ZHUANG Rong-Kun
(School of Mathematics and Data Science, Huizhou University, Huizhou 516007, Guangdong China)
Almost Automorphic Solutions of N-th Order Neutral Differential Difference Equations with Piecewise Constant Arguments
ZHUANG Rong-Kun
(School of Mathematics and Data Science, Huizhou University, Huizhou 516007, Guangdong China)
We present some conditions for the existence and uniqueness of almost automorphic solutions of N-th order neutral differential difference equations with piecewise constant of the form (x(t) + px(t - 1))N = qx([t - 1]) + f(t); here [?] is the greatest integer function, p and q are nonzero constants, and f(t) is almost automorphic.
almost automorphic functions; almost automorphic sequences; piecewise constant arguments; neutral differential difference equations.
CLC nonumber : O175.1 Document code : A Article ID :1671 - 5934(2016)06 - 0001 - 09
References
[1] BOCHNER S. Continuous mappings of almost automorphic and almost automorphic functions, Proc[ J ]. Natl. Sci. USA 1964 (52):907–910.
[2] N′GU′ER′EKATA. G M . Topics in Almost Automorphy, Spring-Verlag[M]. New York:2005.
[3] DIAGANA T, N′GU′ER′EKATA G M, MINH N V. Almost automorphic solutions of evolution equations[ J ]. Proc. Amer. Math. Soc., 2004 (132): 3289-3298.
[4] LEVITAN B M, ZHIKOV V V. Almost periodic Functions and Differential equations[M]. Moscow Univ. Publ. House, 1978. English translation by Cambridge University Press,1982.
[5] COOKE K L, WIENER J. Retarded differential equations with piecewise constant delays[ J ]. J. Math. Anal. Appl., 1984(99):265–297.
[6] BUSENBERG S, COOKE K L. Models of vertically transmitted diseases with sequentialcontinuous dynamics[M]∥in: V. Lakshmikantham (Ed.). Nonlinear Phenomena in Mathematical Sciences, Academic Press, New York, 1982.
[7] YUAN R. On the existence of almost periodic solutions of second order neutral delay differential equations with piecewise constant argument[ J ]. Sci. China, 1998,41(3):232–241.
[8] SEIFERT G. Second-order neutral delay-differential equations with piecewise constant time dependence[ J ]. J. Math. Anal. Appl., 2003(281):1–9.
[9] DADS E A, LHACHIMI L. New approach for the existence of pseudo almost periodic solutions for some second order differential equation with piecewise constant argument[ J ]. Nonliear Anal., 2006(64):1307–1324.
[10] ZHUANG R K. Almost periodic solutions of N-th order neutral differential difference equations with piecewise constant arguments[ J ]. Electronic Journal of Qualitative Theory of Differential Equations,2013(1):1–12.
[11] ZHUANG R K. Existence of Asymptotically Almost Periodic Solutions of Nonlinear Differential Equations with Piecewise Constant Argument[ J ]. Journal of Huizhou University, 2014(3):1–10.
[12] ZHUANG R K. Existence of Pseudo Almost Periodic Solutions of Third Order Nonlinear Differential Equations with Piecewise Constant Argument[ J ]. Journal of Huizhou University, 2015(3):1–12.
[13] MINH N V, DAT T. On the almost automorphy of bounded solutions of differential equations with piecewise constant argument[ J ]. J. Math. Anal. Appl., 2007(236):165-178.
[14] DIMBOUR W. Almost automorphic solutions for differential equations with piecewise constant argument in a Banach space[ J ]. Nonlinear Anal. 2011(74):2351-2357.
[15] CHEN C H, LI H X. Almost automorphy for bounded solutions to second-order neutral differential equations with piecewise constant arguments[ J ]. Electronic Journal of Differential Equations, 2013(140):1–16.
具有分段常變量的N階中立型微分差分方程的概自守解
莊容坤
(惠州學(xué)院 數(shù)學(xué)與大數(shù)據(jù)學(xué)院, 廣東 惠州 516007)
本文研究了一類具有分段常變量的N階中立型微分著分方程,給出了方程概自守解的存在唯一性條件.
概自守函數(shù);概自守序列;分段常變量;中立型微分著分方程
O175.1 文獻(xiàn)編識(shí)碼:A
1671 - 5934(2016)06 - 0001 - 09
2016 - 11 - 20
國家自然科學(xué)基金項(xiàng)目(11271380,11501238); 廣東省自然科學(xué)基金項(xiàng)目(2014A030313641, 2016A030313119) ;廣東省教育廳重大項(xiàng)目(2014KZDXM070)
莊容坤(1964 - ), 男, 廣東汕頭人, 教授, 研究方向?yàn)槲⒎址匠?