劉 華綜述 張德玲審校
zdlme@whu.edu.cn
?
脂聯(lián)素心肌保護(hù)效應(yīng)的研究進(jìn)展*
劉華1,2綜述張德玲1,#審校
zdlme@whu.edu.cn
【摘要】脂聯(lián)素(Adiponectin, ADPN)是一種主要由脂肪組織分泌的脂肪因子,具有增加胰島素敏感性、抗動(dòng)脈粥樣硬化、抗炎等效應(yīng)。ADPN作為心臟疾病的重要保護(hù)因子,其在心肌肥厚、心肌缺血-再灌注損傷、糖尿病心肌病中的保護(hù)機(jī)制研究受到廣泛關(guān)注,有望為相關(guān)疾病的診斷和防治提供新策略。
【關(guān)鍵詞】脂聯(lián)素;心肌肥厚;缺血-再灌注損傷;糖尿病心肌病
脂聯(lián)素(Adiponectin, ADPN)是一種主要由脂肪組織分泌的脂肪因子,與其受體結(jié)合后,通過一系列細(xì)胞信號(hào)通路發(fā)揮胰島素增敏、抗動(dòng)脈粥樣硬化、抗炎等效應(yīng)。大量研究證實(shí)ADPN可調(diào)節(jié)心臟能量代謝、抑制心肌肥大和重塑、抑制間質(zhì)纖維化、抗心肌細(xì)胞凋亡等[1];而血漿低ADPN水平是高血壓、冠狀動(dòng)脈病變和心肌梗死等的獨(dú)立危險(xiǎn)因素[2]。因此認(rèn)為ADPN是心臟疾病的重要保護(hù)因子,包括對(duì)糖尿病性心臟病的保護(hù)作用[3],以及預(yù)防心臟疾病的重要靶點(diǎn)。本文綜述ADPN對(duì)心肌肥厚、心肌缺血-再灌注損傷、糖尿病心肌病保護(hù)作用及機(jī)制的研究進(jìn)展。
1概述
1995年,Scherer等[4]發(fā)現(xiàn)了主要由脂肪細(xì)胞合成及分泌的ADPN,命名為Acrp30,或稱apM1、AdipoQ、GBP28。近年研究表明,非脂肪細(xì)胞也可表達(dá)ADPN,如心肌細(xì)胞[5]、肝細(xì)胞[6]等。全長(zhǎng)型ADPN包括四個(gè)區(qū)域:分泌信號(hào)序列、可變區(qū)、N-末端膠原結(jié)構(gòu)域及C-末端膠原結(jié)構(gòu)域;還有少部分ADPN直接以C端球狀結(jié)構(gòu)域形式存在,謂之球狀A(yù)DPN(Globular Adiponectin, gAd)[7]。健康人血漿ADPN含量為2-20 mg/L,約占血漿蛋白量的0.01%。血漿中ADPN以三聚體、六聚體和多聚體等形式存在,其中多聚體ADPN具備生物學(xué)活性[8]。
ADPN表達(dá)水平受到多種因素調(diào)節(jié),如二硫鍵氧化還原酶A類似蛋白(DsbA-L)促進(jìn)脂肪細(xì)胞分泌ADPN以及ADPN多聚體的形成[9];而內(nèi)質(zhì)網(wǎng)應(yīng)激、氧化應(yīng)激及促炎因子等負(fù)向調(diào)節(jié)ADPN的合成及分泌[8]。血漿ADPN水平與腹部脂肪量呈負(fù)相關(guān),即肥胖者ADPN分泌明顯較低[10],這可能與肥胖誘導(dǎo)內(nèi)質(zhì)網(wǎng)應(yīng)激以及肥胖者脂肪細(xì)胞內(nèi)DsbA-L表達(dá)降低密切相關(guān)[8]。
目前已發(fā)現(xiàn)三種ADPN受體:AdipoR1、AdipoR2及T-鈣黏蛋白(T-cadherin)。研究表明,小鼠全身組織廣泛表達(dá)AdipoR1,在骨骼肌表達(dá)最豐富。AdipoR1對(duì)gAd有高度親和性,而對(duì)全長(zhǎng)型ADPN親和性較低;AdipoR2主要表達(dá)于肝臟,對(duì)gAd和全長(zhǎng)型ADPN均為中度親和性[11];T-cadherin是一種新發(fā)現(xiàn)的ADPN受體,在心肌細(xì)胞高表達(dá),有研究報(bào)道T-cadherin是介導(dǎo)ADPN對(duì)心肌保護(hù)作用的必需受體;但由于其缺乏細(xì)胞內(nèi)結(jié)構(gòu)域,可能作為ADPN結(jié)合蛋白而發(fā)揮信號(hào)傳導(dǎo)作用[12]。
ADPN與其受體結(jié)合后,可激活下游信號(hào)分子腺苷酸活化蛋白激酶(AMPK)、p38促絲裂原蛋白激酶(p38 MAPK)和過氧化物酶體增殖物激活受體α(PPAR-α)等,發(fā)揮干預(yù)糖尿病、抗炎、心血管保護(hù)等生物學(xué)作用。Mao等[13]發(fā)現(xiàn)ADPN受體激活下游信號(hào)分子需要銜接蛋白[包含PH區(qū)域、PTB區(qū)域、亮氨酸拉鏈結(jié)構(gòu)1(APPL1)]的介導(dǎo)才能完成。APPL1通過PTB結(jié)構(gòu)域直接與AdipoR1和AdipoR2的胞內(nèi)段結(jié)合并介導(dǎo)ADPN下游信號(hào)的傳導(dǎo),對(duì)調(diào)節(jié)糖脂代謝和胰島素敏感性有關(guān)鍵作用[13-15];同時(shí),APPL1與ADPN受體結(jié)合后介導(dǎo)ADPN下游信號(hào)AMPK的激活,對(duì)ADPN的心血管保護(hù)效應(yīng)也有重要作用[16, 17]。銜接蛋白[包含PH區(qū)域、PTB區(qū)域、亮氨酸拉鏈結(jié)構(gòu)2(APPL2)]是APPL1的同源異構(gòu)體,但APPL2在骨骼肌細(xì)胞內(nèi)的ADPN信號(hào)通路中起負(fù)向調(diào)節(jié)作用,通過與APPL1競(jìng)爭(zhēng)ADPN受體的結(jié)合位點(diǎn),抑制APPL1與ADPN受體結(jié)合,從而阻斷ADPN信號(hào)通路的傳遞[18]。APPL1與APPL2在ADPN信號(hào)傳導(dǎo)中的這種調(diào)節(jié)模式可能有利于ADPN對(duì)糖脂代謝平衡的調(diào)控。
2ADPN對(duì)心肌的保護(hù)效應(yīng)
2.1ADPN與心肌肥厚
心肌肥厚是心臟為適應(yīng)各種刺激而產(chǎn)生的心肌細(xì)胞體積增大,常在高血壓、心臟瓣膜病等壓力負(fù)荷增加的情況下發(fā)生。適當(dāng)肥厚的心肌能克服室壁壓力,維持心室功能;當(dāng)心肌肥厚不足以克服室壁壓力時(shí),心臟重塑加重,表現(xiàn)為心室腔進(jìn)行性擴(kuò)大、心肌纖維化并伴心肌收縮功能減退,最終發(fā)展為心力衰竭。因此,心肌肥厚是引起心血管病發(fā)生率和死亡率顯著增高的獨(dú)立危險(xiǎn)因素。流行病學(xué)調(diào)查發(fā)現(xiàn),血漿ADPN水平與心肌肥厚密切相關(guān)。Mitsuhashi等[19]報(bào)道,與血漿高ADPN水平人群相比,血漿低ADPN水平人群更易發(fā)生左心室肥厚。另有實(shí)驗(yàn)發(fā)現(xiàn),ADPN基因敲除小鼠,由于ADPN缺乏,其壓力超負(fù)荷誘導(dǎo)的心肌肥厚向心力衰竭的發(fā)展進(jìn)程加快、死亡率增加[20];相反,如果對(duì)ADPN基因敲除、野生型或糖尿病db/db小鼠過度表達(dá)ADPN,則可減輕壓力超負(fù)荷誘導(dǎo)的心肌肥厚[21]。這些研究證實(shí)ADPN對(duì)心肌肥厚有改善作用。
大量研究顯示,壓力超負(fù)荷、腎上腺素、血管緊張素Ⅱ(AngⅡ)、內(nèi)皮素-1等多種刺激因素誘導(dǎo)的心肌肥厚機(jī)制與心肌細(xì)胞外信號(hào)調(diào)節(jié)激酶(ERK)、核因子-κB(NF-κB)的激活密切相關(guān)。尤其是ERK的活化,是促進(jìn)心肌肥厚發(fā)展的關(guān)鍵步驟[21, 22]。有研究認(rèn)為,ADPN可抑制AngⅡ誘導(dǎo)的實(shí)驗(yàn)大鼠心肌重構(gòu),其機(jī)制為ADPN通過激活A(yù)MPK信號(hào)而抑制了ERK信號(hào)及NF-kB活化引起的心肌肥厚[23]。另有研究發(fā)現(xiàn),ADPN通過APPL1介導(dǎo)激活A(yù)MPK,可抑制NF-κB活化,減少AngⅡ誘導(dǎo)的新生大鼠心肌肥厚及成纖維細(xì)胞纖維化[24]。研究還證實(shí)在ADPN應(yīng)對(duì)壓力超負(fù)荷的適應(yīng)性新生血管生成過程中,AMPK發(fā)揮了重要的信號(hào)傳導(dǎo)作用[20]。
2.2ADPN與心肌缺血-再灌注損傷(Ischemia-Reperfusion Injury, IRI)
心臟是高度需氧和耗能的器官,心肌缺血后盡早恢復(fù)再灌注,可使絕大部分心肌功能得到恢復(fù)。但如果在特定缺血時(shí)間窗口恢復(fù)再灌注,心肌組織會(huì)發(fā)生IRI。氧化應(yīng)激是IRI的主要發(fā)生機(jī)制之一。心肌IRI時(shí),活性氧(ROS)大量產(chǎn)生引起的氧化/硝化應(yīng)激對(duì)線粒體膜造成損害,釋放過多細(xì)胞色素C,從而激活半胱氨酸蛋白酶-3(Caspase-3),啟動(dòng)凋亡程序,造成心肌細(xì)胞的不可逆轉(zhuǎn)性損傷[25]。
ADPN對(duì)心肌IRI有保護(hù)作用。研究表明,ADPN可以減少實(shí)驗(yàn)小鼠IRI心肌的梗死面積及心肌細(xì)胞凋亡[26];向心肌缺血后的實(shí)驗(yàn)豬冠狀動(dòng)脈內(nèi)注入ADPN,可顯著減少其心肌梗死面積,改善左心室功能[27]。
ADPN對(duì)心肌IRI的保護(hù)機(jī)制主要在于ADPN可減少心肌IRI導(dǎo)致的氧化/硝化應(yīng)激損傷、炎癥反應(yīng)和心肌細(xì)胞凋亡等[28]。研究發(fā)現(xiàn), ADPN基因敲除小鼠的心肌內(nèi)氧自由基、一氧化氮等ROS產(chǎn)物明顯多于野生型小鼠,而引起了嚴(yán)重的氧化/硝化應(yīng)激;而在心肌再灌注前注射gAd可逆轉(zhuǎn)各項(xiàng)病理指標(biāo)的增高,充分表明ADPN對(duì)IR導(dǎo)致的心肌氧化/硝化應(yīng)激損傷有拮抗作用[26]。進(jìn)一步研究證明,ADPN抗心肌氧化/硝化應(yīng)激效應(yīng)主要由蛋白激酶A(PKA)信號(hào)通路介導(dǎo)[29]。另外,ADPN可抑制脂多糖誘導(dǎo)的促炎因子腫瘤壞死因子-α(TNF-α)合成,減輕心肌IRI,是ADPN通過活化的環(huán)氧化酶-2(COX-2)信號(hào)介導(dǎo)抗炎效應(yīng),如促進(jìn)前列腺素E2合成等[30]實(shí)現(xiàn)的。AMPK信號(hào)也參與介導(dǎo)ADPN對(duì)IRI的保護(hù)效應(yīng)[30-32]。心肌IRI實(shí)驗(yàn)中,AMPK缺陷小鼠心肌受損程度較野生型小鼠明顯加重,給予ADPN處理可顯著減輕野生型小鼠的心肌損傷,但對(duì)AMPK缺陷小鼠的心肌保護(hù)作用明顯較弱,提示AMPK在ADPN對(duì)IRI心肌保護(hù)效應(yīng)中有重要的介導(dǎo)作用[31],但其介導(dǎo)途徑并不清楚。在AMPK缺陷小鼠中,PKA介導(dǎo)的ADPN抗氧化/硝化應(yīng)激效應(yīng)并不受AMPK影響,表明AMPK信號(hào)通路與PKA信號(hào)通路對(duì)ADPN的心肌保護(hù)效應(yīng)并無交聯(lián)[29]。AMPK與COX-2介導(dǎo)的ADPN抗炎效應(yīng)的信號(hào)通路也無交聯(lián),因?yàn)樵谂囵B(yǎng)的心肌細(xì)胞中,抑制AMPK對(duì)ADPN激活COX-2發(fā)揮抗炎效應(yīng)沒有任何影響,而抑制COX-2的作用也不影響AMPK活化介導(dǎo)ADPN的作用[30]。表明ADPN通過幾條獨(dú)立的信號(hào)途徑,包括PKA介導(dǎo)的抗氧化/硝化應(yīng)激效應(yīng)、COX-2介導(dǎo)的抗炎效應(yīng)、AMPK介導(dǎo)的心肌保護(hù)效應(yīng)來發(fā)揮對(duì)心肌IRI的保護(hù)作用。
缺氧/復(fù)氧損傷實(shí)質(zhì)上是IRI的中心環(huán)節(jié),體外實(shí)驗(yàn)常用缺氧/復(fù)氧模型來模擬IRI。缺氧/復(fù)氧損傷可引起線粒體ROS增多、內(nèi)質(zhì)網(wǎng)應(yīng)激,最終啟動(dòng)凋亡途徑導(dǎo)致心肌細(xì)胞凋亡。研究發(fā)現(xiàn),ADPN可顯著減少缺氧/復(fù)氧誘導(dǎo)的大鼠心肌H9c2細(xì)胞內(nèi)線粒體ROS大量增加及心肌細(xì)胞凋亡。當(dāng)用siRNA干擾AdipoR1或APPL1表達(dá)后,ADPN對(duì)細(xì)胞內(nèi)ROS和Caspase-3生成的抑制作用明顯減弱,說明AdipoR1/APPL1信號(hào)通路可介導(dǎo)ADPN對(duì)缺氧/復(fù)氧誘導(dǎo)的心肌細(xì)胞凋亡的保護(hù)效應(yīng)[33]。另外,ADPN可通過激活磷脂酰肌醇激酶/蛋白激酶(PI3K/Akt)信號(hào)通路,上調(diào)新生大鼠心肌細(xì)胞內(nèi)質(zhì)網(wǎng)Ca2+-ATP酶活性來抑制內(nèi)質(zhì)網(wǎng)應(yīng)激,進(jìn)而減輕缺氧/復(fù)氧誘導(dǎo)的心肌IRI[34]。
2.3ADPN與糖尿病心肌病(Diabetic Cardiomyopathy,DCM)
DCM是由高血糖、高血脂和炎癥等多種病理因素誘導(dǎo),繼發(fā)于糖尿病心臟微血管病變和心肌代謝紊亂所致的特殊心肌病[35]。包括DCM在內(nèi)的心血管并發(fā)癥是糖尿病患者死亡的主要原因[36]。
DCM的發(fā)病機(jī)制復(fù)雜,一般認(rèn)為,高血糖、高血脂誘導(dǎo)的心肌能量代謝異常及氧化損傷是其重要機(jī)制之一[37]。DCM的特征性病理表現(xiàn)是心肌間質(zhì)纖維化,嚴(yán)重時(shí)可導(dǎo)致心臟重塑及心力衰竭的發(fā)生[35];心肌細(xì)胞凋亡在DCM發(fā)展過程中的作用也不容忽視,2型糖尿病人群及糖尿病模型動(dòng)物的心臟中均存在較多心肌細(xì)胞凋亡[38, 39]。特異性凋亡阻斷劑不僅能減少糖尿病鼠早期心肌細(xì)胞凋亡,也有效阻止糖尿病心肌纖維化[40]。
臨床研究表明,血漿ADPN水平與DCM的發(fā)生發(fā)展密切相關(guān),下調(diào)ADPN是延緩DCM發(fā)展、改善其預(yù)后的保護(hù)措施[41, 42]。ADPN通過APPL1介導(dǎo)的AMPK活化,可以增加心肌細(xì)胞對(duì)脂肪酸和葡萄糖的攝取[16],從而減少心肌能量代謝異常引起的心肌肥厚及心臟重塑[37],促進(jìn)心肌成纖維細(xì)胞遷移至受損組織,并激活基質(zhì)金屬蛋白酶(MMP)降解細(xì)胞外基質(zhì),延緩糖尿病對(duì)心肌的損傷,改善心功能[17]。動(dòng)物實(shí)驗(yàn)證實(shí),采用鏈脲佐菌素(STZ)誘導(dǎo)的DCM大鼠,ADPN通過激活核因子E2相關(guān)因子2(Nrf2)和Brahma相關(guān)基因1(Brg1)促進(jìn)血紅素氧合酶1(HO-1)生成及抗氧化能力,從而減少高糖誘導(dǎo)的心肌氧化應(yīng)激損傷、心肌肥厚,逆轉(zhuǎn)心室功能紊亂[43]。細(xì)胞研究也提示,ADPN可通過上調(diào)HO-1 mRNA轉(zhuǎn)錄水平,降低高糖誘導(dǎo)的心肌細(xì)胞氧化應(yīng)激損傷及心肌細(xì)胞凋亡[44]??梢夾DPN對(duì)DCM具有廣泛的保護(hù)作用。
3小結(jié)
綜上所述,ADPN是一種對(duì)心臟具有保護(hù)作用的脂肪因子,可以減少心肌細(xì)胞凋亡,抑制心肌肥厚、心肌纖維化及心臟重塑。ADPN通過抗氧化應(yīng)激、抗炎、調(diào)節(jié)心肌能量代謝等多種信號(hào)機(jī)制保護(hù)受損心肌,其中,APPL1介導(dǎo)AMPK活化是ADPN信號(hào)傳導(dǎo)的重要途徑。同時(shí),ADPN與心肌肥厚、IRI及DCM關(guān)系的深入研究,有望為相關(guān)疾病的臨床治療提供新思路。
?
劉華(1987-),女,漢族,碩士研究生,研究方向:糖尿病及心血管疾病的分子機(jī)制
參考文獻(xiàn)
1Caselli C, D'Amico A, Cabiati M, et al. Back to the heart: the protective role of adiponectin[J]. Pharmacol Res, 2014, 82(4):9-20.
2Lau WB, Tao L, Wang Y, et al. Systemic adiponectin malfunction as a risk factor for cardiovascular disease[J]. Antioxid Redox Signal, 2011, 15(7):1 863-1 873.
3Okamoto Y. Adiponectin provides cardiovascular protection in metabolic syndrome[J]. Cardiol Res Pract, 2011, 2011(5):1-7.
4Scherer PE, Williams S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes[J]. J Biol Chem, 1995, 270(45):26 746-26 749.
5Pineiro R, Iglesias MJ, Gallego R, et al. Adiponectin is synthesized and secreted by human and murine cardiomyocytes[J]. FEBS Lett, 2005, 579(23):5 163-5 169.
6Yoda-Murakami M, Taniguchi M, Takahashi K, et al. Change in expression of GBP28/adiponectin in carbon tetrachloride-administrated mouse liver[J]. Biochem Biophys Res Commun, 2001, 285(2):372-377.
7Fruebis J, Tsao TS, Javorschi S, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice[J]. Proc Natl Acad Sci USA, 2001, 98(4):2 005-2 010.
8Liu M, Liu F. Transcriptional and post-translational regulation of adiponectin[J]. Biochem J, 2010, 425(1):41-52.
9Liu M, Zhou L, Xu A, et al. A disulfide-bond A oxidoreductase-like protein (DsbA-L) regulates adiponectin multimerization[J]. Proc Natl Acad Sci U S A, 2008, 105(47):18 302-18 307.
10Kishida K, Kim KK, Funahashi T, et al. Relationships between circulating adiponectin levels and fat distribution in obese subjects[J]. J Atheroscler Thromb, 2011, 18(7):592-595.
11Yamauchi T, Kamon J, Ito Y, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects[J]. Nature, 2003, 423(6941):762-769.
12Denzel MS, Scimia MC, Zumstein PM, et al. T-cadherin is critical for adiponectin-mediated cardioprotection in mice[J]. J Clin Invest, 2010, 120(12):4 342-4 352.
13Mao X, Kikani CK, Riojas RA, et al. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function[J]. Nature Cell Biology, 2006, 8(5):516-523.
14肖揚(yáng),董麗麗. 脂聯(lián)素信號(hào)通路:抗擊胰島素抵抗和肥胖相關(guān)代謝疾病的藥物新靶點(diǎn)[J]. 中華糖尿病雜志, 2015, 7(4):195-199.
15Ryu J, Galan AK, Xin X, et al. APPL1 potentiates insulin sensitivity by facilitating the binding of IRS1/2 to the insulin receptor[J]. Cell Reports, 2014, 7(4):1 227-1 238.
16Fang X, Palanivel R, Cresser J, et al. An APPL1-AMPK signaling axis mediates beneficial metabolic effects of adiponectin in the heart[J]. Am J Physiol Endocrinol Metab, 2010, 299(5):E721-729.
17Dadson K, Chasiotis H, Wannaiampikul S, et al. Adiponectin mediated APPL1-AMPK signaling induces cell migration, MMP activation, and collagen remodeling in cardiac fibroblasts[J]. J Cell Biochem, 2014, 115(4):785-793.
18Wang C, Xin X, Xiang R, et al. Yin-Yang regulation of adiponectin signaling by APPL isoforms in muscle cells[J]. J Biol Chem, 2009, 284(46):31 608-31 615.
19Mitsuhashi H, Yatsuya H, Tamakoshi K, et al. Adiponectin level and left ventricular hypertrophy in Japanese men[J]. Hypertension, 2007, 49(6):1 448-1 454.
20Shimano M, Ouchi N, Shibata R, et al. Adiponectin deficiency exacerbates cardiac dysfunction following pressure overload through disruption of an AMPK-dependent angiogenic response[J]. J Mol Cell Cardiol, 2010, 49(2):210-220.
21Shibata R, Ouchi N, Ito M, et al. Adiponectin-mediated modulation of hypertrophic signals in the heart[J]. Nat Med, 2004, 10(12):1 384-1 389.
22Mutlak M, Kehat I. Extracellular signal-regulated kinases 1/2 as regulators of cardiac hypertrophy[J]. Front Pharmacol, 2015, 6:149, 1-8.
23Essick EE, Ouchi N, Wilson RM, et al. Adiponectin mediates cardioprotection in oxidative stress-induced cardiac myocyte remodeling[J]. Am J Physiol Heart Circ Physiol, 2011, 301(3):H984-993.
24Cao T, Gao Z, Gu L, et al. AdipoR1/APPL1 potentiates the protective effects of globular adiponectin on angiotensin II-induced cardiac hypertrophy and fibrosis in neonatal rat atrial myocytes and fibroblasts[J]. PLoS One, 2014, 9(8):1-12.
25Loor G, Kondapalli J, Iwase H, et al. Mitochondrial oxidant stress triggers cell death in simulated ischemia-reperfusion[J]. Biochim Biophys Acta, 2011, 1813(7):1 382-1 394.
26Tao L, Gao E, Jiao X, et al. Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress[J]. Circulation, 2007, 115(11):1 408-1 416.
27Debinski M, Buszman PP, Milewski K, et al. Intracoronary adiponectin at reperfusion reduces infarct size in a porcine myocardial infarction model[J]. Int J Mol Med, 2011, 27(6):775-781.
28Nanayakkara G, Kariharan T, Wang L, et al. The cardio-protective signaling and mechanisms of adiponectin[J]. Am J Cardiovasc Dis, 2012, 2(4):253-266.
29Zhang Y, Wang XL, Zhao J, et al. Adiponectin inhibits oxidative/nitrative stress during myocardial ischemia and reperfusion via PKA signaling[J]. Am J Physiol Endocrinol Metab, 2013, 305(12):E1 436-1 443.
30Shibata R, Sato K, Pimentel DR, et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms[J]. Nat Med, 2005, 11(10):1 096-1 103.
31Wang Y, Gao E, Tao L, et al. AMP-activated protein kinase deficiency enhances myocardial ischemia/reperfusion injury but has minimal effect on the antioxidant/antinitrative protection of adiponectin[J]. Circulation, 2009, 119(6):835-844.
32Qi D, Young LH. AMPK: energy sensor and survival mechanism in the ischemic heart[J]. Trends Endocrinol Metab, 2015, 26(8):422-429.
33Park M, Youn B, Zheng XL, et al. Globular adiponectin, acting via AdipoR1/APPL1, protects H9c2 cells from hypoxia/reoxygenation-induced apoptosis[J]. PLoS One, 2011, 6(4):1-9.
34Guo J, Bian Y, Bai R, et al. Globular adiponectin attenuates myocardial ischemia/reperfusion injury by upregulating endoplasmic reticulum Ca2+-ATPase activity and inhibiting endoplasmic reticulum stress[J]. J Cardiovasc Pharmacol, 2013, 62(2):143-153.
35Asghar O, Al-Sunni A, Khavandi K, et al. Diabetic cardiomyopathy[J]. Clin Sci (Lond), 2009, 116(10):741-760.
36Voulgari C, Papadogiannis D, Tentolouris N. Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies[J]. Vasc Health Risk Manag, 2010, 6(3):883-903.
37Khullar M, Al-Shudiefat AA, Ludke A, et al. Oxidative stress: a key contributor to diabetic cardiomyopathy[J]. Can J Physiol Pharmacol, 2010, 88(3):233-240.
38Anderson EJ, Rodriguez E, Anderson CA, et al. Increased propensity for cell death in diabetic human heart is mediated by mitochondrial-dependent pathways[J]. Am J Physiol Heart Circ Physiol, 2011, 300(1):H118-124.
39Lee Y, Gustafsson AB. Role of apoptosis in cardiovascular disease[J]. Apoptosis, 2009, 14(4):536-548.
40Wei W, Liu Q, Tan Y, et al. Oxidative stress, diabetes, and diabetic complications[J]. Hemoglobin, 2009, 33(5):370-377.
41Hui X, Lam KS, Vanhoutte PM, et al. Adiponectin and cardiovascular health: an update[J]. Br J Pharmacol, 2012, 165(3):574-590.
42Park M, Sweeney G. Direct effects of adipokines on the heart: focus on adiponectin[J]. Heart Fail Rev, 2013, 18(5):631-644.
43Li H, Yao W, Irwin MG, et al. Adiponectin ameliorates hyperglycemia-induced cardiac hypertrophy and dysfunction by concomitantly activating Nrf2 and Brg1[J]. Free Radic Biol Med, 2015, 84:311-321.
44Li X, Li MR, Guo ZX. Effects of adiponectin on oxidative stress and apoptosis in human cardiac myocytes cultured with high glucose[J]. Chin Med J (Engl), 2012, 125(23):4 209-4 213.
*[基金項(xiàng)目]教育部博士點(diǎn)新教師基金(20110141120052)
[中圖分類號(hào)]R363.2+1
[文獻(xiàn)標(biāo)識(shí)碼]A
[文章編號(hào)]1005-1740(2016)02-0070-05
作者簡(jiǎn)介:本文
本文2015-12-04收到,2016-03-12修回