局壓加載板的直徑, f.cu為混凝土立方體抗壓強(qiáng)度,f.y為鋼材屈服強(qiáng)度,β為局壓面積比,β=A.c/A.b(A.c為試件混凝土橫截面面積,A.b為局壓面面積).
為方便觀察試件加載破壞的變形,在加工好的空鋼管試件外表面噴上紅色油漆,并畫好50 mm×50 mm白色網(wǎng)格.澆筑混凝土?xí)r,對灌入的混凝土振搗密實(shí),澆灌混凝土結(jié)束后,使頂端混凝土表面與鋼管上截面保持水平,澆灌時,制作150 mm×150 mm×150 mm混凝土立方體試塊,并將其與鋼管混凝土試件在同等條件下養(yǎng)護(hù).
1.2 試驗(yàn)方法
試驗(yàn)前,先測試鋼材和混凝土的力學(xué)性能.鋼材屈服強(qiáng)度f.y為311 MPa,極限強(qiáng)度f.u 為460 MPa,彈性模量E.s為2.07×105 MPa.C30混凝土強(qiáng)度f.cu為35.5 MPa,C50混凝土強(qiáng)度f.cu為54.4 MPa.
將40 mm厚的局壓墊板放置在試件頂端正中位置,試驗(yàn)荷載通過局壓墊板傳遞.兩個位移計(jì)布置在壓力機(jī)的上下加載板之間,由此可測得局壓墊板相對于試件的位移,試件上作用的壓力值可由機(jī)器直接讀出.為考察鋼管與混凝土之間粘結(jié),同時準(zhǔn)確地觀測鋼管的變形,對于每個試件,鋼板從上至下截面處布置5個應(yīng)變花.應(yīng)變花、位移計(jì)和鋼管混凝土試件加載如圖1所示.
試驗(yàn)采用如下加載機(jī)制:彈性階段加載時,每級荷載相當(dāng)于極限荷載的1/15左右,彈塑性階段加載時,每級荷載相當(dāng)于極限荷載的1/25左右,每級荷載持續(xù)時間約為3 min,加載過程保持慢速連續(xù),相應(yīng)數(shù)據(jù)同步采集,試件接近極限承載力時,慢速連續(xù)加載直至試件破壞,每個鋼管混凝土試件試驗(yàn)時間持續(xù)約2 h.
1.3 試驗(yàn)現(xiàn)象
在加載初期,圓鋼管混凝土試件處于彈性工作狀態(tài),荷載達(dá)到極限荷載的60%~70%以前,荷載位移曲線大致呈線性關(guān)系,試件表面沒有明顯變化.隨著荷載的增加,當(dāng)荷載增至極限荷載的60%~70%時,試件開始進(jìn)入彈塑性階段,其軸向剛度不斷減小,試件實(shí)測的荷載軸向位移曲線如圖2所示,不同荷載水平下試件表面的鋼管縱向應(yīng)變(ε..L)和環(huán)向應(yīng)變(ε..θ,s)分布如圖3所示.此時試件表面開始出現(xiàn)鼓曲,局部受壓使得鋼管膨脹現(xiàn)象從上到下依次遞減.隨著外荷載的繼續(xù)增加,當(dāng)試件達(dá)到極限荷載后,鋼管變形尤其是試件上端迅速增加,端部混凝土明顯壓碎開裂,試件破壞如圖4所示.
除局壓面積比為8.55的圓鋼管混凝土試件之外,其余試件破壞后承載力出現(xiàn)較明顯下降,如圖2所示,最后試件因?yàn)樽冃芜^大而終止試驗(yàn).由圖可知,鋼管混凝土試件在加載作用下呈向外鼓出現(xiàn)象,試件破壞形態(tài)受局壓面積比影響顯著,局壓面積比越小,鼓出范圍和程度越大.
1.4 試驗(yàn)結(jié)果分析
由圖2鋼管混凝土局壓試件荷載位移曲線可知,局壓面積比對試件承載力和剛度有著很大的影響,試件承載力和剛度隨著局壓面積比的增大而遞減,同時,局壓面積比越大,其下降趨勢越緩.
圖3為不同加荷階段(n=N/N.b分別為0.1,0.3,0.5,0.7和0.9,N.b為短柱局壓極限承載力)鋼管縱向、環(huán)向應(yīng)變沿高度的分布情況.從圖中可以看出,在荷載的初始階段,縱向、環(huán)向應(yīng)變增加較慢,當(dāng)荷載達(dá)到極限荷載70%以上,應(yīng)變迅速增加,試件中上部環(huán)向應(yīng)變和縱向應(yīng)變最大,與試驗(yàn)所觀察到的鼓曲情況相吻合.
為了比較圓鋼管混凝土短柱局壓約束效果,引入鋼管混凝土短柱局壓承載力折減系數(shù)SI,即鋼管混凝土短柱局壓極限承載力N.b,e與試件全截面受壓極限承載力N.u,e的比值:
2 理論分析
2.1 建立模型
以ABAQUS/Standard6.4[11]為有限元分析工具建立模型,鋼管采用殼單元(S4R),局壓加載板、混凝土和鋼管端部墊板采用三維實(shí)體單元(C3D8R),模型中單元網(wǎng)格劃分形式為Structured,如圖7所示.模型中鋼管與混凝土的界面采用庫倫摩擦型接觸,切線方向采用罰函數(shù),摩擦系數(shù)取0.5,法線方向選擇硬接觸模擬,相互作用為表面表面接觸,滑移方式為有限滑移,參數(shù)取值及建模方法參考文獻(xiàn)\[9-10\].
鋼材和混凝土的本構(gòu)關(guān)系及相應(yīng)的參數(shù)取值見文獻(xiàn)\[10\],混凝土與端部墊板、混凝土與局壓加載板的約束形式為綁定,通過殼實(shí)體耦合以定義鋼管與其端部墊板的約束關(guān)系.模型中一端墊板固定,另一端在局壓加載板上加載.采用位移方式加載以得到荷載位移曲線的下降段,并通過增量法求解.
2.2 計(jì)算結(jié)果分析
選取本文試驗(yàn)及文獻(xiàn)\[1-2\]中的47組圓鋼管混凝土短柱局壓試驗(yàn)結(jié)果進(jìn)行有限元分析,采用上述有限元理論建立模型,計(jì)算得到不同局壓面積比圓鋼管混凝土典型破壞形態(tài)如圖8所示.
荷載位移曲線有限元計(jì)算結(jié)果與試驗(yàn)結(jié)果的比較如圖9所示,本文有限元結(jié)果N.b,F(xiàn)E與試驗(yàn)結(jié)果N.b,e如表1所示,試驗(yàn)結(jié)果與有限元結(jié)果比值的均值為1.006,離散系數(shù)為0.077,可見有限元計(jì)算結(jié)果與試驗(yàn)結(jié)果整體吻合較好.
2.3 加載板形狀對荷載位移曲線的影響
采用與本文相同的試驗(yàn)參數(shù),改變加載板形狀,與試驗(yàn)作相同局壓面積比的對比,即圓鋼管混凝土柱通過方形加載板加載,探討加載板形狀對荷載位移曲線的影響.典型荷載位移曲線如圖10所示.可見,β=8.55時,圓鋼管混凝土柱采用圓方加載板試件荷載相差在1%以內(nèi),β=2.14時,圓鋼管混凝土柱采用方加載板試件極限承載力高于采用圓加載板試件4.98%.可見,加載板形狀的改變對試件荷載位移曲線影響較小.
2.4 荷載位移曲線參數(shù)分析
考慮局壓面積比β,含鋼率ρ,鋼材強(qiáng)度f.y,混凝土強(qiáng)度f.cu等因素的影響,對鋼管混凝土局壓性能進(jìn)行有限元參數(shù)分析.模型情況:圓鋼管混凝土短柱84組,直徑D均為200 mm,鋼管壁厚t分別為2.5 mm,4.9 mm,7.2 mm,鋼管長L為600 mm.局壓面積比β分別為16, 9, 4, 1,混凝土抗壓強(qiáng)度f.cu分別為30 MPa,70 MPa,100 MPa,鋼材屈服強(qiáng)度f.y分別為235 MPa,335 MPa,420 MPa,其中Q235鋼材匹配C30混凝土和C70混凝土,Q335鋼材匹配C70混凝土和C100混凝土,Q420鋼材匹配C70混凝土和C100混凝土,典型荷載位移曲線如圖11所示.
1) 局壓面積比:圖11(a)為圓鋼管混凝土短柱在不同局壓面積比下的荷載位移曲線對比.從圖11(a)可知局壓面積比對鋼管混凝土短柱局壓極限承載力影響很大,局壓面積比越大,極限承載力越小.
2) 含鋼率:圖11(b)所示為圓鋼管混凝土短柱局壓在不同含鋼率下的荷載位移曲線比較.從圖11(b)可知,當(dāng)含鋼率較大時,構(gòu)件彈性階段的剛度和極限承載力更大.當(dāng)含鋼率達(dá)到一定階段時,構(gòu)件的荷載位移曲線沒有下降段.
3) 鋼材強(qiáng)度:圖11(c)所示為圓鋼管混凝土短柱局壓在不同鋼材強(qiáng)度下的荷載位移曲線比較.從圖11(c)可知,鋼材強(qiáng)度越大,構(gòu)件極限承載力越大,但構(gòu)件彈性階段的剛度沒有增大.
4) 混凝土強(qiáng)度:圖11(d)所示為圓鋼管混凝土短柱局壓在不同混凝土強(qiáng)度下荷載位移曲線的比較.從圖11(d)可知,混凝土強(qiáng)度越大,構(gòu)件極限承載力和構(gòu)件剛度越大.
Δ/mm(a) 局壓面積比的影響
Δ/mm(b) 含鋼率的影響
Δ/mm(c) 鋼材強(qiáng)度的影響
Δ/mm(d) 混凝土強(qiáng)度的影響
4 結(jié) 論
1)本文進(jìn)行了12組圓鋼管混凝土短柱局壓試驗(yàn)研究,探討局壓面積比、混凝土強(qiáng)度對局壓承載力的影響,結(jié)果表明局壓面積比越大局壓承載力越小,混凝土強(qiáng)度等級越高局壓承載力越大.
2)運(yùn)用有限元軟件ABAQUS建立圓鋼管混凝土短柱局壓計(jì)算模型,計(jì)算結(jié)果與試驗(yàn)結(jié)果吻合良好且精度最高.
3)有限元參數(shù)分析表明影響圓鋼管混凝土短柱局壓承載力的主要因素有局壓面積比、含鋼率、鋼材強(qiáng)度和混凝土強(qiáng)度,局壓面積比是影響局壓極限承載力的主要因素,同時有限元分析表明局壓加載板的形狀對局壓承載力的影響較小.
4)通過參數(shù)分析提出圓鋼管混凝土短柱局壓極限承載力實(shí)用計(jì)算公式,計(jì)算結(jié)果與試驗(yàn)結(jié)果吻合較好.
參考文獻(xiàn)
[1] 蔡紹懷. 現(xiàn)代鋼管混凝土結(jié)構(gòu)\[M\]. 北京: 人民交通出版社, 2007:120-137.
CAI Shao-huai. Modern steel tube confined concrete structures\[M\]. Beijing: China Communications Press, 2007:120-137. (In Chinese)
[2] HAN Lin-hai, LIU Wei, YANG You-fu. Behavior of thin walled steel tube confined concrete stub columns subjected to axially local compression\[J\]. Thin-walled Structures, 2008, 46(2): 155-164.
[3] YANG You-fu, HAN Lin-hai. Concrete filled steel tube (CFST) columns subjected to concentrically partial compression \[J\]. Thin-walled Structures, 2012, 50(2): 147-156.
[4] 劉威, 韓林海. 鋼管混凝土受軸向局壓荷載時的工作機(jī)理研究\[J\]. 土木工程學(xué)報, 2006, 39(6):19-27.
LIU Wei, HAN Lin-hai. Behaviors of concrete-filled steel tubes subject axial local compression\[J\]. China Civil Engineering Journal, 2006, 39(6):19-27. (In Chinese)
[5] 丁發(fā)興, 余志武. 鋼管混凝土短柱力學(xué)性能研究-實(shí)用計(jì)算方法\[J\]. 工程力學(xué), 2005, 22(3):134-138.
DING Fa-xing, YU Zhi-wu. A method for calculation of the mechanical properties of concrete-filled tubular steel stub columns\[J\]. Engineering Mechanics, 2005, 22(3):134- 138. (In Chinese)
[6] 霍靜思, 何遠(yuǎn)明, 肖莉平,等. 高溫后鋼管混凝土抗多次沖擊力學(xué)性能試驗(yàn)研究\[J\]. 湖南大學(xué)學(xué)報:自然科學(xué)版, 2012, 39(9):6-10.
HUO Jing-si, HE Yuan-ming, XIAO Li-ping, et al. Experimental study on the dynamic behavior of concrete-filled steel tube after exposure to high temperatures under multiple impact loading\[J\]. Journal of Hunan University: Natural Sciences, 2012, 39(9):6-10. (In Chinese)
[7] CECS28-2012 鋼管混凝土結(jié)構(gòu)技術(shù)規(guī)程\[S\]. 北京: 中國計(jì)劃出版社, 2012:25-26.
CECS28-2012 Technical specification for concrete filled steel tubular structures\[S\]. Beijing: China Planning Press, 2012:25-26. (In Chinese)
[8] GB 50936-2014 鋼管混凝土結(jié)構(gòu)技術(shù)規(guī)范\[S\]. 北京: 中國建筑工業(yè)出版社, 2014:39-40.
GB 50936-2014 Technical code for concrete filled steel tubular structures\[S\]. Beijing: China Architecture & Building Press, 2014:39-40.(In Chinese)
[9] 谷利雄, 丁發(fā)興, 付磊, 等. 圓端形鋼管混凝土軸壓短柱受力性能研究\[J\]. 中國公路學(xué)報, 2014, 27(1):57-63.
GU Li-xiong, DING Fa-xing, FU Lei, et al. Mechanical behavior of concrete-filled round-ended steel tubular stub columns under axial load\[J\]. China Journal of Highway and Transport, 2014, 27(1):57-63. (In Chinese)
[10]DING Fa-xing, YING Xiao-yong, ZHOU Lin-chou, et al. Unified calculation method and its application in determining the uniaxial mechanical properties of concrete\[J\]. Front Archit Civ Eng China, 2011, 5(3): 381-393.
[11]Hibbitt, Karlson & Sorenson. Abaqus Version 6.4: Theory manual, users manual, verification manual and example problems manual\[M\]. Hibbitt, Karlson & Sorenson Inc, 2003.