孔祥輝,周衛(wèi)健,,武振坤,杜雅娟,趙國(guó)慶,謝興俊
(1. 中國(guó)科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室,陜西省加速器質(zhì)譜技術(shù)及應(yīng)用重點(diǎn)實(shí)驗(yàn)室,西安710061;2. 西安加速器質(zhì)譜中心,西安710061;3. 北京師范大學(xué),北京100875;4. 西安交通大學(xué) 人居環(huán)境與建筑工程學(xué)院,西安 710049)
大氣生成宇宙成因核素10Be在中國(guó)黃土中的應(yīng)用研究進(jìn)展
孔祥輝1,2,周衛(wèi)健1,2,3,4,武振坤1,2,杜雅娟1,2,趙國(guó)慶1,2,謝興俊1,2
(1. 中國(guó)科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室,陜西省加速器質(zhì)譜技術(shù)及應(yīng)用重點(diǎn)實(shí)驗(yàn)室,西安710061;2. 西安加速器質(zhì)譜中心,西安710061;3. 北京師范大學(xué),北京100875;4. 西安交通大學(xué) 人居環(huán)境與建筑工程學(xué)院,西安 710049)
中國(guó)黃土10Be研究大體上經(jīng)歷了三個(gè)階段:(1)地球化學(xué)行為研究:10Be主要吸附于細(xì)顆粒及粘土顆粒,在黃土中保存性好,不會(huì)發(fā)生明顯的化學(xué)遷移過(guò)程;(2)古氣候代用指標(biāo)應(yīng)用:10Be在黃土和古土壤層中的濃度變化與代表氣候變化的深海氧同位素曲線(xiàn)變化一致,且可借此進(jìn)行黃土年代標(biāo)尺的建立;(3)地球環(huán)境示蹤研究:示蹤地磁場(chǎng)倒轉(zhuǎn)及漂移事件,恢復(fù)古地磁場(chǎng)相對(duì)強(qiáng)度變化,以及定量重建黃土高原地區(qū)古降水變化歷史等。由于近年來(lái)黃土10Be環(huán)境示蹤研究取得了可喜的成果,筆者認(rèn)為有必要從以上三個(gè)方面對(duì)中國(guó)黃土10Be研究歷史進(jìn)行較為系統(tǒng)的梳理回顧,總結(jié)當(dāng)前最新研究進(jìn)展,展望未來(lái)黃土10Be在環(huán)境示蹤中的研究方向,希望能使讀者在短時(shí)間內(nèi)了解中國(guó)黃土10Be研究的發(fā)展脈絡(luò)。
大氣生成宇宙成因核素10Be;地球化學(xué)行為;黃土高原;古地磁場(chǎng)強(qiáng)度;古地磁極性倒轉(zhuǎn)與漂移;古降水
宇宙成因核素(宇成核素)是指入射地球的宇宙射線(xiàn)粒子轟擊大氣或地表物質(zhì)發(fā)生核裂變所生成的一類(lèi)核素的總稱(chēng),如14C、10Be、26Al、36Cl等。其中,14C最早被應(yīng)用于地學(xué)研究中(Libby et al,1949),10Be是僅次于14C而被廣泛應(yīng)用的宇成核素(孔屏,2002)。10Be包括就地生成和大氣生成兩種來(lái)源,前者是地表巖石圈物質(zhì)受宇宙射線(xiàn)粒子照射所生成,主要用于年代學(xué)研究;后者由大氣中的N、O元素受宇宙射線(xiàn)粒子(中子或質(zhì)子)轟擊,發(fā)生核反應(yīng)所產(chǎn)生,其產(chǎn)率較就地成因10Be高2 — 3個(gè)數(shù)量級(jí),主要用于示蹤地球環(huán)境變化研究。大氣生成10Be有2/3形成于上空大氣平流層中,剩余部分形成自對(duì)流層,其滯留時(shí)間分別為1年和1 — 3周。10Be在大氣中生成之后,易于被氣溶膠所吸附,再隨降水過(guò)程被攜帶至地表沉積物中,也有部分10Be通過(guò)粉塵干沉降方式進(jìn)入地表,參與地球化學(xué)循環(huán)過(guò)程。10Be半衰期為1.39 Ma(Korschinek et al,2010),能夠進(jìn)行百年 — 千萬(wàn)年尺度的地球環(huán)境示蹤研究;10Be對(duì)地表固體物質(zhì)的親和性極高,極易吸附在沉積物顆粒表面。有研究指出,10Be在土壤及地下水中的分配比例可達(dá)到105(Brown et al,1992),使得它能夠很好地在地表沉積物中保存(孔屏,2002)。此外,大氣中10Be的生成速率受初始宇宙射線(xiàn)通量、太陽(yáng)活動(dòng)、地球磁場(chǎng)強(qiáng)度及緯度效應(yīng)等影響(Lal and Peter,1967;Frank et al,1997;Masarik and Beer,1999;Frank,2000;Wagner et al,2000),而其沉降過(guò)程又與降水、大氣環(huán)流、粉塵通量等氣候因素直接相關(guān),因此,地表沉積物中廣泛分布的大氣生成10Be濃度變化能夠有效地指示地球環(huán)境事件,成為地球環(huán)境示蹤研究中一種重要的示蹤物。
10Be在地學(xué)研究中的迅速發(fā)展得益于加速器質(zhì)譜(AMS)技術(shù)的誕生,國(guó)際上應(yīng)用10Be開(kāi)展了系列環(huán)境示蹤研究工作,如計(jì)算深海沉積速率,建立年代標(biāo)尺(Inoue and Tanaka,1979;Ku et al,1984);示蹤古地磁場(chǎng)倒轉(zhuǎn)和漂移事件,重建地磁場(chǎng)相對(duì)強(qiáng)度變化(Robinson et al,1995;Wagner et al,2000;Christl et al,2003;Raisbeck et al,2006;Suganuma et al,2010,2011);指示降水率或冰川積累率變化的指標(biāo)(Finkel and Nishiizumi,1997;Yiou et al,1997);以及示蹤太陽(yáng)活動(dòng)等(Beer et al,1990;Geel et al,1999)。相比而言,中國(guó)黃土10Be的地球環(huán)境示蹤工作起步較晚, 且由于國(guó)內(nèi)缺乏專(zhuān)用的AMS設(shè)備,發(fā)展較緩慢。
黃土是典型的風(fēng)成沉積物,主要分布在北美、南歐、烏克蘭、中亞、阿根廷以及中國(guó)。中國(guó)黃土由于其沉積區(qū)面積遼闊、堆積厚度大、沉積連續(xù)性好等特點(diǎn),成為研究第四紀(jì)乃至中新世以來(lái)地球環(huán)境演化過(guò)程絕佳的陸相沉積體系,與深海沉積、極地冰芯構(gòu)成古氣候研究三大支柱。劉東生(1985)最早將黃土-古土壤沉積旋回與深海氧同位素階段聯(lián)系在一起,從而明確了中國(guó)黃土沉積記錄了全球古氣候變化的信息。隨后,An et al(1990,1991a,1991b)創(chuàng)新性地發(fā)現(xiàn),中國(guó)黃土-古土壤序列沉積過(guò)程與亞洲季風(fēng)變遷具有直接聯(lián)系,不僅闡明了中國(guó)黃土與古土壤形成的機(jī)制,也為研究亞洲古季風(fēng)演化與變遷規(guī)律提供了新的途徑。為深入探討中國(guó)黃土-古土壤序列與古氣候之間的關(guān)系,針對(duì)黃土磁化率、粒度、CaCO3含量、孢粉、同位素含量或比值等代用指標(biāo)開(kāi)展了廣泛的研究工作。由于科研條件限制,中國(guó)黃土10Be的相關(guān)研究于20世紀(jì)80年代末90年代初才得以開(kāi)展(沈承德等,1989;Shen et al,1990,1992;Beer et al,1993;Heller et al,1993;Gu et al,1996),早期研究的主要內(nèi)容集中在黃土10Be的地球化學(xué)行為及古氣候意義等方面。盡管研究早已指出,中國(guó)黃土高原所處的中低緯度地區(qū)是開(kāi)展古地磁場(chǎng)強(qiáng)度變化研究的理想?yún)^(qū)域(Lal and Peter,1967;Masarik and Beer,1999;Wagner et al,2000),但未見(jiàn)有利用黃土10Be示蹤古地磁場(chǎng)變化的嘗試成功的報(bào)導(dǎo)。直至近10年來(lái),得益于西安 3 MV AMS的建立和運(yùn)行, 我國(guó)學(xué)者經(jīng)過(guò)不斷的思考與長(zhǎng)期的努力,在黃土10Be重建地磁場(chǎng)相對(duì)強(qiáng)度變化、示蹤古地磁場(chǎng)倒轉(zhuǎn)與漂移事件及定量重建高分辨率古降水變化等方面的研究取得了重大進(jìn)展(Zhou et al,2007b,2010,2014a,2014b,2015;周衛(wèi)健等,2010;鮮鋒等,2012a,2012b),使得黃土10Be的地球環(huán)境示蹤研究得到了迅速的發(fā)展,也引起了廣泛關(guān)注。
Be為堿土金屬元素,其化學(xué)性質(zhì)活潑,既能溶于酸,也能溶于堿,是典型的兩性元素,與Al的性質(zhì)相似。黃土中大氣沉降的10Be傾向于吸附在土壤顆粒表面,極少部分進(jìn)入礦物晶格,因此,黃土中10Be含量與粒度大小必然存在一定的關(guān)系。Shen et al(1990)和沈承德等(1989)最早對(duì)此進(jìn)行了探討,他們將黃土分離為6種粒徑的樣品,即<0.2 μm,0.2 — 1 μm,1 — 2 μm,2 — 4 μm,4 — 10 μm及>10 μm,分別測(cè)量其中的10Be濃度,發(fā)現(xiàn)除<0.2 μm和4 — 10 μm樣品出現(xiàn)異常之外,黃土中的10Be含量整體是隨著黃土粒度的減小而增加的,這與細(xì)顆粒物質(zhì)比表面積較大,吸附力較強(qiáng)有關(guān);隨后,Gu et al(1996)對(duì)黃土和紅粘土不同粒徑樣品的10Be濃度再次進(jìn)行了更為細(xì)致的測(cè)量工作,結(jié)果毫無(wú)例外地,所有樣品中的10Be含量均單一地呈現(xiàn)為隨粒度減小而增加的趨勢(shì),且絕大部分吸附于<4 μm的黃土土壤顆粒及粘土顆粒上,該組分的10Be含量在黃土層中占到58% — 74%,在古土壤層中可達(dá)到74% — 92%。
盡管中國(guó)黃土為風(fēng)成沉積物,但由于受亞洲夏季風(fēng)降水的影響,會(huì)經(jīng)受不同程度的風(fēng)化成壤作用,形成黃土-古土壤交替的沉積序列,而最典型的成壤作用導(dǎo)致的現(xiàn)象是在古土壤底部因降水淋濾而造成的CaCO3結(jié)核層。如果某一環(huán)境代用指標(biāo)或其載體在黃土中因成壤作用發(fā)生了遷移或變化,該指標(biāo)所代表的環(huán)境信息在時(shí)間上就會(huì)存在“錯(cuò)位”,無(wú)法反映其沉積時(shí)期的沉積環(huán)境特征。因此,黃土中10Be的地球化學(xué)行為特別是成壤作用是否會(huì)造成黃土10Be的遷移聚集,成為早期開(kāi)展黃土10Be環(huán)境示蹤研究必須考慮的又一問(wèn)題。黃土中的10Be遷移包括兩種方式:一是上述受成壤作用影響在酸性條件下發(fā)生向下淋濾而發(fā)生的化學(xué)性遷移;二是其所吸附的土壤顆粒受生物活動(dòng)等因素影響而發(fā)生的物理性遷移。通常情況下,黃土中元素的遷移主要是化學(xué)遷移行為,后者的遷移距離相對(duì)而言極其有限,因此,針對(duì)黃土10Be保存穩(wěn)定性的研究主要針對(duì)黃土中的降水淋濾作用展開(kāi)討論。
由于降水呈弱酸性或近中性,因此沈承德等(1989)對(duì)黃土和古土壤樣品分別采用不同pH值的酸進(jìn)行浸析,結(jié)果表明,使用pH>1的酸溶解黃土樣品后,其浸析液中的10Be濃度是黃土樣品本身10Be濃度的1‰ — 1%,即使是pH = 1的酸浸析液10Be濃度也比樣品本身低70%以上。此外,他們還對(duì)由降水淋濾所形成的古土壤底部鈣結(jié)核進(jìn)行了10Be濃度測(cè)定,其值為黃土樣品10Be濃度的1% — 5%,進(jìn)一步說(shuō)明降水對(duì)黃土中的10Be淋溶遷移作用極其有限(Shen et al,1990,1992)。Gu et al(1996)的研究也發(fā)現(xiàn)黃土中降水淋濾造成的10Be遷移極小,約為3% ± 3%;顧兆炎等(2000)通過(guò)對(duì)比不同粒徑黃土樣品中10Be的同位素9Be含量與Al及地球化學(xué)行為活潑的Ba、Sr等元素含量的相關(guān)性,得到如下兩個(gè)重要結(jié)論:一是9Be濃度隨顆粒減小而增加,與Al元素變化具有一致性,兩個(gè)元素均富集于風(fēng)化作用最終形成的粘土礦物中;二是9Be / Al比值隨粒級(jí)減小而增加,而易于風(fēng)化流失的Sr、Ba與Al比值隨粒級(jí)減小則顯著降低,說(shuō)明Be元素在表生風(fēng)化過(guò)程中不會(huì)像Ba、Sr元素那樣發(fā)生較大的化學(xué)淋濾,而是和Al一樣具有較高的抵御風(fēng)化淋濾的能力。這些研究均表明,呈弱堿性的中國(guó)黃土-古土壤沉積物中的10Be不會(huì)隨降水淋濾而發(fā)生顯著遷移,這些研究表明利用中國(guó)黃土10Be開(kāi)展地球環(huán)境示蹤研究的可靠性。
早期研究發(fā)現(xiàn),黃土與古土壤中的10Be濃度與磁化率變化具有高度的一致性(沈承德等,1989,1995;Shen et al,1992),進(jìn)而與深海氧同位素的變化能夠良好地對(duì)比。此外,黃土中的10Be濃度變化與具有氣候指示意義的化學(xué)成分指標(biāo)也具有協(xié)同變化的特征(Gu et al,1996;顧兆炎等,2000),也表明原始測(cè)量的黃土10Be濃度主要反映的是古氣候變化的信息。利用黃土-古土壤10Be濃度變化與深海氧同位素階段的對(duì)比匹配,沈承德等(1989,1994a,1995)及Shen et al(1992)先后對(duì)不同剖面及不同時(shí)間跨度的黃土-古土壤序列建立了年代標(biāo)尺,同時(shí)利用所建年代標(biāo)尺計(jì)算了不同時(shí)段黃土的沉積速率及其10Be通量,指出在溫暖間冰期,古土壤中的10Be主要來(lái)自于就地上空降水?dāng)y帶;而在寒冷的冰期,粉塵的大量搬運(yùn)導(dǎo)致黃土10Be通量增高。由于10Be是放射性核素,具有對(duì)地質(zhì)樣品進(jìn)行絕對(duì)測(cè)年的能力,但前提是必須知道黃土中10Be的初始沉積濃度。顧兆炎等(2006)探討了黃土10Be絕對(duì)定年的方法。他們對(duì)80個(gè)黃土和紅粘土全巖樣品的10Be和其他化學(xué)元素進(jìn)行了分析,結(jié)果表明黃土高原約6 Ma以來(lái)年代校正后的10Be濃度與沉積物粒度和風(fēng)化程度的化學(xué)指標(biāo)之間存在顯著相關(guān)性,根據(jù)這一關(guān)系,通過(guò)建立10Be濃度與化學(xué)指標(biāo)的經(jīng)驗(yàn)回歸線(xiàn)性模型,可以估計(jì)紅粘土和黃土形成時(shí)的10Be濃度,再利用放射性核素衰變方程獲得其絕對(duì)年代。盡管黃土10Be能夠用于建立年代標(biāo)尺,對(duì)于前一種方法,由于其樣品制備流程周期長(zhǎng),測(cè)量昂貴,需要數(shù)據(jù)量大,而磁化率、粒度等易測(cè)量、成本低的常規(guī)指標(biāo)已足夠開(kāi)展相同的工作;而對(duì)于后一種絕對(duì)定年手段,則缺乏可靠性的驗(yàn)證,文章中也指出其定年精度太低,并無(wú)后續(xù)研究報(bào)導(dǎo),因此,筆者認(rèn)為兩種方法似都難以廣泛用于建立黃土-古土壤序列年代標(biāo)尺的實(shí)際工作當(dāng)中。而采用粒度年代模型、OSL、14C測(cè)年、磁性地層年代學(xué)等常規(guī)測(cè)年手段可能更具有可行性。
3.1 黃土10Be重建古地磁場(chǎng)強(qiáng)度變化及示蹤古地磁場(chǎng)倒轉(zhuǎn)/漂移事件研究
中國(guó)黃土沉積除了能夠反映豐富的古氣候變化歷史外,也記錄了古地磁場(chǎng)極性轉(zhuǎn)換的信息(如安芷生等,1977;Kuklaet al,1988;Liu et al,1988;Zhu et al,1998)。古地磁研究報(bào)導(dǎo)了第四紀(jì)以來(lái)的Matuyama / Gauss、Brunhes / Matuyama極性倒轉(zhuǎn)事件,以及Jaramillo、Olduvai極性亞時(shí)事件和Lashcamp、Blake漂移事件在黃土中的記錄(Heslop et al,2000)。盡管如此,利用古地磁方法測(cè)得的各種地磁極性轉(zhuǎn)換事件與全球記錄之間存在著不一致的現(xiàn)象,其中爭(zhēng)議最多、研究最廣的莫過(guò)于Brunhes / Matuyama極性倒轉(zhuǎn)事件。該轉(zhuǎn)換界線(xiàn)在黃土中記錄于冰期,而在全球記錄中卻發(fā)生在間冰期,成為古地磁研究中一個(gè)瓶頸問(wèn)題(如Tauxe et al,1996;Zhu et al,1998;Zhou and Shackleton,1999;Raisbeck et al,2006;Kong et al,2014)。同時(shí),由于沉積物性質(zhì)及沉積環(huán)境等的影響,利用類(lèi)似于深海沉積物中古地磁方法重建古地磁場(chǎng)強(qiáng)度的嘗試并不成功(Pan et al,2001),亟需探索一種新的手段對(duì)黃土古地磁學(xué)開(kāi)展研究,而中國(guó)黃土中的宇宙成因核素10Be是解決這些問(wèn)題的最佳對(duì)象。10Be之所以能夠示蹤古地磁場(chǎng)強(qiáng)度,是因?yàn)榈厍虼艌?chǎng)對(duì)來(lái)自外太空的宇宙射線(xiàn)粒子具有屏蔽作用,通過(guò)反射、折射等阻止宇宙射線(xiàn)粒子入射地球表面,這一過(guò)程導(dǎo)致大氣中生成的10Be產(chǎn)率與地磁場(chǎng)強(qiáng)度形成反相關(guān)的關(guān)系,即地磁場(chǎng)強(qiáng)度減弱時(shí)大氣10Be產(chǎn)率即會(huì)升高,反之亦然(如Lal and Peter,1967;Masarick et al,1999;Frank,2000;Wagner et al,2000;Muscheler et al,2005)。因此,通過(guò)提取沉積物中大氣沉降10Be變化可識(shí)別古地磁場(chǎng)強(qiáng)度變化信號(hào),示蹤古地磁場(chǎng)倒轉(zhuǎn)、漂移事件的存在。這一類(lèi)工作在深海沉積物和冰芯中早已廣泛報(bào)導(dǎo)(Robinson et al,1995;Frank et al,1997;Wagner et al,2000;Christl et al,2003;Muscheler et al,2005;Raisbeck et al,2006),而中國(guó)黃土10Be示蹤古地磁場(chǎng)事件、重建古地磁場(chǎng)強(qiáng)度研究工作大大落后于深海和冰芯研究。究其原因在于中國(guó)黃土10Be來(lái)源復(fù)雜。黃土中的10Be既包含來(lái)自粉塵源區(qū),隨粉塵被風(fēng)力搬運(yùn)至黃土高原的降塵10Be組分,又包含來(lái)自就地上空受地磁場(chǎng)調(diào)制產(chǎn)生的、直接通過(guò)季風(fēng)降水沉降到黃土高原后受到粉塵稀釋影響的10Be組分。由于季風(fēng)降水和粉塵通量具有不均勻性,掩蓋了10Be記錄中包含的地磁場(chǎng)變化信息(Zhou et al,2007b,2010)。因此,即便是將黃土10Be濃度轉(zhuǎn)化為通量以消除沉積速率的影響也難以直接顯示出地磁場(chǎng)的影響,使得長(zhǎng)期以來(lái)都未見(jiàn)有黃土10Be示蹤地磁場(chǎng)變化的成果報(bào)導(dǎo)。與海洋沉積和冰芯中10Be記錄能直接指示地磁場(chǎng)漂移事件不同,黃土10Be示蹤地磁場(chǎng)信號(hào)必須首先將其中受地磁場(chǎng)調(diào)制的10Be組分與受氣候因素(季風(fēng)降水和粉塵通量)影響的10Be組分分離開(kāi)來(lái)(Zhou et al,2007a,2007b,2010)。
研究表明,黃土磁化率由兩部分組成,一是繼承自粉塵源區(qū),被風(fēng)力搬運(yùn)到黃土高原的沉降磁化率,還有一部分是黃土成壤過(guò)程中形成的成壤磁化率,而這部分與黃土高原降水相關(guān)(Zhou et al,1990;Beer et al,1993;Heller et al,1993;沈承德等,1994b)。由于黃土10Be和磁化率均含有繼承自粉塵源區(qū)和降水作用形成的組分,因而導(dǎo)致它們?cè)邳S土和古土壤中的變化趨勢(shì)高度一致。Zhou etal(2007a,2007b)根據(jù)測(cè)得的過(guò)去130 ka 洛川和西峰黃土10Be曲線(xiàn)與磁化率曲線(xiàn)的高度相似性(r= 0.95), 首次提出了分離中國(guó)黃土10Be中代表地磁場(chǎng)強(qiáng)度變化信號(hào)與代表氣候因素變化信號(hào)的“氣磁分離思路”。即將受降塵與降水成壤共同作用(氣候因素)所形成的磁化率視作分離黃土10Be濃度中降塵與降水組分的氣候影響因子,通過(guò)兩者的線(xiàn)性回歸,并結(jié)合他們所創(chuàng)建的多變量地學(xué)系統(tǒng)中線(xiàn)性回歸的“平均值概念”(Zhou et al,2007a),得到反映氣候因素變化的10Be濃度序列的回歸估計(jì)值,其與10Be濃度測(cè)量值之間的殘差即代表地磁場(chǎng)強(qiáng)度變化引起的降水10Be濃度變化,再通過(guò)歸一化計(jì)算,達(dá)到示蹤古地磁場(chǎng)變化的目的(Zhou et al,2007a,2007b,2010;周衛(wèi)健等,2010)。利用上述與傳統(tǒng)示蹤方法完全不同的“殘差示蹤法”(Zhou et al,2015),周衛(wèi)健等首次用中國(guó)黃土10Be記錄重建了80 ka及130 ka以來(lái)來(lái)自黃土中的古地磁場(chǎng)強(qiáng)度變化曲線(xiàn),曲線(xiàn)明確顯示了Laschamp(~43 ka)、Blake(122 ka)地磁場(chǎng)漂移事件在洛川和西峰兩個(gè)典型黃土剖面中記錄的位置(Zhou et al,2007b,2010;周衛(wèi)健等,2010;鮮鋒等,2012a,2012b)。特別要提到的是Zhou et al(2014a)利用“殘差示蹤法”成功地由西峰和洛川黃土10Be確定了Brunhes/Matuyama(B-M)地磁極性倒轉(zhuǎn)事件的位置,結(jié)果表明B-M界線(xiàn)在這兩個(gè)剖面中均記錄于古土壤S7中,年代約780 ka,對(duì)應(yīng)于深海氧同位素階段19(圖1),證明中國(guó)黃土中記錄的B-M事件的發(fā)生與全球記錄是一致的,為中國(guó)黃土年代標(biāo)尺的建立提供了可靠的年代參考點(diǎn),也為中國(guó)黃土與全球古氣候記錄對(duì)比爭(zhēng)議問(wèn)題提供了依據(jù)。
圖1 西峰和洛川黃土10Be示蹤的Brunhes-Matuyama(B-M)地磁極性倒轉(zhuǎn)事件記錄藍(lán)色實(shí)線(xiàn)為磁化率,粉紅色實(shí)線(xiàn)為10Be濃度,黑色實(shí)線(xiàn)為分離得到的10Be相對(duì)產(chǎn)率曲線(xiàn),紅色實(shí)線(xiàn)為深海氧同位素曲線(xiàn);灰色陰影代表B-M倒轉(zhuǎn)發(fā)生的位置,紅色虛線(xiàn)是傳統(tǒng)古地磁方法測(cè)得的B-M界線(xiàn)在兩個(gè)剖面中記錄的位置(改繪自Zhou et al,2014a)。Fig.1 The records of Brunhes-Matuyama (B-M) geomagnetic reversal traced by loess10Be from Xifeng and Luochuan sections The curves are: magnetic susceptibility (blue),10Be concentration (pink),10Be relative production rate (black) and marine isotope stage (red). The grey shadow represents the B-M reversal interval and the dashed red line is the B-M boundary determined by paleogeomagnetic measurements (Modifi ed from Zhou et al, 2014a).
3.2 黃土10Be重建古降水變化研究進(jìn)展
黃土高原位于中國(guó)內(nèi)陸干旱-半干旱區(qū)域,面積60余萬(wàn)平方公里,屬大陸性季風(fēng)氣候,現(xiàn)代觀測(cè)年降水量在200 — 600 mm,且主要集中在夏季。黃土高原同時(shí)也是典型的生態(tài)脆弱區(qū),水土流失嚴(yán)重,易發(fā)生災(zāi)害性地質(zhì)事件,且人口眾多,因此黃土高原植被恢復(fù)及生態(tài)環(huán)境保護(hù)工作一直以來(lái)都被我國(guó)政府及科學(xué)工作者關(guān)注。除地質(zhì)地貌與人類(lèi)活動(dòng)因素外,對(duì)黃土高原生態(tài)環(huán)境具有重要影響的指標(biāo)當(dāng)是降水量。黃土高原降水與亞洲夏季風(fēng)強(qiáng)弱具有密切聯(lián)系,如果能夠定量重建地質(zhì)歷史時(shí)期降水變化過(guò)程,將有助于理解亞洲季風(fēng)發(fā)展變遷規(guī)律及其動(dòng)力學(xué)機(jī)制,為預(yù)測(cè)黃土高原地區(qū)降水發(fā)展趨勢(shì)、制定黃土高原生態(tài)環(huán)境治理政策提供背景數(shù)據(jù)。
基于氣候代用指標(biāo)與降水之間的關(guān)系,不同學(xué)者先后利用磁化率(呂厚遠(yuǎn)等,1994;Maher et al,1994;Liu et al,1995;Maher and Thompson,1995;Han et al,1996;Porter et al,2001)、地球化學(xué)參數(shù)(孫繼敏等,1999)、有機(jī)碳同位素δ13C(Hatte et al,2001;王麗霞等,2005;Liu et al,2005;Ning et al,2008)等嘗試定性或定量重建黃土高原降水變化歷史。這些傳統(tǒng)的方法都是基于測(cè)量表層土壤氣候代用指標(biāo)與該地區(qū)降水量現(xiàn)代觀測(cè)記錄,通過(guò)建立兩者的經(jīng)驗(yàn)方程,將其拓展應(yīng)用于更早的地質(zhì)時(shí)期來(lái)進(jìn)行古降水重建。但基于現(xiàn)代觀測(cè)數(shù)據(jù)所建立的經(jīng)驗(yàn)方程在拓展至過(guò)長(zhǎng)的時(shí)間序列時(shí),其邊界條件(如粉塵通量)等與現(xiàn)代相比會(huì)發(fā)生變化,有可能影響其定量重建結(jié)果的準(zhǔn)確性和可信性(Yu et al,2011)。另外,在利用磁化率進(jìn)行降水重建時(shí)(呂厚遠(yuǎn)等,1994;Maher et al,1994;Liu et al,1995;Maher and Thompson,1995;Han et al,1996;Porter et al,2001),未考慮粉塵通量的稀釋作用,也使得所獲得的經(jīng)驗(yàn)方程存在不確定性。除上述指標(biāo)外,間接利用10Be重建降水的工作也陸續(xù)開(kāi)展(Beer et al,1993;Heller et al,1993;沈承德等,1994b;Shen et al,2000),這些研究實(shí)際上采用的仍是磁化率與降水之間的關(guān)系,不同的是他們將10Be分為大氣圈降水10Be通量和降塵攜帶10Be通量?jī)刹糠郑煤笳咛蕹S土磁化率中粉塵通量的影響,進(jìn)而重建了130 ka以來(lái)冰期-間冰期階段的平均降水量。盡管這一系列的工作并未直接利用10Be進(jìn)行降水重建,且在處理過(guò)程中未考慮降水形成的10Be記錄中還包含有地磁場(chǎng)強(qiáng)度調(diào)制的影響和粉塵通量的稀釋影響,但卻是一種有益的嘗試,為進(jìn)一步開(kāi)展黃土10Be示蹤降水變化的研究提供了思路。
近年來(lái),隨著黃土10Be示蹤地磁場(chǎng)變化研究的成功開(kāi)展,作為副產(chǎn)物,利用黃土10Be定量重建古降水變化的研究工作也取得了重大進(jìn)展。Zhou et al(2007b)最早利用現(xiàn)代降水中7Be含量與觀測(cè)降水量之間的相關(guān)關(guān)系,以及降水中10Be /7Be比值,建立了現(xiàn)代降水10Be與降水量的線(xiàn)性回歸方程,定量重建了80 ka以來(lái)洛川地區(qū)降水變化,該結(jié)果與代表季風(fēng)強(qiáng)度的石筍δ18O曲線(xiàn)對(duì)比良好。隨后,由于不滿(mǎn)意于通過(guò)現(xiàn)代觀測(cè)數(shù)據(jù)建立的回歸方程的拓展應(yīng)用可能存在的問(wèn)題,Zhou et al(2014b,2015)又運(yùn)用“殘差示蹤法”定量重建了黃土高原地區(qū)的古降水變化史。該方法基于對(duì)黃土10Be和磁化率來(lái)源的分析,即黃土10Be包含了降水、降塵及地磁場(chǎng)調(diào)制三個(gè)組分,磁化率包含降水和降塵兩個(gè)組分,先將測(cè)量的10Be記錄與粉塵通量和代表地磁場(chǎng)強(qiáng)度的10Be產(chǎn)率進(jìn)行二元線(xiàn)性回歸,或?qū)⒋呕逝c粉塵通量進(jìn)行一元回歸(Zhou et al,2015),再計(jì)算10Be濃度或磁化率的測(cè)量值與回歸方程計(jì)算得到的10Be濃度或磁化率的估計(jì)值之間的殘差,根據(jù)“平均值概念”,即能得到反映大氣降水變化的信息。這一方法的優(yōu)勢(shì)在于既考慮了粉塵通量稀釋作用(對(duì)10Be和磁化率)的影響,又考慮了地磁場(chǎng)調(diào)制(對(duì)10Be)作用,同時(shí)不需要拓展應(yīng)用現(xiàn)代觀測(cè)數(shù)據(jù)建立的經(jīng)驗(yàn)方程,結(jié)果更具可靠性。
利用“殘差示蹤法”,Zhou et al(2014b,2015)定量重建了130 ka以來(lái)洛川地區(qū)古降水變化歷史。由圖2可以看出,130 ka以來(lái)降水量在典型溫暖期(MIS 5, 3, 1)呈現(xiàn)增加態(tài)勢(shì),平均降雨量在650 — 750 mm;其整體變化特征與反映季風(fēng)強(qiáng)度的石筍δ18O 記錄可以很好地對(duì)比(Wang et al,2001,2008),且在溫暖期MIS 5階段重建的降水還反映了亞軌道尺度上的細(xì)節(jié)變化特征。研究還發(fā)現(xiàn),黃土10Be重建的降水曲線(xiàn)在MIS 3和MIS 5階段具有相似的降水量,即MIS 3階段降水異常高。通過(guò)將重建的降水曲線(xiàn)與北半球30度夏季太陽(yáng)輻射及南北半球30度太陽(yáng)輻射梯度曲線(xiàn)進(jìn)行對(duì)比(Berger and Loutre,1991),作者分析指出,在軌道尺度上高原降水變化整體上與北半球30度夏季太陽(yáng)輻射變化同步,即亞洲季風(fēng)強(qiáng)度變化主要受控于北半球夏季太陽(yáng)輻射(Kutzbach,1981);而MIS 3階段降水增強(qiáng)則反映的是南北緯30度太陽(yáng)輻射梯度與氣壓梯度耦合作用的影響,這一過(guò)程加強(qiáng)了低緯度水汽向黃土高原的輸送量,造成比MIS 5時(shí)期冰量大的MIS 3階段降水的增加。該結(jié)論為理解全球季風(fēng)動(dòng)力學(xué)和氣候變化歷史提供了幫助。
圖2 洛川黃土10Be重建的130 ka以來(lái)古降水變化(紅色實(shí)線(xiàn))與葫蘆-三寶石筍δ18O 記錄(藍(lán)色實(shí)線(xiàn))(Wang et al,2001,2008)、北緯30度夏季太陽(yáng)輻射強(qiáng)度(紫色虛線(xiàn))及南北緯30度夏季太陽(yáng)輻射梯度(綠色實(shí)線(xiàn))(Berger and Loutre, 1991) 的對(duì)比(改繪自Zhou et al,2014b)Fig.2 The paleorainfall variation reconstructed by Luochuan loess10Be compared with speleothemδ18O of Hulu / Sanbao caves (Wang et al, 2001, 2008) and the solar insolation cycles (Berger and Loutre, 1991) (Modifi ed from Zhou et al, 2014b)
中國(guó)黃土10Be研究大體上經(jīng)歷了地球化學(xué)行為研究、古氣候代用指標(biāo)應(yīng)用、地球環(huán)境示蹤(古地磁場(chǎng)強(qiáng)度和古降水重建)研究三個(gè)階段。盡管早期研究認(rèn)為利用黃土10Be示蹤古地磁場(chǎng)變化不具可行性,但近些年來(lái)的研究成果有力地證明黃土
10Be不但能夠示蹤古地磁場(chǎng)倒轉(zhuǎn)、漂移事件,恢復(fù)古地磁場(chǎng)強(qiáng)度,還可有效地定量重建黃土高原古降水變化歷史,為黃土磁性地層學(xué)及古降水重建研究提供了新的途徑。黃土古地磁測(cè)量法的研究發(fā)現(xiàn),第四紀(jì)以來(lái)除B-M倒轉(zhuǎn)事件外,黃土中記錄的多個(gè)古地磁場(chǎng)轉(zhuǎn)換界線(xiàn)與全球記錄存在不一致性(Heslop et al,2000;Zhou and Shackleton,1999),因此,未來(lái)的工作是利用10Be將整個(gè)第四紀(jì)以來(lái)的黃土中記錄的古地磁極性倒轉(zhuǎn)及漂移事件進(jìn)行示蹤,重建黃土2.6 Ma以來(lái)可與深海沉積物記錄相媲美的古地磁場(chǎng)強(qiáng)度變化序列。同時(shí),將定量重建黃土高原古降水的研究向更早的地史時(shí)期拓展,為認(rèn)識(shí)第四紀(jì)以來(lái)亞洲季風(fēng)變遷規(guī)律及其動(dòng)力學(xué)機(jī)制研究提供可靠的依據(jù)。
安芷生, 王俊達(dá),李華梅. 1977. 洛川黃土剖面的古地磁研究 [J].地球化學(xué), (4): 239 – 249. [An Z S, Wang J D, Li H M. 1977. Paleomagnetic research of the Luochuan loess section [J].Geohimica, (4): 239 – 249.]
顧兆炎, Lal D, 郭正堂, 等. 2000. 黃土高原黃土和紅粘土10Be地球化學(xué)特征 [J].第四紀(jì)研究, 20(5): 409 – 422. [Gu Z Y, Lal D, Guo Z T, et al. 2000. Geochemistry of cosmogenic10Be in loess-paleosol sequences and red clay in the Loess Plateau [J].Quaternary Sciences, 20(5): 409 – 422.]
顧兆炎, 郭正堂, Lal D,等. 2006.黃土和紅粘土中宇宙成因核素定年的潛力:10Be濃度與化學(xué)成分的關(guān)系 [J].第四紀(jì)研究, 26(2): 244 – 249. [Gu Z Y, Guo Z T, Lal D, et al. 2006.10Be concentration relation to chemical compositions of Chinese loess and red clay as a potential dating method [J].Quaternary Sciences, 26(2): 244 – 249.]
孔 屏. 2002. 宇宙成因核素在地球科學(xué)中的應(yīng)用 [J].地學(xué)前緣, 9(3): 41 – 48. [Kong P. 2002. Applicationsofcosmogenic nuclidesin the earth sciences [J].Earth Science Frontiers, 9(3): 41 – 48.]
劉東生. 1985.黃土與環(huán)境[M]. 北京: 科學(xué)出版社. [Liu T S. 1985. Loess and environment [M]. Bejing: Science Press.]
呂厚遠(yuǎn), 韓家懋, 吳乃琴, 等. 1994. 中國(guó)現(xiàn)代土壤磁化率分析及其古氣候意義 [J].中國(guó)科學(xué)B輯, 24(12): 1290 – 1297. [Lü H Y, Han J M, Wu N Q, et al. 1994. Analysis of modern soil magnetic susceptibility in China and its paleoclimatic implications [J].Science in China (Series B), 24(12): 1290 – 1297.]
沈承德, 劉東生, Beer J, 等. 1989.10Be與黃土的堆積演化 [J].中國(guó)科學(xué)B輯, (7): 744 – 751. [Shen C D, Liu T S, Beer J,et al. 1989.10Be and the loess accumulation evolution [J].Science in China (Series B), (7): 744 – 751.]
沈承德, 易惟熙,劉東生. 1994a. 高分辨率10Be記錄與黃土地層定年 [J].第四紀(jì)研究, (3): 203 – 212. [Shen C D, Yi W X, Liu T S. 1994a.10Be records in loess with high resolution and the dating of loess strata [J].Quaternary Sciences, (3): 203 – 212.]
沈承德, 易惟熙,劉東生. 1995. 中國(guó)黃土10Be研究進(jìn)展 [J].地球科學(xué)進(jìn)展, 10(6): 590 – 596. [Shen C D, Yi W X, Liu T S. 1995. Advance in10Be study in Chinese loess [J].Advance in Earth Sciences, 10(6): 590 – 596.]
沈承德, 易惟熙, 劉東生, 等. 1994b.10Be-磁化率模型及黃土中成壤磁性物質(zhì)能量估算 [J].第四紀(jì)研究, (1): 75 – 86. [Shen C D, Yi W X, Liu T S, et al. 1994b.10Besusceptibility model and the quantitative estimates of pedogenic ferromagnetic material fl ux in Chinese loess [J].Quaternary Sciences, (1): 75 – 86.]
孫繼敏, 刁桂儀, 文啟忠, 等. 1999. 用黃土地球化學(xué)參數(shù)進(jìn)行古氣候定量估算的初步嘗試 [J].地球化學(xué), 28(3): 265 – 272. [Sun J M, Dian G Y, Wen Q Z, et al. 1999. A preliminary study on quantitative estimate of Palaeoclimateby using geochemical transfer function in the Loess Plateau [J].Geohimica, 28(3): 265 – 272.]
王麗霞, 汪衛(wèi)國(guó), 李心清, 等. 2005. 中國(guó)北方干旱半干旱區(qū)表土的有機(jī)質(zhì)碳同位素、磁化率與年降水量的關(guān)系 [J].干旱區(qū)地理, 28(3): 311 – 318. [Wang L X, Wang W G, Li X Q, et al. 2005. Correlation between the carbon isotope of organic matter and magneticsusceptibility in topsoil and the annual precipitation in aridandsemiarid regions in North China [J].Arid Land Geography, 28(3): 311 – 318.]
鮮 鋒, 周衛(wèi)健,武振坤, 等. 2012a. 中國(guó)黃土中Blake地磁極性漂移事件記錄的空間對(duì)比 [J].地球環(huán)境學(xué)報(bào), 3(2): 770 – 780. [Xian F, Zhou W J, Wu Z K, et al. 2012a. Spatial comparison study on the records of Blake geomagnetic excursion event in Chinese loess [J].Journal of Earth Environment, 3(2): 770 – 780.]
鮮 鋒, 周衛(wèi)健,武振坤, 等. 2012b.馬蘭黃土中Laschamp地磁漂移的10Be記錄與古地磁測(cè)試結(jié)果的初步對(duì)比 [J].地球環(huán)境學(xué)報(bào), 3(1): 729 – 734. [Xian F, Zhou W J, Wu Z K, et al. 2012b.10Be evidence for the Laschamp excursion in Malan loess and its preliminary comparison with that of paleogeomagnetic study [J].Journal of Earth Environment, 3(1): 729 – 734.]
周衛(wèi)健, 孔祥輝, 鮮 鋒, 等. 2010. 中國(guó)黃土10Be重建古地磁場(chǎng)變化史的初步研究 [J].地球環(huán)境學(xué)報(bào), 1(1): 20 – 27. [Zhou W J, Kong X H, Xian F, et al. Preliminary study on the reconstruction of the plaeogeomagneticintensities by10Be in Chinese loess [J].Journal of Earth Environment, 1(1): 20 – 27.]
An Z S, Kukla G, Porter S C, et al. 1991a. Late quaternary dust fl ow on the Chinese Loess Plateau [J].Catena, 18(2): 125 – 132.
An Z S, Kukla G J, Porter S C, et al. 1991b. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years [J].Quaternary Research, 36(1): 29 – 36.
An Z S, Liu T S, Lu Y C, et al. 1990. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in Central China [J].Quaternary International, 7 / 8: 91 – 95.
Beer J, Blinov A, Bonani G, et al. 1990. Use of10Be in polar ice to trace the 11-year cycle of solar activity [J].Nature, 347: 164 – 166.
Berger A, Loutre M F. 1991. Insolation values for the climate of the last 10 million years [J].Quaternary Science Reviews, 10(4): 297 – 317.
Beer J, Shen C D, Heller F, et al. 1993.10Be and magnetic susceptibility in Chinese Loess [J].Geophysical Research Letters, 20(1): 57 – 60.
Brown L, Klein J, Middleton R. 1982.10Be in island arcvolcanoesand implic at ions for subduction [J].Nature, 299: 718 – 720.
Christl M, Strobl C, Mangini A. 2003. Beryllium-10 in deepsea sediments: a tracer for the Earth's magnetic field intensity during the last 200,000 years [J].Quaternary Science Reviews, 22: 725 – 739.
Finkel R C, Nishiizumi K. 1997. Beryllium 10 concentrations in the Greenland Ice Sheet Project 2 ice core from 3 — 40 ka [J].Jounal of Geophysical Research, 102(12): 16699 – 26706.
Frank M, Schwarz B, Baumann S, et al. 1997. A 200 kyr record of cosmogenic radionuclide production rate and geomagnetic fi eld intensity from10Be in globally stacked deep-sea sediments [J].Earth and Planetary Science Letters, 149(1 / 2 / 3 / 4): 121 – 129.
Frank M. 2000. Comparison of cosmogenic radionuclide production and geomagnetic field intensity over the last 200 000 years [J].Philosophical Transactions of the Royal Society A, 358: 1089 – 1107.
Geel B V, Raspopov O M, Renssen H, et al. 1999. The role of solar forcing upon climate change [J].Quaternary Science Reviews, 18: 331 – 338.
Gu Z Y, Lal D, Liu T S, et al. 1996. Five million year10Be record in Chinese loess and red-clay: climate and weathering relationships [J].Earth and Planetary Science Letters, 144: 273 – 287.
Han J M, Lü H Y, Wu N Q, et al. 1996. The magnetic susceptibility of modern soils in China and its use for paleoclimate reconstruction [J].Studia Geophysica et Geodaetica, 40(3): 262 – 275.
Hatte C, Antoine P, Fontugne M, et al. 2001.δ13C of loess organic matter as a potential proxy for paleoprecipitation [J].Quaternary Research, 55(1): 33 – 38.
Heller F, Shen C D, Beer J, et al. 1993. Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and palaeoclimatic implications [J].Earth and Planetary Science Letters, 114(2 / 3): 385 – 390.
Heslop D, Langereis C G, Dekkers M J. 2000. A new astronomical timescale for the loess deposits of Northern China [J].Earth and Planetary Science Letters, 184: 125 – 139.
Inoue T, Tanaka S. 1979.10Be in marine sediments, Earth's environment and cosmic rays [J].Nature, 277: 209 – 210.
Kong X H, Zhou W J, Beck J W, et al. 2014. Asynchronous records of Brunhes / Matuyama reversal in marine sediments and Chinese loess: Review and discussion [J].Quaternary International, 319: 137 – 142.
Korschinek G, Bergmaier A, Faestermann T, et al. 2010. A new value for the half-life of10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting [J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(2): 187 – 191.
Ku T L, Southon J R, Vogel J S, et al. 1984.10Be distributions in deep sea drilling project site 576 and site 578 sediments studied by accelerator mass spectrometry [J].Deep Sea Drilling Project Initial Reports, 86: 539 – 546.
Kukla G, Heller F, Liu X M, et al. 1988. Pleistocene climates in China dated by magnetic susceptibility [J].Geology, 16: 811 – 814.
Kutzbach J E. 1981. Monsoon climate of the Early Holocene: Climate experiment with the Earth's orbital parameters for 9000 years ago [J].Science, 214: 59 – 61.
Lal D, Peters B. 1967. Cosmic ray produced radioactivity on the Earth [J].Handbuch der Physik, 46(2): 551 – 612.
Libby W F, Anderson E C, Arnold J R. 1949. Age determination by radiocarbon content: world-wide assay of natural radiocarbon [J].Science, 109(2827): 227 – 228.
Liu W G, Fang X H, Ning Y F, et al. 2005.δ13C variation of C3and C4plants across an Asian Monsoon rainfallgradient in arid northwestern China [J].Global Change Bioligy, 11: 1094 – 1100.
Liu X M, Liu T S, Xu T C, et al. 1988. The Chinese loess in Xifeng, I. The primary study on magnetostratigraphy of a loess profile in Xifeng area, Gansu province [J].Geophysical Journal, 92: 345 – 348.
Liu X, Rolph T, Bloemendal J, et al. 1995. Quantitative estimates of palaeoprecipitation at Xifeng, in the Loess Plateau of China [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 113(2 / 3 /4): 243 – 248.
Maher B A, Thompson R, Zhou L P. 1994. Spatial and temporal reconstructions of changes in the Asian palaeomonsoon: A new mineral magnetic approach [J].Earth and Planetary Science Letters, 125(1 / 2 / 3 / 4): 461 – 471.
Maher B A, Thompson R. 1995. Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols [J].Quaternary Research, 44(3): 383 – 391.
Masarik J, Beer J. 1999. Simulation of particle fluxes and cosmogenic nuclide production in the Earth's atmosphere [J].Jounal of Geophysical Research, 104(D10): 12099 – 12111.
Muscheler R, Beer J, Kubik P W, et al. 2005. Geomagnetic fi eld intensity during the last 60,000 years based on10Be and36Cl from the Summit ice cores and14C [J].Quaternary Science Reviews, 24: 1849 – 1860.
Ning Y F, Liu W G, An Z S. 2008. A 130-ka reconstruction of precipitation on the Chinese Loess Plateau from organic carbon isotopes [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 270(1 / 2): 59 – 63.
Pan Y, Zhu R, Shaw J, et al. 2001. Can relative paleointensities be determined from the normalized magnetization of the wind-blown loess of China [J].Jounal of Geophysical Research, 106(B9): 19221 – 19232.
Porter S C, Hallet B, Wu X H, et al. 2001. Dependence of nearsurface magnetic susceptibility on dust accumulation rate and precipitation on the Chinese Loess Plateau [J].Quaternary Research, 55(3): 271 – 283.
Raisbeck G M, Yiou F, Cattani O, et al. 2006.10Be evidence for the Matuyama-Brunhes geomagnetic reversal in the EPICA Dome C ice core [J].Nature, 444: 82 – 84.
Robinson C, Raisbeck G M, Yiou F, et al. 1995. The relationship between10Be and geomagnetic fi eld strength records in central North Atlantic sediments during the last 80 ka [J].Earth and Planetary Science Letters, 136(3 / 4): 551 – 557.
Shen C D, Beer J, Heller F, et al. 2000.10Be-susceptibility model and quantitative estimates of pedogenic ferromagnetic material fl ux in Chinese loess [J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 172(1 / 2 / 3 / 4): 551 – 554.
Shen C D, Liu D S, Beer J, et al. 1990.10Be and the accumulation evolution of loess [J].Science in China Series B, 33(5): 613 – 622.
Shen C D, Beer J, Liu T S, et al. 1992.10Be in Chinese loess [J].Earth and Planetary Science Letters, 109(1 / 2): 169 – 177.
Suganuma Y, Okuno J I, Heslop D, et al. 2011. Postdepositional remanent magnetization lock-in for marine sediments deduced from10Be and paleomagnetic records through the Matuyama-Brunhes boundary [J].Earth and Planetary Science Letters, 311(1 / 2): 39 – 52.
Suganuma Y, Yokoyama Y, Yamazaki T, et al. 2010.10Be evidence for delayed acquisition of remanent magnetization in marine sediments: Implication for a new age for the Matuyama-Brunhes boundary [J].Earth and Planetary Science Letters, 296(3 / 4): 443 – 450.
Tauxe L, Herbert T, Shackleton N J, et al. 1996. Astronomical calibration of the Matuyama-Brunhes boundary: Consequences for magnetic remanence acquisition in marine carbonates and the Asian loess sequences [J].Earth and Planetary Science Letters, 140(1 / 2 / 3 / 4): 133 – 146.
Wagner G, Masarik J, Beer J, et al. 2000. Reconstruction of the geomagnetic field between 20 and 60 kyr BP from cosmogenic radionuclides in the GRIP ice core [J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 172: 597 – 604.
Wang Y J, Cheng H, Edwards R L, et al. 2001. A highresolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China [J].Science, 294: 2345 – 2349.
Wang Y J, Cheng H, Edwards R L, et al. 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years [J].Nature, 451: 1090 – 1093.
Yiou F, Raisbeck G M, Baumgartner S, et al. 1997. Beryllium 10 in the Greenland Ice Core Project ice core at Summit, Greenland [J].Jounal of Geophysical Research, 102(C12): 26783 – 26794.
Yu S Y, Kang Z H, Zhou W J. 2011. Quantitative palaeoclimate reconstruction as an inverse problem: A Bayesian inference of late-Holocene climate on the eastern Tibetan Plateau from a peat celluloseδ18O record [J].The Holocene, 22: 405 – 412.
Zhou L P, Oldfi eld F, Wintle A G, et al. 1990. Partly pedogenic origin of magnetic variations in Chinese loess [J].Nature, 346: 737 – 739.
Zhou L P, Shackleton N J. 1999. Misleading positions of geomagnetic reversal boundaries in Eurasian loess and implications for correlation between continental and marine sedimentary sequences [J].Earth and Planetary Science Letters, 168: 117 – 130.
Zhou W J, Beck W, Kong X H, et al. 2014a. Timing of the Brunhes-Matuyama magnetic polarity reversal in Chinese loess using10Be [J].Geology, 42(6): 467 – 470.
Zhou W J, Chen M B, Kong X H, et al. 2015. “Mean Value Concept” based Residual Trace Approach-application to paleoprecipitation reconstruction over the Chinese Loess Plateau [J].Journal of Earth Envrionment, 6(6): 382 – 392.
Zhou W J, Chen M B, Xian F, et al. 2007a. The mean value concept in mono-linear regression of multi-varaibles and its application to trace studies in geosciences [J].Science in China Series D: Earth Sciences, 50(12): 1828 – 1834.
Zhou W J, Priller A, Beck J W, et al. 2007b. Disentangling geomagnetic and precipitation signals in an 80-kyr Chinese loess record of10Be [J].Radiocarbon, 49(1): 139 – 160.
Zhou W J, Xian F, Beck J W, et al. 2010. Reconstruction of 130-kyr relative geomagnetic intensities from10Be in two Chinese loess sections [J].Radiocarbon, 52(1): 129 – 147.
Zhou W J, Xian F, Du Y J, et al. 2014b. The last 130 ka precipitation reconstruction from Chinese loess10Be [J].Journal of Geophysical Research: Solid Earth, 119(1): 191 – 197.
Zhu R, Pan Y, Guo B, et al. 1998. A recording phase lag between ocean and continent climate changes: constrained by the Matuyama/Brunhes Polarity boundary [J].Chinese Science Bulletin, 43(19): 1593 – 1599.
Review on the application of the atmospheric produced10Be in Chinese loess
KONG Xianghui1,2, ZHOU Weijian1,2,3,4, WU Zhenkun1,2, DU Yajuan1,2, ZHAO Guoqing1,2, XIE Xingjun1,2
(1. State Key Laboratory of Loess and Quaternary Geology, Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; 2. Xi'an Accelerator Mass Spectrometry Center, Xi'an 710061, China; 3. Beijing Normal University, Beijing 100875, China; 4. School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China)
Background, aim, and scopeThe history of Chinese loess10Be studies can be recognized as three stages. (1) The geochemical behavior of10Be in Chinese loess: it is preferred to be absorbed on the small size particles and the clay minerals, it can be preserved well after it deposited and would not be leached by the raillfall; (2) as a paleoclimatic proxy: the variation of10Be concentration in the loess and paleosol correlated well with the marine isotope stages and with the correlation between these two proxies, it can be used to establish the chronology of Chinese loess-paleosol sequences; (3) tracing earth's environmental changes: recovering the variations of geomagnetic fi eld intensity, tracing the geomagneticpolarity reversals/excursions and reconstructing the paleorainfall over the Chinese Loess Plateau. Since very signifi cant progress has been made about the third one recently, it is necessary to make a comprehensive review on the application of cosmogenic10Be in Chinese loess, and by doing this to discuss the future work about the Chinese loess10Be.Materials and MethodsThe publications of loess10Be studies are reviewed here. Among them, the papers published between 1980's and 2006 are used to discuss the sources, formation, chemical behavior and its climatic implications in Chinese loess, the others published after 2006 are used to show that the loess10Be are good proxy for paleogeomagnetic variations tracing and paleorainfall reconstruction.ResultsThe10Be in Chinese loess is mainly from atmosphere where it is produced via cosmic-ray spallation. The chemical leaching experiments with acid solutions showed that the10Be in loess and paleosols is strongly bound to soil particles and the mobility due to dissolution is very little. The measurements of10Be concentrations in loess as a function of grain size indicated that the10Be is preferred to be adsorbed on small size mineral grains due to larger surface areas. The variation of loess10Be record is similar to the magnetic susceptibility which is well correlated with marineδ18O, so it can be used to reconstruct the climatic variations. In addition, the10Be was also exploited to establish the chronology of loess-paleosol sequences based on the correlation between10Be andδ18O. Because the production rate of10Be in atmosphere is regulated by the Earth's magnetic fi eld intensity, i.e., when the geomagnetic fi eld intensity is strong, the fl ux of galactic cosmic rays penetrating into the Earth's atmosphere is signifi cantly attenuated by scattering off the magnetic fi eld, resulting in decreased10Be production rate, and vice versa,10Be is a useful tool for the geomagnetic variations tracing studies. However, the efforts of using10Be to extract the geomagnetic fi eld signal from Chinese loess was much more diffi cult than that in marine sediments. In Chinese loess, there are two sources of loess10Be: some10Be comes from remobilized dust that fell to Earth at some time in the past, whereas a second component derives from atmospheric fallout of new10Be recently generated by cosmicray interactions in the atmosphere. In order to extract a geomagnetic strength signal from Chinese loess10Be, fi rst, a correction must be made for10Be associated with recycled dust that fell to the earth some time in the past, but has since been remobilized by wind, and secondly, in addition to magnetic fi eld strength, climate infl uencing the local fl ux of10Be needs to be eliminated. Zhou et al (2007a, 2007b) fi rst proposed an idea of using striking correlation between measured10Be and magnetic susceptibility in Chinese loess to separate the climate signal (dust fl ux and precipitation) from the total10Be concentration. Based on this idea which named“Mean Value Concept”, a series methods have been established for tracing geomagnetic fi eld variation and reconstructing paleo-rainfall by using loess10Be.DiscussionApplying these methods, two different loess sections from Xifeng and Luochuan to produce paleomagnetic records for the last 130 ka, two geomagnetic excursions-i.e. short-lived decrease infi eld intensity-known as the Laschamp and Blake events, are clearly seen by the increased geomagnetic modulated10Be signals in both Luochuan and Xifeng sections. Our reconstructed paleointensity record using this10Be signal can be well correlated to those from North Pacifi c, PISO-1500, and SINT 800. Using loess10Be, the Brunhes-Matuyama (B-M) reversal event was investigated because this reversal occurred much earlier in Chinese loess than that of marine sediments according to the paleomagnetic measurements. The10Be results from Xifeng and Luochuan sections show that the timing of B-M reversal is actually synchronous with that seen in marine records, verifying the standard loess time scale as correct. Except for the geomagnetic fi eld tracing studies, a 130 ka paleorainfall record is also obtained using loess10Be. This record can be well correlated with the records of speleothemδ18O which is regarded as monsoon a reliable record of Asian Monsoon intensity.ConclusionsThe reviews of previous work show that the loess10Be is a good tool for studies of geomagnetic fi eld variations and paleorainfall reconstructions. These methods proposed by Zhou et al can not only be used in Chinese loess10Be but also suitable to the trace research for a multivariable geosystem where all variables are changeable and their distribution havebeen known except the one to be reconstructed.Recommendations and perspectivesBased on the recent studies, it is recommended that the geomagnetic fi eld intensity and paleorainfall of the whole Quaternary (~2.6 Ma) would be reconstructed by using loess10Be.
atmospheric produced10Be; geochemical behavior; Chinese Loess Plateau; geomagnetic fi led intensity; geomagnetic polarity reversal/excursions; paleorainfall
KONG Xianghui, E-mail: kxh@ieecas.cn
10.7515/JEE201603002
2016-01-11;錄用日期:2016-04-06
Received Date:2016-01-11;Accepted Date:2016-04-06
國(guó)家自然科學(xué)基金項(xiàng)目(41230525);科技部國(guó)家重大科學(xué)研究計(jì)劃(2013CB955904)
Foundation Item:National Natural Science Foundation of China (41230525), National Basic Research Program of China (2013CB955904) from Ministry of Science and Technology of China
孔祥輝,E-mail: kxh@ieecas.cn