国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

利用加速器質(zhì)譜儀進(jìn)行快速129I檢測(cè)的方法研究

2016-03-21 03:17:04周衛(wèi)健侯小琳張路遠(yuǎn)付云翀
地球環(huán)境學(xué)報(bào) 2016年3期
關(guān)鍵詞:活度加速器粉末

劉 起,周衛(wèi)健,侯小琳,張路遠(yuǎn),付云翀,陳 寧

(1.中國(guó)科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室,陜西省加速器質(zhì)譜技術(shù)及應(yīng)用重點(diǎn)實(shí)驗(yàn)室,西安710061;2.西安加速器質(zhì)譜中心,西安 710061;3.中國(guó)科學(xué)院大學(xué),北京 100049)

利用加速器質(zhì)譜儀進(jìn)行快速129I檢測(cè)的方法研究

劉 起1,2,3,周衛(wèi)健1,2,侯小琳1,2,張路遠(yuǎn)1,2,付云翀1,2,陳 寧1,2,3

(1.中國(guó)科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室,陜西省加速器質(zhì)譜技術(shù)及應(yīng)用重點(diǎn)實(shí)驗(yàn)室,西安710061;2.西安加速器質(zhì)譜中心,西安 710061;3.中國(guó)科學(xué)院大學(xué),北京 100049)

加速器質(zhì)譜法是129I最靈敏的檢測(cè)方法。傳統(tǒng)方法分析樣品時(shí)通常需要復(fù)雜的化學(xué)制樣流程,對(duì)樣品中碘元素進(jìn)行分離、富集和純化,測(cè)試周期較長(zhǎng),成本高。在核應(yīng)急分析等類型的應(yīng)用研究中,需要對(duì)大批量樣品中的129I含量開展快速檢測(cè),針對(duì)此類應(yīng)用需求特點(diǎn),本研究嘗試開發(fā)一種快速、流程簡(jiǎn)便并且成本低廉的129I-AMS檢測(cè)方法。以三種已知129I水平的國(guó)際標(biāo)準(zhǔn)物質(zhì)作為研究樣品,將干燥和研磨均勻化的樣品粉末直接與加入過(guò)本底碘的電熱導(dǎo)體介質(zhì)(Nb粉末)混合后壓入靶座,實(shí)現(xiàn)快速制靶,進(jìn)行加速器質(zhì)譜測(cè)量,再結(jié)合制靶時(shí)稱量的相關(guān)質(zhì)量關(guān)系數(shù)據(jù)就能直接計(jì)算得出原始樣品中的129I活度。通過(guò)對(duì)測(cè)量數(shù)據(jù)與已知值進(jìn)行比較分析驗(yàn)證了方法的可靠性,估算方法的探測(cè)下限可達(dá)0.15 μBq· g-1。

碘-129(129I);加速器質(zhì)譜;快速檢測(cè)

129I是碘元素的唯一長(zhǎng)壽命放射性核素,半衰期為15.7 Ma,環(huán)境中的129I主要來(lái)源于人類的核活動(dòng),它在核污染源的環(huán)境示蹤與監(jiān)測(cè)、全球洋流循環(huán)示蹤研究等領(lǐng)域具有非常廣泛的應(yīng)用。加速器質(zhì)譜(Accelerator Mass Spectrometry,AMS)技術(shù)是對(duì)環(huán)境樣品中129I核素進(jìn)行檢測(cè)的最靈敏分析手段,129I /127I同位素豐度比的分析靈敏度可達(dá)10-14,高于常規(guī)方法5個(gè)量級(jí)以上(Yiou et al, 1994;Raisbeck et al,1995;Hou,2004,2011;陳寧等,2010)。

在核能的大范圍應(yīng)用中存在的放射性污染風(fēng)險(xiǎn)是人們普遍關(guān)注的問(wèn)題,監(jiān)測(cè)環(huán)境放射性水平和分布,預(yù)測(cè)放射性核素的擴(kuò)散和轉(zhuǎn)移、評(píng)估環(huán)境核輻射危害,不但可以降低公眾的輻射危害、緩解民眾核恐懼,而且可以為解決潛在的外交和貿(mào)易糾紛提供有說(shuō)服力的數(shù)據(jù)支持(Steinhauseret al,2014)。另外,在核事故和核恐怖襲擊情況下,需要及時(shí)對(duì)環(huán)境放射性污染水平和人體暴露水平進(jìn)行評(píng)估,為此必須對(duì)大量環(huán)境和生物樣品中的重要核素進(jìn)行快速測(cè)定。129I作為235U的主要裂變產(chǎn)物之一,具有較大產(chǎn)額,其特殊的生成途徑和半衰期特性等,使得它成為核環(huán)境安全監(jiān)測(cè)、診斷和評(píng)估的重要核素(Rechard,1999)。但是在核應(yīng)急分析中,涉及到對(duì)大批量樣品的129I含量的分析,并且有幾個(gè)共同的特點(diǎn):第一,絕大部分樣品中的目標(biāo)核素129I含量仍然屬于自然水平,超出放射性測(cè)量方法和其他無(wú)機(jī)質(zhì)譜方法的檢出限,AMS仍然是理想的測(cè)試手段。第二,要求快速分析,而且檢測(cè)樣品量大,當(dāng)然檢測(cè)費(fèi)用要盡可能低。第三,這類分析的關(guān)鍵是篩查污染范圍,初步評(píng)價(jià)污染程度,所以對(duì)數(shù)據(jù)的精度要求相對(duì)較低。

傳統(tǒng)的加速器質(zhì)譜方法分析129I時(shí)通常需要通過(guò)復(fù)雜化學(xué)制樣過(guò)程將待測(cè)的目標(biāo)元素(碘)從大量樣品中富集并進(jìn)行分離和純化(李柏等,2005;Hou et al,2009),例如對(duì)固體樣品的129I分析中通過(guò)高溫加熱或者堿融等辦法將碘元素分離收集并富集于捕集液中,然后再通過(guò)加入載體I-離子或者Cl-離子以及Ag+離子,生成AgI沉淀或者生成AgI-AgCl共沉淀分離出樣品中的碘,然后制作成AMS靶樣,進(jìn)行加速器質(zhì)譜分析(Hou et al,2010)。制樣及測(cè)試各環(huán)節(jié)的效率和質(zhì)量直接影響最終的分析效率和結(jié)果,極長(zhǎng)的制樣時(shí)間是制約AMS大范圍應(yīng)用的主要瓶頸之一。本文針對(duì)此類應(yīng)用特點(diǎn),嘗試了跳過(guò)化學(xué)制樣環(huán)節(jié),開發(fā)出一種快速、流程簡(jiǎn)便并且成本低廉的129I-AMS檢測(cè)方法,可以實(shí)現(xiàn)對(duì)大批量樣品先做快速低成本的甄別性測(cè)量,以便選出最具價(jià)值的樣品后再做傳統(tǒng)的高精度分析。

1 實(shí)驗(yàn)部分

1.1 實(shí)驗(yàn)方法

本工作在樣品的無(wú)化學(xué)AMS靶樣制備和加速器質(zhì)譜測(cè)量方法上進(jìn)行了探索。

在靶樣制備方面,主要思路是將經(jīng)干燥并充分研磨的樣品粉末與電熱導(dǎo)體介質(zhì)(Matrix)粉末混合,通過(guò)調(diào)整樣品粉末與電熱導(dǎo)體介質(zhì)粉末的比例制備AMS靶樣,然后裝入離子源,通過(guò)緩慢增加Cs+轟擊強(qiáng)度,觀察離子源狀態(tài),進(jìn)行濺射穩(wěn)定性測(cè)試,確認(rèn)在何種比例下復(fù)雜組分的靶樣能承受的銫束流轟擊強(qiáng)度并保持離子源穩(wěn)定(通過(guò)簡(jiǎn)單對(duì)比實(shí)驗(yàn)結(jié)果,選擇的初步優(yōu)化比例為樣品和Nb粉末體積比1:3),同時(shí)監(jiān)測(cè)本底靶樣的129I能譜,排除未知復(fù)雜組分對(duì)本底能譜的干擾情況,通過(guò)綜合考慮離子源引出束流大小和靶樣濺射穩(wěn)定性選擇優(yōu)化的樣品粉末與電熱導(dǎo)體介質(zhì)粉末比例。

待測(cè)的目標(biāo)碘元素并沒(méi)有經(jīng)過(guò)化學(xué)富集和分離流程,直接將樣品壓入傳統(tǒng)的靶座,由于壓入靶座中的樣品混合物總量極少,導(dǎo)致AMS靶樣中碘含量較常規(guī)靶樣要低2 — 4個(gè)數(shù)量級(jí),靶樣的加速器質(zhì)譜測(cè)量方法是本實(shí)驗(yàn)的另一主要挑戰(zhàn)。本課題組在前期的工作中對(duì)AgI-AgCl 無(wú)載體靶樣129I-AMS測(cè)量方法(Liu et al,2015)研究已經(jīng)在超微量樣品的AMS測(cè)試方面積累的豐富的經(jīng)驗(yàn),保證了本實(shí)驗(yàn)的順利進(jìn)行,本工作在此方面的創(chuàng)新主要是探索了將本底碘(美國(guó)Woodward公司生產(chǎn),下文中簡(jiǎn)稱為WWI)加入到Nb粉中,以將靶樣中碘量提高到適當(dāng)水平,獲得穩(wěn)定可測(cè)量的碘離子束流,提升整體測(cè)量數(shù)據(jù)可靠性,以及探索相應(yīng)的數(shù)據(jù)處理方式。

1.2 AMS標(biāo)準(zhǔn)靶樣與本底靶樣

由于待測(cè)靶樣總體特點(diǎn)是穩(wěn)定碘含量超低,故標(biāo)準(zhǔn)樣品也采用了AgI-AgCl共沉淀法標(biāo)樣,其中Cl:I質(zhì)量比為20:1,標(biāo)樣中的I含量為12.1 μg· mg-1,詳細(xì)計(jì)算過(guò)程如下,關(guān)于標(biāo)樣的其他詳細(xì)信息見(jiàn)參考文獻(xiàn)(Hou et al,2010 ;劉起等,2013;Zhang et al,2013;Liu et al,2015)。

純Nb靶樣仍然作為機(jī)器本底,測(cè)試機(jī)器本底計(jì)數(shù)和暗電流。

依據(jù)前期測(cè)量已知碘含量的標(biāo)準(zhǔn)靶樣的測(cè)試經(jīng)驗(yàn),當(dāng)靶樣中的碘含量為7 — 15 μg· mg-1時(shí),可以在高能端檢測(cè)到30 — 80 nA的127I5+束流,可以較為精確地測(cè)量。故本實(shí)驗(yàn)中選取在Nb粉中添加的本底碘濃度設(shè)定在約7 μg· mg-1。具體做法是:在Nb粉末中加入127I載體溶液(NaI),充分震蕩攪拌均勻后,低溫(50 — 60℃)蒸干,使得其中含有約7 μg· mg-1的穩(wěn)定碘(127I)。這類加本底碘的Nb粉一方面用于制備靶樣時(shí)提升靶樣中的碘含量,并用作計(jì)算129I活度時(shí)的參考,另一方面也直接壓靶用作于本底靶樣。

1.3 研究樣品

本研究選取了三種129I標(biāo)準(zhǔn)物質(zhì),分別為:國(guó)際原子能機(jī)標(biāo)準(zhǔn)物質(zhì)IAEA-446(Pham et al,2014)和IAEA-410(Pham et al,2006)以及美國(guó)國(guó)家標(biāo)準(zhǔn)局NIST SRM-4359號(hào)標(biāo)準(zhǔn)物質(zhì)(Outola et al,2006),其中IAEA-446和NIST SRM-4359為經(jīng)干燥并粉碎均勻化處理的褐藻粉末,IAEA-410為經(jīng)干燥并粉碎均勻化處理的沉積物粉末,其129I和127I等信息列于表1。

表1 研究樣品詳細(xì)信息Tab.1 Sample materials information

1.4 AMS靶樣制備

具體的AMS靶樣制備過(guò)程是:首先將原樣干燥并在瑪瑙研缽充分研碎,然后按照體積比大致為1:3比例取鈮粉,然后用分析天平精確稱量樣品和Nb粉末的重量,混合均勻后直接壓入靶座,實(shí)現(xiàn)快速制靶,全程無(wú)需對(duì)樣品進(jìn)行任何化學(xué)處理。作為對(duì)比組,三種樣品各制備兩組,分別使用純Nb粉和加入本底碘之后的Nb粉,并且每個(gè)樣品制平行AMS靶樣兩個(gè),加上兩組本底靶樣各2個(gè)共計(jì)16個(gè)(詳見(jiàn)表2),其中1 — 6號(hào)靶樣為使用純Nb壓制的靶樣,其中的碘含量很低;7 — 12號(hào)靶樣為使用加入過(guò)本底碘載體的Nb制備的靶樣,由于本底碘的加入,靶樣中的碘含量提升1 — 2個(gè)量級(jí),但是原有的129I /127I比值被相應(yīng)的稀釋,具體的稀釋倍數(shù)見(jiàn)表2。

2 結(jié)果與討論

2.1 測(cè)試結(jié)果

所有靶樣依次連續(xù)測(cè)試,每輪次每靶樣測(cè)量10分鐘,總共測(cè)量6輪,單個(gè)靶樣的多次測(cè)量結(jié)果波動(dòng)很小,對(duì)單個(gè)靶樣的測(cè)試數(shù)據(jù)取平均值(表3中第3 — 5列),結(jié)果顯示同一樣品的平行靶樣間數(shù)據(jù)具有較好的可比性,證明測(cè)量結(jié)果可靠具可重復(fù)。

2.2 標(biāo)準(zhǔn)靶樣、本底靶樣和樣品靶樣能譜分析

由于待測(cè)的樣品沒(méi)有經(jīng)過(guò)化學(xué)制樣的提純過(guò)程,由其制成的靶樣中的組分要比常規(guī)靶樣復(fù)雜的多,對(duì)最終的129I計(jì)數(shù)存在潛在的雜峰干擾可能,為此需要將相應(yīng)樣品靶的129I能譜和標(biāo)準(zhǔn)靶樣以及本底靶樣的129I能譜進(jìn)行對(duì)比分析。圖1中列出了標(biāo)準(zhǔn)靶樣、本底靶樣以及每一種樣品靶樣的10分鐘計(jì)數(shù)能譜圖。從能譜展寬上看,樣品靶樣較之標(biāo)準(zhǔn)靶樣的能譜并沒(méi)有特殊的變化,說(shuō)明129I的能量并未受到靶樣中雜質(zhì)組分的干擾;另外通過(guò)將樣品靶和本底靶的129I能譜進(jìn)行對(duì)比分析,整個(gè)能譜上除了129I的譜峰之外并沒(méi)有其他的雜峰,說(shuō)明此AMS設(shè)備前端分析磁鐵和靜電分析器強(qiáng)大的本底抑制能力,具有對(duì)129I的很高的分辨能力。

2.3 本底扣減

在AMS測(cè)試較低水平的129I樣品的過(guò)程中,背景噪聲可能與真實(shí)信號(hào)處于同一數(shù)量級(jí)水平,在最終結(jié)果數(shù)據(jù)的處理上必須考慮背景噪聲的影響,并做相應(yīng)的本底扣除。通常背景噪聲等干擾信息可以通過(guò)檢測(cè)純Nb粉靶樣的129I計(jì)數(shù)率和127I電流來(lái)實(shí)現(xiàn),具體處理過(guò)程為:將各個(gè)靶樣的129I計(jì)數(shù)分別減去對(duì)應(yīng)輔助介質(zhì)(Matrix)的129I計(jì)數(shù),同時(shí)將127I電流值減去純Nb粉末靶樣的電流值,再相除即可得經(jīng)過(guò)本底扣減的129I /127I比值,各個(gè)靶樣經(jīng)過(guò)本底扣減后的129I/127I詳見(jiàn)表3第6 — 8列。

表2 靶樣詳細(xì)信息Tab.2 Information of all targets

2.4 測(cè)量結(jié)果與已知值比較

針對(duì)三個(gè)標(biāo)準(zhǔn)樣品把表3中的平行靶樣數(shù)據(jù)取平均值,得到本快速方法測(cè)試的初步結(jié)果(表4)。將其與三種標(biāo)準(zhǔn)物質(zhì)的已知值進(jìn)行對(duì)比分析如下:表4第三列為1 — 6號(hào)靶樣數(shù)據(jù),是樣品粉末直接加入純Nb粉末測(cè)試所得,靶樣測(cè)得的129I /127I比值即為原始樣品中的129I水平,此結(jié)果與已知值的偏差分別為:IAEA-410:+131%、IAEA-446:+84%、NIST-4359:+56%。從快速檢測(cè)的應(yīng)用需求和精度要求不高的特點(diǎn)來(lái)講,這種快速檢測(cè)方法已經(jīng)能夠初步滿足快速篩選出高129I含量樣品的測(cè)試需求,另外從總趨勢(shì)上講,樣品中127I含量水平越高,此直接檢測(cè)結(jié)果的相對(duì)偏差越小。

對(duì)于7 — 12號(hào)靶樣,使用的導(dǎo)電導(dǎo)熱介質(zhì)中加入了本底碘,在測(cè)試時(shí)129I計(jì)數(shù)率并無(wú)顯著的變化,但是有效地提升了127I的束流強(qiáng)度,使得總體結(jié)果上129I /127I比值數(shù)據(jù)的穩(wěn)定性和精度都有較大幅度的提升,然而加入的本底碘對(duì)原始樣品中的129I進(jìn)行了同位素稀釋,測(cè)得的129I /127I比值數(shù)據(jù)(對(duì)應(yīng)于表3中7 — 12號(hào)靶樣對(duì)應(yīng)的第6列)并不能實(shí)際反映原始樣品中的129I含量水平。為了還原原始樣品中129I /127I比值,必須結(jié)合已知的樣品中127I含量(表1)以及在Nb中加入的本底碘的含量(表2)算出稀釋倍數(shù),將實(shí)測(cè)值乘以稀釋倍數(shù)才能得到校正后的129I /127I比值(表4第4列),其與已知值的偏差分別為:IAEA-410:+57%、IAEA-446:+23%、NIST-4359:-1%,隨著樣品中129I水平和碘含量的提高,測(cè)試結(jié)果已基本接近已知值。

表3 單個(gè)靶樣129I /127I測(cè)試結(jié)果Tab.3 Results of129I /127I on each target

圖1 標(biāo)準(zhǔn)靶、本底靶以及樣品靶的129I能譜注:能譜圖橫坐標(biāo)均為能道,129I 的譜峰區(qū)間對(duì)應(yīng)為500 — 900道;縱坐標(biāo)為129I計(jì)數(shù),計(jì)數(shù)時(shí)間:10分鐘;每幅圖的圖題為靶樣編號(hào)加上簡(jiǎn)要的樣品明細(xì)。Fig.1129I Spectrometry of the standard target, blank targets and sample targets Note: Horizontal axis is the energy channel,129I peak lies in channel 500 — 900; vertical axis is the129I counts in 10 minutes. Figure captions are the targets code with brief sample information.

表4 129I /127I測(cè)量值與已知值比較Tab.4 Comparation of the measured129I /127I values and well-known values

2.5 數(shù)據(jù)處理方式優(yōu)化與樣品活度直接計(jì)算

在上節(jié)中計(jì)算7 — 12號(hào)靶樣中樣品實(shí)際的129I/127I比值時(shí)用到了原始樣品中的穩(wěn)定碘濃度數(shù)據(jù),才得以計(jì)算出最終樣品的129I /127I比值。然而在實(shí)際進(jìn)行樣品的快速測(cè)量時(shí),其穩(wěn)定碘濃度是未知的,而且不同類別的樣品中的穩(wěn)定碘含量差別還很大,如果依然沿用此方法測(cè)試129I/127I比值的話,還需要另行測(cè)試樣品的穩(wěn)定碘濃度數(shù)據(jù),這就無(wú)法達(dá)到本方法的快速檢測(cè)預(yù)期,使得方法失去競(jìng)爭(zhēng)力。

注意到在本實(shí)驗(yàn)中,使用添加本底碘的Nb粉制備的靶樣中NIST-4359,IAEA-446和IAEA-410中的碘分別被稀釋了約60倍、213倍和4233倍(表2),所以測(cè)量到的127I5+束流絕大部分是由Nb粉中加入的本底碘貢獻(xiàn),即可以忽略原樣品中的碘產(chǎn)生的束流(貢獻(xiàn)率<1/60),通過(guò)簡(jiǎn)化的計(jì)算,即可直接依據(jù)測(cè)定的129I /127I比值、樣品與Nb的比例以及Nb中加入的本底碘濃度來(lái)計(jì)算獲得樣品中的129I活度信息,詳細(xì)計(jì)算過(guò)程如下:

靶中總127I =樣品中127I+Nb粉中127I≈Nb粉中127I(忽略樣品中的穩(wěn)定碘);

靶中單位質(zhì)量樣品對(duì)應(yīng)127I≈mNb×Nb粉中加入的穩(wěn)定碘濃度/m樣品= Nb粉中加入的本底碘濃度/(m樣品/mNb);

表5 本實(shí)驗(yàn)室測(cè)得129I 活度值與樣品已知活度值比較Tab.5 Compare of the measured129I activities to the well-known values

在活度計(jì)算公示中,R為Nb粉中加入的本底碘質(zhì)量比是一固定值,樣品與Nb混合的質(zhì)量比r可以在靶樣制備時(shí)通過(guò)一個(gè)分析天平快速完成,129I /127I比值為AMS測(cè)試所得,在整個(gè)測(cè)量和計(jì)算過(guò)程中,通過(guò)不計(jì)樣品中的穩(wěn)定碘,可以快速估算出實(shí)驗(yàn)測(cè)得的三個(gè)標(biāo)準(zhǔn)物質(zhì)129I活度,其與已知值的對(duì)比情況見(jiàn)表5,兩組數(shù)據(jù)基本吻合。

3 討論和總結(jié)

3.1 探測(cè)下限分析

從表3中數(shù)據(jù)可以看出,樣品IAEA-410測(cè)到的129I計(jì)數(shù)率接近于機(jī)器本底Nb的129I計(jì)數(shù)率,小于1個(gè)計(jì)數(shù)/分鐘,在對(duì)Nb計(jì)數(shù)進(jìn)行扣減后可得到實(shí)際由129I貢獻(xiàn)的真實(shí)計(jì)數(shù)率約0.1— 0.5計(jì)數(shù)/分鐘,對(duì)應(yīng)于樣品IAEA-410中129I活度僅為0.001 μBq· g-1,考慮到機(jī)器本底純Nb粉靶樣上的129I計(jì)數(shù)影響和西安3 MV加速器質(zhì)譜儀對(duì)高于10計(jì)數(shù)/分鐘的待測(cè)粒子具有穩(wěn)定的探測(cè)能力,按此計(jì)數(shù)率估計(jì),本實(shí)驗(yàn)開發(fā)的無(wú)化學(xué)制樣快速檢測(cè)方法應(yīng)該能夠?qū)疃却笥贗AEA-410兩個(gè)量級(jí)的樣品(約為0.1 μBq· g-1)進(jìn)行準(zhǔn)確分析。此外,從另一標(biāo)準(zhǔn)物質(zhì)NIST-4359的測(cè)試數(shù)據(jù)來(lái)看,其對(duì)應(yīng)的靶樣中129I活度為1.5 μBq· g-1,測(cè)得的129I計(jì)數(shù)率約為100 — 200計(jì)數(shù)/分鐘,5分鐘測(cè)量時(shí)間的數(shù)據(jù)統(tǒng)計(jì)誤差可達(dá)5%;西安3 MV加速器質(zhì)譜儀對(duì)高于10計(jì)數(shù)/分鐘的待測(cè)粒子具有穩(wěn)定的探測(cè)能力,正好對(duì)應(yīng)于NIST-4359靶樣計(jì)數(shù)率的十分之一,同樣可以據(jù)此估計(jì)此無(wú)制樣快速檢測(cè)方法應(yīng)該能夠?qū)疃却笥贜IST-4359對(duì)應(yīng)靶樣1/10的樣品(0.15 μBq· g-1)具有準(zhǔn)確的測(cè)試能力,依據(jù)上述分析可以將此無(wú)化學(xué)制樣快速檢測(cè)方法的準(zhǔn)確分析下限定為0.15 μBq· g-1。

3.2 無(wú)化學(xué)制樣129I-AMS快速檢測(cè)時(shí)間消耗分析

對(duì)于充分干燥的固體樣品,以一批50個(gè)樣品(其中標(biāo)準(zhǔn)本底共10個(gè)、未知樣品40個(gè))為例,樣品粉碎研磨和均勻化、取樣及重量稱量,需要3小時(shí)。在傳統(tǒng)的制樣分析方法中,比如采用高效的高溫?zé)峤夥ǚ蛛x樣品中的碘,需要高溫?zé)峤夥蛛x、萃取分離、沉淀離心、烘干等多個(gè)環(huán)節(jié),按照西安加速器質(zhì)譜中心129I實(shí)驗(yàn)室的處理能力計(jì)算,完成一個(gè)批次的樣品制備及測(cè)量周期約為2周。而本研究提出的加速器質(zhì)譜的129I快速分析方法,樣品與Matrix金屬粉混合以及壓樣等制靶環(huán)節(jié)約需要2小時(shí)完成。對(duì)于129I含量水平接近或高于NIST-4359的樣品,每個(gè)樣品測(cè)試5分鐘即可達(dá)到5%的統(tǒng)計(jì)誤差(計(jì)數(shù)率為100個(gè)計(jì)數(shù)每分鐘),算上換樣及離子源啟動(dòng),一個(gè)批次共需5小時(shí)測(cè)量時(shí)間,所以單批次樣品從制靶到測(cè)量的總分析時(shí)間約為10小時(shí)左右。而實(shí)際工作中,靶樣制備和AMS測(cè)量可以同時(shí)進(jìn)行,單批次平均測(cè)試時(shí)間縮短至5小時(shí),極大地提升了樣品的分析效率,完全能夠應(yīng)用于大批量核應(yīng)急分析類樣品的篩查,并在較短的時(shí)間內(nèi)做出初步的評(píng)估與報(bào)告,為將129I應(yīng)用于核應(yīng)急分析提供了一種新的檢測(cè)手段。

3.3 總結(jié)

本文針對(duì)核應(yīng)急分析等類型研究中需要對(duì)129I等長(zhǎng)壽命放射性核素進(jìn)行快速分析的需求特點(diǎn),嘗試開發(fā)了一種快速、流程簡(jiǎn)便的129I-AMS檢測(cè)方法,將干燥和研磨均勻化的樣品直接與電熱導(dǎo)體粉末(Matrix)混合后直接壓入靶座,實(shí)現(xiàn)快速制靶,再進(jìn)行加速器質(zhì)譜測(cè)量,可以實(shí)現(xiàn)對(duì)大批量樣品的快速低成本甄別性測(cè)量。實(shí)驗(yàn)數(shù)據(jù)顯示:?jiǎn)蝹€(gè)靶樣的多次測(cè)量結(jié)果波動(dòng)很小,并且同一類樣品的平行靶樣間差異并不大,證明測(cè)量結(jié)果可靠。

通過(guò)在Nb粉中均勻添加本底碘,AMS測(cè)量到的127I5+束流絕大部分是由Nb中的本底碘貢獻(xiàn)的,可忽略原樣品中的碘產(chǎn)生的束流,即可直接通過(guò)測(cè)定的129I /127I比值、以及樣品與Nb的比例和Nb中加入的本底碘濃度來(lái)計(jì)算獲得樣品中的129I活度信息。對(duì)比用此方法測(cè)得的三種標(biāo)準(zhǔn)物質(zhì)IAEA-410和IAEA-446以及NIST SRM-4359的129I活度與已知值,兩組數(shù)據(jù)基本吻合??紤]到機(jī)器本底計(jì)數(shù)影響和西安3 MV加速器質(zhì)譜儀的探測(cè)能力,初步估計(jì)此無(wú)制樣快速檢測(cè)方法的準(zhǔn)確分析下限為0.15 μBq· g-1,單批次平均測(cè)試時(shí)間低至5小時(shí),為將129I應(yīng)用于核應(yīng)急分析提供了一種新的檢測(cè)手段。由于樣品分析周期的大幅縮短,且流程簡(jiǎn)化,使得可在短時(shí)間內(nèi)完成大批量樣品的快速低成本分析,除可以應(yīng)用在核應(yīng)急和核環(huán)境安全研究中對(duì)大量樣品快速分析甄別性測(cè)試外,還可以對(duì)129I同位素標(biāo)記和示蹤技術(shù)在生物醫(yī)學(xué)、藥物學(xué)研究和開發(fā)等應(yīng)用發(fā)揮極大促進(jìn)作用。

陳 寧, 周衛(wèi)健, 侯小琳,等. 2010. 西安加速器質(zhì)譜中心129I 加速器質(zhì)譜分析方法建立及其在我國(guó)核環(huán)境示蹤中的應(yīng)用 [J].地球環(huán)境學(xué)報(bào), 1(2): 105 – 113. [Chen N, Zhou W J,et al. 2010. Analytical methods for the determination of129I established at the Xi'an Accelerator Mass Spectrometry Center and application of129I as a tool to trace nuclear environmental safety in China [J].Journal of Earth Environment, 1(2): 105 – 113.]

李 柏, 章佩群, 陳春英,等. 2005. 加速器質(zhì)譜法測(cè)定環(huán)境和生物樣品中的129I [J].分析化學(xué), 33(7): 904 – 908.[Li B, Zhang P Q, Chen C Y, et al. 2005. Determination of129I levels in Chinese biological and environmental specimens by Accelerator Mass Spectrometry [J].Chinese Journal ofAnalytical Chemistry, 33(7): 904 – 908]

劉 起, 周衛(wèi)健, 侯小琳,等. 2013.129I加速器質(zhì)譜分析研究 [J].強(qiáng)激光與粒子束, 25(8): 2085 – 2090. [Liu Q, Zhou W J, Hou X L,et al. Accelerator mass spectrometry analysis of129I [J].High Power Laser and Particle Beams, 25(8): 2085 – 2090.]

Hou X, Hansen V, Aldahan A, et al. 2009. A review on speciation of iodine-129 in the environmental and biological samples [J].Analytica Chimica Acta, 632: 181 – 196.

Hou X, Zhou W, Chen N, et al. 2010. Determination of ultralow level129I /127I in natural samples by separation of microgram carrier free iodine and accelerator mass spectrometry detection [J].Analytical Chemistry, 82(18): 7713 – 7721.

Hou X. 2004. Application of129I as an environmental tracer [J].Journal of Radioanalytical and Nuclear Chemistry, 262(1): 67 – 75.

Hou X. 2011. Application of radionuclides as environmental tracers, an overview [J].Journal of Earth Environment, 2(6): 637 – 652.

Liu Q, Hou X, Zhou W, et al. 2015. Accelerator mass spectrometry analysis of ultra-low-level129I in carrier-free AgI-AgCl sputter targets [J].Journal of The American Society for Mass Spectrometry, 26(5): 725 – 733.

Outola I, Filliben J, Inn K G W, et al. 2006. Characterization of the NIST seaweed Standard Reference Material [J].Applied Radiation and Isotopes, 64(10/11): 1242 – 1247.

Pham M K, Benmansour M, Carvalho F P, et al. 2014. Certifi ed Reference Material IAEA-446 for radionuclides in Baltic Sea seaweed [J].Applied Radiation and Isotopes, 87: 468 – 474.

Pham M K, Gastaud J, La Rosa J, et al. 2006. Recent IAEA reference materials and intercomparison exercises for radionuclides in the marine environment [M]// Povinec P P, Sanchez-Cabeza J A. Radioactivity in the Environment. Elsevier: 617 – 628.

Raisbeck G M, Yiou F, Zhou Z Q, et al. 1995.129I from nuclear fuel reprocessing facilities at Sellafield (U.K.) and La Hague (France); potential as an oceanographie tracer [J].Journal of Marine Systems, 6(5/6): 561-570.

Rechard R. 1999. Historical relationship between performance assessment for radioactive waste disposal and other types of risk assessment [J].Risk Analysis, 19(5): 763 – 807.

Steinhauser G, Brandl A, Johnson T E. 2014. Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts [J].Science of the Total Environment, 470/471: 800 – 817.

Yiou F, Raisbeck G M, Zhou Z Q, et al. 1994.129I from nuclear fuel reprocessing; potential as an oceanographic tracer [J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 92(1/2/3/4): 436 – 439.

Zhang L, Hou X, Zhou W, et al. 2013. Performance of accelerator mass spectrometry for129I using AgI–AgCl carrier-free coprecipitation [J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 294: 276 – 280.

Investigation of a rapid and direct129I-AMS measurement method

LIU Qi1,2,3, ZHOU Weijian1,2, HOU Xiaolin1,2, ZHANG Luyuan1,2, FU Yunchong1,2, CNEN Ning1,2,3
(1. State Key Laboratory of Loess and Quaternary Geology, Shaanxi Province Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; 2. Xi'an Accelerator Mass Spectrometry Center, Xi'an 710061, China; 3.University of Chinese Academy of Sciences, Beijing 100049, China)

Background, aim, and scopeIodine-129 is one of the hard-to-measure radionuclides with a half-lifeT1/2= 15.7 × 106years, and Accelerator Mass Spectrometry (AMS) is the most sensitive method for measuring129I. The primary source of129I in the earth have been altered in a signifi cant way by human nuclear actions, and the129I now is an important indicator of the civil and military nuclear activities and nuclear accidents. A drawback of the AMS technique for measuring the129I is the time-consuming chemical separation required to prepare AMS targets from raw samples. This step significantly limits applications requiring rapid analyses and large numbers of samples, for example in monitoring studies associated with nuclear accidents. This work aims to develop a rapid AMS method for rapid determination of129I in environmental samples, especially for the emergency analysis.Materials and methodsThe only used chemicals is Niobium powder, blank iodine (Woodward iodine, WWI, contains no129I) and the129I standards. Three certifi ed reference materials including sediment (IAEA-410), seaweeds (IAEA-446 and NIST-4359)were tested by this rapid method to verify the method. This work was implemented by eliminate the step of chemical separation of iodine from the raw sample materials, the samples were directly packed into target holder after dried and homogenized mixed with Nb powder, and the prepared target is directly used for AMS analysis. All targets are measured on Xi'an 3.0 MV AMS following the same steps as for the measurement of micro-iodine targets method, as described in (Liu, 2015). In this approach, blank iodine (only127I) is added to a matrix of niobium (Nb) powder and mixed with dried raw sample, to improve the measurement of a stable129I /127I ratio.ResultsThe ion source behaved no abnormity on the targets with untreated raw samples materials, except very low stable iodine current output. The comparisons of the spectrometry from the blank targets, standard targets and sample targets showed a good resolution of129I, and the complex component in the targets has no bad effects on the129I spectrometry. The129I /127I ratio measured by this rapid method were found to be in agreement with known values that used a conventional AMS method for the same material, after the subtraction of the background signal. The addition of blank iodine into the targets improved the stable iodine current greatly, but it diluted the129I level of the sample, which leads to the measured129I /127I ratio does not refl ect the real129I level, but if corrected by the dilution effi cient, the129I /127I ratio were also found to be consistent with the well-known values within the errors. Noticed that in the case the dilution approach, the127I signal mostly contributed by the blank iodine added in the Nb powder, we can neglect the iodine content in the raw sample material and directly calculate the129I activity from the129I /127I ratio and the mass of the raw sample, the amount of Nb, and the iodine added to the Nb. The results are consistent with the established values, within errors.DiscussionThis rapid method were evaluated according to: signal stability and measurement reproducibility. A stable but increased intensity of the127I5+current with iodine concentration was observed for the suite of reference samples, and multiple targets of the same reference material produced consistent127I and129I results. Therefore these criteria are satisfi ed. Conclusions This work developed a rapid and direct method for sensitive measurement of129I by AMS in129I-rich environmental samples without wet-chemistry separation of iodine, and it was shown that such a direct AMS measurement method worked reasonably well for the two types of sample materials tested. All the129I /127I ratios and129I activities measured by this method were found to be consistent with the known values within errors. And the time consumption of a batch with 40 unknown samples was shorten to 5 hours, compared to the conventional AMS method. And the detection limit of129I of this method was estimated to be 0.15 μBq · g-1. The fi nal conclusion can be drawn that, it is practicable to directly measure129I /127I ratios and129I activities using AMS without wet-chemistry separation in suitable cases.Recommendations and perspectivesSince the seaweeds and sediment were tested as typical materials, it is expected that such a rapid measurement method can be also applied to other environmental solid materials, so long the ion source can function stably. This would be especially useful for the purpose of screening large numbers of samples to determine which ones should be subjected to more time-consuming but precise chemical processing.

Iodine-129(129I); Accelerator Mass Spectrometry; Rapid and direct measurement

LIU Qi, E-mail: liuqi@ieecas.cn

10.7515/JEE201603010

2015-12-28;錄用日期:2016-03-25

Received Date:2015-12-28;Accepted Date:2016-03-25

國(guó)家自然科學(xué)基金項(xiàng)目(11405176)

Foundation Item:National Natural Science Foundation of China (11405176)

劉 起,E-mail: liuqi@ieecas.cn

猜你喜歡
活度加速器粉末
輪滑加速器
化學(xué)工業(yè)的“加速器”
ZrC粉末制備技術(shù)的研究進(jìn)展
山東陶瓷(2021年5期)2022-01-17 02:35:46
全民小康路上的“加速器”
氮化鋁粉末制備與應(yīng)用研究進(jìn)展
白及粉末入藥歷史沿革概述
中成藥(2018年1期)2018-02-02 07:20:14
CaO-SiO2-FeO-P2O5-Al2O3脫磷渣系中組元活度的計(jì)算
等待“加速器”
核電廠惰性氣體排放活度濃度的估算
K+摻雜對(duì)YBO3∶Eu3+粉末發(fā)光性能的影響
镇坪县| 金昌市| 团风县| 文登市| 江口县| 民乐县| 山东| 大石桥市| 喀什市| 响水县| 武清区| 崇阳县| 比如县| 温州市| 龙海市| 英德市| 耒阳市| 荆州市| 从化市| 德州市| 泰州市| 南投市| 江口县| 桐柏县| 五台县| 阳曲县| 舟曲县| 黄梅县| 沧源| 宝应县| 洪雅县| 阿鲁科尔沁旗| 霸州市| 黑水县| 兴和县| 太和县| 天津市| 顺平县| 彩票| 申扎县| 周宁县|