国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

Almost Automorphic Solutions of N-th Order Neutral Differential Difference Equations with Piecewise Constant Arguments

2016-03-16 09:35:26ZHUANGRongKun
惠州學(xué)院學(xué)報(bào) 2016年6期
關(guān)鍵詞:國家自然科學(xué)基金惠州微分

ZHUANG Rong-Kun

(School of Mathematics and Data Science, Huizhou University, Huizhou 516007, Guangdong China)

Almost Automorphic Solutions of N-th Order Neutral Differential Difference Equations with Piecewise Constant Arguments

ZHUANG Rong-Kun

(School of Mathematics and Data Science, Huizhou University, Huizhou 516007, Guangdong China)

We present some conditions for the existence and uniqueness of almost automorphic solutions of N-th order neutral differential difference equations with piecewise constant of the form (x(t) + px(t - 1))N = qx([t - 1]) + f(t); here [?] is the greatest integer function, p and q are nonzero constants, and f(t) is almost automorphic.

almost automorphic functions; almost automorphic sequences; piecewise constant arguments; neutral differential difference equations.

CLC nonumber : O175.1 Document code : A Article ID :1671 - 5934(2016)06 - 0001 - 09

References

[1] BOCHNER S. Continuous mappings of almost automorphic and almost automorphic functions, Proc[ J ]. Natl. Sci. USA 1964 (52):907–910.

[2] N′GU′ER′EKATA. G M . Topics in Almost Automorphy, Spring-Verlag[M]. New York:2005.

[3] DIAGANA T, N′GU′ER′EKATA G M, MINH N V. Almost automorphic solutions of evolution equations[ J ]. Proc. Amer. Math. Soc., 2004 (132): 3289-3298.

[4] LEVITAN B M, ZHIKOV V V. Almost periodic Functions and Differential equations[M]. Moscow Univ. Publ. House, 1978. English translation by Cambridge University Press,1982.

[5] COOKE K L, WIENER J. Retarded differential equations with piecewise constant delays[ J ]. J. Math. Anal. Appl., 1984(99):265–297.

[6] BUSENBERG S, COOKE K L. Models of vertically transmitted diseases with sequentialcontinuous dynamics[M]∥in: V. Lakshmikantham (Ed.). Nonlinear Phenomena in Mathematical Sciences, Academic Press, New York, 1982.

[7] YUAN R. On the existence of almost periodic solutions of second order neutral delay differential equations with piecewise constant argument[ J ]. Sci. China, 1998,41(3):232–241.

[8] SEIFERT G. Second-order neutral delay-differential equations with piecewise constant time dependence[ J ]. J. Math. Anal. Appl., 2003(281):1–9.

[9] DADS E A, LHACHIMI L. New approach for the existence of pseudo almost periodic solutions for some second order differential equation with piecewise constant argument[ J ]. Nonliear Anal., 2006(64):1307–1324.

[10] ZHUANG R K. Almost periodic solutions of N-th order neutral differential difference equations with piecewise constant arguments[ J ]. Electronic Journal of Qualitative Theory of Differential Equations,2013(1):1–12.

[11] ZHUANG R K. Existence of Asymptotically Almost Periodic Solutions of Nonlinear Differential Equations with Piecewise Constant Argument[ J ]. Journal of Huizhou University, 2014(3):1–10.

[12] ZHUANG R K. Existence of Pseudo Almost Periodic Solutions of Third Order Nonlinear Differential Equations with Piecewise Constant Argument[ J ]. Journal of Huizhou University, 2015(3):1–12.

[13] MINH N V, DAT T. On the almost automorphy of bounded solutions of differential equations with piecewise constant argument[ J ]. J. Math. Anal. Appl., 2007(236):165-178.

[14] DIMBOUR W. Almost automorphic solutions for differential equations with piecewise constant argument in a Banach space[ J ]. Nonlinear Anal. 2011(74):2351-2357.

[15] CHEN C H, LI H X. Almost automorphy for bounded solutions to second-order neutral differential equations with piecewise constant arguments[ J ]. Electronic Journal of Differential Equations, 2013(140):1–16.

具有分段常變量的N階中立型微分差分方程的概自守解

莊容坤

(惠州學(xué)院 數(shù)學(xué)與大數(shù)據(jù)學(xué)院, 廣東 惠州 516007)

本文研究了一類具有分段常變量的N階中立型微分著分方程,給出了方程概自守解的存在唯一性條件.

概自守函數(shù);概自守序列;分段常變量;中立型微分著分方程

O175.1 文獻(xiàn)編識(shí)碼:A

1671 - 5934(2016)06 - 0001 - 09

2016 - 11 - 20

國家自然科學(xué)基金項(xiàng)目(11271380,11501238); 廣東省自然科學(xué)基金項(xiàng)目(2014A030313641, 2016A030313119) ;廣東省教育廳重大項(xiàng)目(2014KZDXM070)

莊容坤(1964 - ), 男, 廣東汕頭人, 教授, 研究方向?yàn)槲⒎址匠?

猜你喜歡
國家自然科學(xué)基金惠州微分
奔跑惠州
嶺南音樂(2022年4期)2022-09-15 14:03:10
惠州一絕
常見基金項(xiàng)目的英文名稱(一)
擬微分算子在Hp(ω)上的有界性
上下解反向的脈沖微分包含解的存在性
我校喜獲五項(xiàng)2018年度國家自然科學(xué)基金項(xiàng)目立項(xiàng)
2017 年新項(xiàng)目
借助微分探求連續(xù)函數(shù)的極值點(diǎn)
國家自然科學(xué)基金項(xiàng)目簡介
對(duì)不定積分湊微分解法的再認(rèn)識(shí)
成都市| 新昌县| 乌拉特后旗| 清远市| 方城县| 娄烦县| 布拖县| 怀仁县| 曲松县| 安远县| 城口县| 温宿县| 顺平县| 新密市| 巴南区| 鄂温| 井陉县| 元氏县| 天峻县| 城步| 贵阳市| 通许县| 阿尔山市| 丰宁| 璧山县| 昌乐县| 新沂市| 精河县| 台山市| 车致| 新源县| 瑞安市| 黔西县| 裕民县| 沁水县| 崇仁县| 黎平县| 天峻县| 香格里拉县| 卓尼县| 上思县|