汪濤濤,張才亮,馮連芳,顧雪萍
(化學(xué)工程聯(lián)合國(guó)家重點(diǎn)實(shí)驗(yàn)室,浙江大學(xué)化學(xué)工程與生物工程學(xué)院,浙江省杭州市 310027)
聚丙烯微孔發(fā)泡材料的研究進(jìn)展
汪濤濤,張才亮*,馮連芳,顧雪萍
(化學(xué)工程聯(lián)合國(guó)家重點(diǎn)實(shí)驗(yàn)室,浙江大學(xué)化學(xué)工程與生物工程學(xué)院,浙江省杭州市 310027)
聚丙烯(PP)發(fā)泡材料具有優(yōu)異的力學(xué)性能和熱性能,PP屬于結(jié)晶型聚合物,在溫度低于熔點(diǎn)時(shí),存在結(jié)晶區(qū),相態(tài)為固態(tài),難以發(fā)泡;而溫度達(dá)到熔點(diǎn)時(shí),熔體強(qiáng)度急劇下降,導(dǎo)致泡孔聚并和破裂。目前,關(guān)于超臨界二氧化碳制備PP微孔發(fā)泡材料的研究主要聚焦于改善PP的發(fā)泡行為,通過(guò)添加納米顆粒或聚合物來(lái)調(diào)控PP的結(jié)晶方式,采用直接合成、共混改性和輻照交聯(lián)等手段提高PP熔體強(qiáng)度,以及改進(jìn)發(fā)泡方法來(lái)獲得PP微孔發(fā)泡材料。
聚丙烯 發(fā)泡 結(jié)晶 熔體強(qiáng)度
聚丙烯(PP)發(fā)泡材料具有良好的力學(xué)性能、熱穩(wěn)定性能和尺寸穩(wěn)定性能,剛性高于聚乙烯(PE)發(fā)泡材料,抗沖擊性能優(yōu)于聚苯乙烯(PS),耐熱溫度130 ℃[1],而PS與PE泡沫塑料的耐熱溫度為70~80 ℃;此外,PP發(fā)泡制品尺寸穩(wěn)定性良好[2],即使受到撓曲形變后也能立即回復(fù)到原始形狀。這些特性使PP微孔發(fā)泡材料在家居、包裝、交通、建筑等方面具有廣闊的發(fā)展前景和市場(chǎng)需求。超臨界二氧化碳由于無(wú)毒、價(jià)廉、不易燃以及在聚合物中相對(duì)高的溶解度使其成為最有應(yīng)用潛力的物理發(fā)泡劑,因此,用超臨界二氧化碳制備PP發(fā)泡材料備受關(guān)注。本文從PP微孔發(fā)泡的影響因素以及改變PP結(jié)晶行為、提高其熔體強(qiáng)度、改進(jìn)發(fā)泡方法等方面綜述了近年來(lái)用超臨界二氧化碳制備PP發(fā)泡材料的研究進(jìn)展。
1.1 結(jié)晶度
PP屬于結(jié)晶型聚合物,在進(jìn)行固態(tài)發(fā)泡時(shí),由于晶區(qū)的存在,發(fā)泡劑只能在PP的非晶區(qū)吸收和擴(kuò)散,因此溶解度低;而且發(fā)泡劑在聚合物基體中分散不均勻,從而導(dǎo)致泡孔結(jié)構(gòu)受結(jié)晶區(qū)的影響,無(wú)法得到泡孔均一的發(fā)泡材料[3]。Doroudiani等[4]發(fā)現(xiàn),在高結(jié)晶度聚合物中無(wú)法得到均一的泡孔結(jié)構(gòu),而在低結(jié)晶度的聚合物中卻可以得到。
1.2 晶區(qū)尺寸
結(jié)晶型聚合物的泡孔密度高于非晶型聚合物,是因?yàn)槠渚^(qū)與非晶區(qū)界面的成核能壘更低,有利于泡孔成核。一般而言,晶區(qū)面積小,結(jié)晶密度大可以促進(jìn)泡孔成核并減小泡孔尺寸;而晶區(qū)面積大不利于泡孔成核,甚至導(dǎo)致無(wú)法發(fā)泡[5]。張純等[6]研究PP微孔發(fā)泡時(shí)發(fā)現(xiàn),PP結(jié)晶特性明顯影響氣泡的成核、長(zhǎng)大和定型。
1.3 熔體強(qiáng)度
當(dāng)溫度達(dá)到熔點(diǎn),熔體強(qiáng)度急劇下降,導(dǎo)致在熔點(diǎn)以上進(jìn)行PP發(fā)泡時(shí),泡孔發(fā)生破裂和聚并,因此傳統(tǒng)的PP擠出發(fā)泡溫度窗口只有4 ℃[7]。因此,要制備泡孔均一分布、泡孔尺寸小、發(fā)泡倍率高的發(fā)泡制品,需要解決PP在低溫時(shí)晶區(qū)的存在使二氧化碳難擴(kuò)散、氣泡難成核以及高溫發(fā)泡過(guò)程中PP熔體強(qiáng)度低等問(wèn)題。一般從三方面考慮:一是改變PP的結(jié)晶行為,使PP能在較低的溫度發(fā)泡;二是對(duì)PP進(jìn)行改性,獲得高熔體強(qiáng)度PP(HMSPP);三是改進(jìn)發(fā)泡方法。
2.1 添加無(wú)機(jī)納米粒子
為提高PP的發(fā)泡性能,碳納米纖維[8-10]、碳納米管[11-12]、木纖維[13]以及云母粉[6]等已被用作添加劑來(lái)改變PP的結(jié)晶行為,在PP發(fā)泡時(shí)起異相成核作用。Selvakumar等[9]采用碳納米纖維與PP共混的方法,利用聚合物與納米顆粒界面作用改變PP的結(jié)晶行為,減小晶體尺寸,而且由于碳納米纖維與PP基體不相容,因此為泡孔成核提供了更多異相成核點(diǎn),從而得到晶體尺寸小、密度高的發(fā)泡材料。Wang Chuanbao等[10]進(jìn)一步考察了碳納米纖維含量對(duì)納米材料發(fā)泡的影響,結(jié)果表明:當(dāng)碳納米纖維質(zhì)量分?jǐn)?shù)為5%,能得到規(guī)整的泡孔結(jié)構(gòu),但泡孔尺寸分布不均一,有大面積的未發(fā)泡區(qū)域;當(dāng)碳納米纖維含量提高時(shí),PP的結(jié)晶度和晶體尺寸均下降,使二氧化碳的溶解度提高,泡孔均一;當(dāng)碳納米纖維質(zhì)量分?jǐn)?shù)提高到25%時(shí),泡孔結(jié)構(gòu)最為均一,泡孔尺寸最小。Bledzki等[13]研究木纖維與PP的復(fù)合材料發(fā)現(xiàn),納米材料的尺寸、幾何形狀對(duì)結(jié)晶行為也有影響,并且得到纖維含量越高,泡孔尺寸越小的結(jié)論。
2.2 添加聚合物纖維
聚合物纖維可提升復(fù)合體系的儲(chǔ)能模量,并且可以明顯影響PP的結(jié)晶[14]。Rizvi等[15]采用機(jī)械共混,將聚四氟乙烯(PTFE)微纖添加到PP發(fā)泡體系。結(jié)果表明:PTFE微纖促進(jìn)了PP結(jié)晶成核與氣泡成核,且PTFE對(duì)二氧化碳有親和性,提高了二氧化碳溶解度,PP泡孔密度大幅提高。Luo Yiwei等[16]分別對(duì)比了球狀和纖維狀聚對(duì)苯二甲酸丁二酯(PBT)與PP復(fù)合材料的發(fā)泡。結(jié)果表明:球狀和纖維狀PBT作為異相成核劑促進(jìn)了PP的結(jié)晶,提高了PP的結(jié)晶密度,密集的晶體作為泡孔成核劑,減小了泡孔尺寸,提高了泡孔密度。
為提高PP熔體強(qiáng)度,一種行之有效的方法就是對(duì)PP進(jìn)行改性以得到HMSPP,從而加寬發(fā)泡溫度范圍。目前,獲得HMSPP的方法通常有直接合成、共混擠出、輻照交聯(lián)及與納米顆粒復(fù)合等。
3.1 直接合成
采用傳統(tǒng)的Zeigler-Natta催化劑和茂金屬催化劑能制備高線性和高規(guī)整聚合物,但很難得到支化聚合物。Langston等[17]將對(duì)-(3-丁基)苯乙烯作為共聚單體和鏈轉(zhuǎn)移劑,與茂金屬催化劑結(jié)合,制備了相對(duì)分子質(zhì)量高、具有所需支化度且分子結(jié)構(gòu)相對(duì)規(guī)整的長(zhǎng)支鏈PP(LCBPP)。另一種方法是在丙烯中加入少量不能自聚的α,ω-二烯單體制備LCBPP[18-19]。丙烯先與二烯烴共聚合得到聚合物大單體,然后大單體之間發(fā)生聚合得到LCBPP。用這種方法制備LCBPP的相對(duì)分子質(zhì)量分布大于5,且零剪切黏度也有所提高。
3.2 反應(yīng)共混擠出
反應(yīng)共混擠出是通過(guò)共混提高PP的支化程度,從而提高熔體強(qiáng)度。它采用化學(xué)自由基引發(fā)劑在PP主鏈接上PP或第二單體,從而獲得LCBPP。其原理是引發(fā)劑分解產(chǎn)生的自由基捕獲PP分子主鏈中叔碳上的氫原子,然后通過(guò)控制反應(yīng)溫度、單體濃度等使失去氫原子的不穩(wěn)定叔碳自由基與其他自由基反應(yīng),形成長(zhǎng)支鏈結(jié)構(gòu)[20]。Nam等[21]通過(guò)加入過(guò)氧化物引發(fā)劑和多官能團(tuán)單體反應(yīng)共混得到LCBPP,通過(guò)流變性能證明長(zhǎng)支鏈的引入提高了PP的拉伸性能和熔體強(qiáng)度,并獲得了較好的發(fā)泡性能。Gotsis使用過(guò)氧化二碳酸酯對(duì)線性PP改性得到支化程度不同的LCBPP,熔體強(qiáng)度和拉伸性能都明顯提升,有效抑制泡孔的聚并和破裂。Cao Kun等[23]用乙二胺作偶聯(lián)劑,與馬來(lái)酸酐(MAH)接枝PP反應(yīng)共混,得到具有較高模量、低頻復(fù)數(shù)黏度和熔體強(qiáng)度的LCBPP,能改善發(fā)泡行為。另外在熔融態(tài)時(shí),只加入過(guò)氧化物和PP,會(huì)發(fā)生交聯(lián)反應(yīng)和降解,為了提高接枝效率,通常會(huì)加入給電子體(如苯乙烯、秋蘭姆等[24-25])抑制副反應(yīng)。此外,通過(guò)緩慢釋放過(guò)氧化物的自由基[26]以及超臨界流體作為塑化劑[27]降低操作溫度的方法都可以有效抑制分子鏈的降解。
3.3 輻照交聯(lián)
利用高能光源引發(fā)PP產(chǎn)生正負(fù)離子,并產(chǎn)生一系列化學(xué)反應(yīng)[28]使其交聯(lián),從而提高熔體強(qiáng)度。Lug?o等[29]研究用輻照法制備HMSPP發(fā)現(xiàn),在輻照條件下,分子鏈先發(fā)生降解,然后鏈段再接枝到PP分子鏈上。接枝交聯(lián)后的PP分子鏈相互纏繞,使熔體強(qiáng)度顯著提高。彭朝榮等[30]采用電子加速器對(duì)PP進(jìn)行輻照交聯(lián),再通過(guò)模壓發(fā)泡,可得到表觀密度為0.032 g/cm3的發(fā)泡材料。
3.4 與無(wú)機(jī)納米填料復(fù)合
由于納米顆粒與PP不相容,無(wú)機(jī)納米顆粒在提高PP熔體強(qiáng)度方面的作用比較有限,充當(dāng)聚合物結(jié)晶和泡孔的成核劑;若能提高納米顆粒與PP的相容性,則能明顯提高PP熔體強(qiáng)度。Kamal等[31]先將CaCO3用脂肪酸進(jìn)行預(yù)處理,用MAH接枝乙丙橡膠(MAH-g-EPR)作相容劑,得到PP/MAH-g-EPR/CaCO3復(fù)合材料,其力學(xué)性能明顯提高。Taki等[32]將PP用質(zhì)量分?jǐn)?shù)為0.2%的MAH預(yù)處理,再用熔融插層法得到PP/蒙脫土復(fù)合材料,進(jìn)行發(fā)泡研究。結(jié)果表明:蒙脫土的加入提高了模量,增加了拉伸黏度,阻止了泡孔破裂和聚并。
間歇法是研究PP微孔發(fā)泡的常用方法,包括升溫法和卸壓法。升溫法是將PP在熔點(diǎn)以下注入高壓二氧化碳進(jìn)行長(zhǎng)時(shí)間飽和后,再迅速升溫至熔點(diǎn)以上,使氣體過(guò)飽和析出成核,但由于只有試樣表面呈熔融態(tài),導(dǎo)致泡孔尺寸不均勻。卸壓法是將PP在軟化溫度范圍內(nèi)注入高壓二氧化碳進(jìn)行飽和,再通過(guò)迅速卸壓使氣體析出成核,PP軟化溫度范圍非常窄,只有4 ℃[33]。Huang Hanxiong等[34]將升溫法和卸壓法結(jié)合,先將PP在120 ℃飽和22.0 h,再將溫度升至熔點(diǎn)以上,保持壓力不變,保壓1.0 h后卸壓,得到了小尺寸高密度泡孔。而Ding Jie等[35]直接將PP在高于熔點(diǎn)的溫度條件下注入高壓CO2進(jìn)行飽和,再將溫度降至結(jié)晶溫度與熔融溫度間的某一恒定溫度,最后卸壓發(fā)泡,得到均一泡孔結(jié)構(gòu)的同時(shí)既將飽和時(shí)間縮短至2.5 h,又使發(fā)泡溫度窗口變寬至55 ℃。
PP微孔發(fā)泡材料在家居、包裝、交通、建筑等方面具有廣闊的發(fā)展前景和市場(chǎng)需求。目前,對(duì)調(diào)控PP結(jié)晶行為及提高熔體強(qiáng)度的研究均有長(zhǎng)足的發(fā)展,微孔尺寸甚至納米尺寸的PP發(fā)泡材料在實(shí)驗(yàn)室階段已經(jīng)實(shí)現(xiàn),現(xiàn)在需要解決的問(wèn)題是盡快實(shí)現(xiàn)PP微孔發(fā)泡材料的工業(yè)化生產(chǎn)。
[1] Lee P C, Kaewmesri W, Wang Jing, et al. Effect of die geometry on foaming behaviors of high-melt-strength polypropylene with CO2[J]. Journal of Applied Polymer Science, 2008, 109(5): 3122-3132.
[2] Costa H M D, Ramos V D, Oliveira M G D. Degradation of polypropylene(PP) during multiple extrusions: thermal analysis, mechanical properties and analysis of variance[J]. Polymer Testing, 2007, 26(5): 676-684.
[3] Sha H, Harrison I R. CO2permeability and amorphous fractional free-volume in uniaxially drawn HDPE[J]. Journal of Polymer Science Part B: Polymer Physics, 1992, 30(8):915-922.
[4] Doroudiani S, Park C B, Kortschot M T. Effect of the crystallinity and morphology on the microcellular foam structure of semicrystalline polymers[J]. Polymer Engineering and Science, 1996, 36(21): 2645-2662.
[5] 陳明杰, 馬衛(wèi)華. 聚丙烯共混體系結(jié)晶行為及發(fā)泡性能研究[J]. 工程塑料應(yīng)用, 2014, 42(8): 1-5.
[6] 龔維, 李宏, 張純,等. 結(jié)晶特性對(duì)微發(fā)泡聚丙烯材料發(fā)泡行為的影響[J]. 塑料, 2012, 41(2): 52-55.
[7] Zhai Wentao, Wang Hongying, Yu Jian, et al. Cell coalescence suppressed by crosslinking structure in polypropylene microcellular foaming[J]. Polymer Engineering and Science,2008, 48(7): 1312-1321.
[8] Unterweger C, Duchoslav J, Stifter D, et al. Characterization of carbon fiber surfaces and their impact on the mechanical properties of short carbon fiber reinforced polypropylene composites[J]. Composites Science and Technology, 2015, 108(1): 41-47.
[9] Selvakumar P, Bhatnagar N. Studies on polypropylene/carbon fiber composite foams by nozzle-based microcellular injection molding system[J]. Materials and Manufacturing Processes,2009, 24(5): 533-540.
[10] Wang Chuanbao, Ying Sanjiu, Xiao Zhenggang. Preparation of short carbon fiber/polypropylene fine-celled foams in supercritical CO2[J]. Journal of Cellular Plastics, 2013, 49(1): 65-82.
[11] Ameli A, Nofar M, Park C B, et al. Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold[J]. Carbon, 2014, 71(7): 206-217.
[12] Chen Chen, Pang Huan, Liu Zhong, et al. Enhanced foamability of isotactic polypropylene composites by polypropylene-graft-carbon nanotube[J]. Journal of Applied Polymer Science, 2013, 130(2): 961-968.
[13] Bledzki A K, Faruk O. Microcellular injection molded wood fiber—PP composites: Part Ⅰ—Effect of chemical foaming agent content on cell morphology and physico-mechanical properties[J]. Journal of Cellular Plastics, 2006, 42(1):63-76.
[14] Shen Jiabin, Wang Ming, Li Jiang, et al. In situ fibrillation of polyamide 6 in isotactic polypropylene occurring in the laminating-multiplying die[J]. Polymers for Advanced Technologies, 2011, 22(2): 237-245.
[15] Rizvi A,
Tabatabaei A, Barzegari M R, et al. In situ fibrillation of CO2-philic polymers: sustainable route to polymer foams in a continuous process[J]. Polymer, 2013, 54(17):4645-4652.
[16] Luo Yiwei, Xin Chunling, Yang Zhaoping, et al. Solid-state foaming of isotactic polypropylene and its composites with spherical or fibrous poly(butylenes terephthalate)[J]. Journal of Applied Polymer Science, 2015, 132(15): 5720-5730.
[17] Langston J A, Colby R H, Chung T C M, et al. Synthesis and characterization of long chain branched isotactic polypropylene via metallocene catalyst and T-reagent[J]. Macromolecules,2007, 40(8): 2712-2720.
[18] Ye Zhibin, AlObaidi F, Zhu Shiping. Synthesis and rheological properties of long-chain-branched isotactic polypropylenes prepared by copolymerization of propylene and nonconjugated dienes[J]. Industrial and Engineering Chemistry Research,2004, 43(11): 2860-2870.
[19] Paavola S, Saarinen T, L?fgren B, et al. Propylene copolymerization with non-conjugated dienes and α-olefins using supported metallocene catalyst[J]. Polymer, 2004, 45(7):2099-2110.
[20] Ratzsch M, Arnold M, Borsig E, et al. Radical reactions on polypropylene in the solid state[J]. Progress in Polymer Science, 2002, 27(2): 1195-1282.
[21] Nam G J, Lee J W. Effect of long-chain branches of polypropylene on rheological properties and foam-extrusion performances[J]. Journal of Applied Polymer Science, 2005, 96(5): 1793-1800.
[22] Gotsis A D. The effect of long chain branching on the processability of polypropylene in thermoforming[J]. Polymer Engineering and Science, 2004, 44(5): 973-982.
[23] Cao Kun, Li Yan, Lu Zhanquan, et al. Preparation and characterization of high melt strength polypropylene with long chain branched structure by the reactive extrusion process[J]. Journal of Applied Polymer Science, 2011, 121(6): 3384-3392.
[24] Hu Guohua, Li Huxi, Feng Lianfang, et al. Strategies for maximizing free-radical grafting reaction yields[J]. Journal of Applied Polymer Science, 2003, 88(7): 1799-1807.
[25] Graebling D. Synthesis of branched polypropylene by a reactive extrusion process[J]. Macromoleculars, 2002, 35(12):4602-4610.
[26] Shi Dean, Zhu Yutian, Ke Zhuo, et al. Nano-reactors for controlling the selectivity of the free radical grafting of maleic anhydride onto polypropylene in the melt[J]. Polymer Engineering and Science, 2006, 46(10): 1443-1454.
[27] Cao Kun, Shen Zhicheng, Yao Zhen, et al. New insight into the action of supercritical carbon dioxide for grafting of maleic anhydride onto isotactic polypropylene by reactive extrusion[J]. Chemical Engineering Science, 2010, 65(5): 1621-1626.
[28] Huang Jintao, He Guangjian, Liao Xia, et al. The rheological property and foam morphology of linear polypropylene and long chain branching polypropylene[J]. Journal of Wuhan University of Technology-Mater, 2013, 28(4): 798-803.
[29] Lug?o A B, Hutzler B, Ojeda T, et al. Reaction mechanism and rheological properties of polypropylene irradiated under various atmospheres[J]. Radiation Physics and Chemistry,2000, 57(3): 389-392.
[30] 彭朝榮, 劉思陽(yáng), 張婧,等. 高發(fā)泡倍率輻射交聯(lián)聚丙烯泡沫的制備[J]. 塑料工業(yè), 2010, 38(11): 76-79.
[31] Kamal M, Sharma C S, Upadhyaya P, et al. Calcium carbonate (CaCO3) nanoparticle filled polypropylene: effect of particle surface treatment on mechanical, thermal, and morphological performance of composites[J]. Journal of Applied Polymer Science, 2012, 124(4): 2649-2656.
[32] Taki K, Yanagimoto T, Funami E, et al. Visual observation of CO2foaming of polypropylene-clay nanocomposites[J]. Polymer Engineering and Science, 2004, 44(6): 1004-1011.
[33] Xu Zhimei, Jiang Xiulei, Liu Tao, et al. Foaming of polypropylene with supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2007, 41(2): 299-310.
[34] Huang Hanxiong, Wang Jiankang. Improving polypropylene microcellular foaming through blending and the addition of nano-calcium carbonate[J]. Journal of Applied Polymer Science, 2007, 106(1): 505-513.
[35] Ding Jie, Ma Weihua, Song Fujiao, et al. Foaming of polypropylene with supercritical carbon dioxide: An experimental and theoretical study on a new process[J]. Journal of Applied Polymer Science, 2013, 130(4): 2877-2885.
Progress of preparation of polypropylene microcellular foam
Wang Taotao, Zhang Cailiang, Feng Lianfang, Gu Xueping
(State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China)
Polypropylene (PP) foam has excellent mechanical and thermal properties. However, it is very difficult to foam for PP. PP is as a crystalline polymer when the foaming temperature is lower than PP melting temperature, PP is solid, so that it can not be expanded; when the foaming temperature is above the melting temperature, the melting strength of PP decreases dramatically and the cells will coalesce and rupture. Therefore, the current researches on the preparation of PP microcllular foam via supercritical carbon dioxide mainly focus on how to improve its foaming behavior. The methods to obtain the PP microcellular foam include: adding nanoparticle and/or polymer to adjust crystallization behavior, enhancing the melting strength of PP through direct synthesis, polymer blending, and/or radiation crosslinking, and modifying the foaming process.
polypropylene; foaming; crystallization; melting strength
TQ 325.1+4
A
1002-1396(2016)01-0077-04
2015-07-27;
2015-10-26。
汪濤濤,男,1989年生,在讀碩士研究生,主要從事聚丙烯微孔發(fā)泡方向研究。聯(lián)系電話:18868110696;E-mail: totalwang@126.com。
國(guó)家自然科學(xué)基金(51203133),中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2015FZA4026)。通信聯(lián)系人。E-mail: zhangcailiang@zju.edu.cn。
*