張 凡,王 政,李旭祥
(1.西安交通大學(xué) 人居環(huán)境與建筑工程學(xué)院 環(huán)境科學(xué)與技術(shù)系,西安 710049;2. 中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室,西安 710061)
西北旱區(qū)農(nóng)田土壤N2O排放空間變化特征及影響因素探討
張 凡1,王 政2,李旭祥1
(1.西安交通大學(xué) 人居環(huán)境與建筑工程學(xué)院 環(huán)境科學(xué)與技術(shù)系,西安 710049;2. 中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室,西安 710061)
旱地農(nóng)田土壤被認(rèn)為是重要的N2O排放源,但排放通量及影響因素仍存在不確定性。對西北干旱半干旱地區(qū)農(nóng)田土壤N2O的排放分析表明,全區(qū)N2O排放通量相對較低,20世紀(jì)80 — 90年代呈波動式增長。N2O排放的空間格局總體呈現(xiàn)從東南向西南逐漸減少的趨勢。陜西地區(qū)排放量為75.58 t · a-1,貢獻(xiàn)了全區(qū)50%的N2O排放。過量的氮肥施用、較高的降水量以及明顯的增溫效應(yīng)是陜西南部N2O排放增強(qiáng)的主要原因。
農(nóng)田土壤;N2O;干旱半干旱地區(qū)
氧化亞氮(N2O)是一種重要的溫室氣體。雖然N2O含量低于CO2,但由于存留時(shí)間長(Crutzen,1970;Prather,1998),增溫潛能高(輻射強(qiáng)迫0.48 W·m-2)等特點(diǎn)(IPCC,2007),被認(rèn)為是主要的溫室氣體。觀測數(shù)據(jù)表明:大氣N2O含量的增加主要是源于農(nóng)業(yè)活動(IPCC,2007)。在中國,農(nóng)業(yè)源N2O排放占排放總量的92.43%,其中79.83%為農(nóng)田排放(國家發(fā)展與改革委員會,2004)。因此,對各類農(nóng)業(yè)系統(tǒng)中N2O排放通量的分布及影響因素研究就成為了核心問題之一(Smith,1997)。
旱作農(nóng)業(yè)是中國主要的農(nóng)業(yè)系統(tǒng)之一(信乃詮,2002),據(jù)估算旱地農(nóng)田N2O排放約占到全國農(nóng)業(yè)排放總量的78%(邢光熹和顏曉元,2000)。中國西北地區(qū)作為傳統(tǒng)的旱作農(nóng)業(yè)區(qū)(席承藩,1984)也就成為廣受關(guān)注的區(qū)域。目前對N2O排放的區(qū)域估算和田間影響因素已有大量研究,表明土壤理化性質(zhì)、氮素養(yǎng)分、溫濕度變化等都會影響土壤N2O排放通量(徐文彬和洪業(yè)湯,2000;Zheng et al,2004;王立剛等,2008)。然而針對旱作農(nóng)業(yè),在中國區(qū)域尺度這些因素綜合作用如何,會如何影響區(qū)域N2O的排放變化還沒有過多探討。
DNDC(Denitrifi cation-Decompostion Model)模型主要模擬農(nóng)田(DNDC)(Li et al,1994;Zhang et al,2015)、森林(PnET-DNDC)(Li et al,2000;Stange et al,2000) 和濕地(Wetland-DNDC)(Zhang et al,2002)生態(tài)系統(tǒng)土壤碳、氮循環(huán)。模型根據(jù)氣象、土壤、植被、土地利用和管理等模擬植物-土壤系統(tǒng)中各種環(huán)境因子的動態(tài)變化,進(jìn)而計(jì)算微生物參與的硝化、反硝化以及發(fā)酵等過程的反應(yīng)速率,從而追蹤土壤物質(zhì)的積累和轉(zhuǎn)化。該模型已在世界范圍得到廣泛的驗(yàn)證和應(yīng)用(Cai et al,2003;Babu et al,2006;Beheydt et al,2007),在土壤生態(tài)系統(tǒng)的氮循環(huán)過程模擬上具有較強(qiáng)的可靠性(Frolking et al,1998;Brown et al,2002;Grant et al,2004)。
本文通過DNDC模型估算了我國西北地區(qū)旱作農(nóng)田土壤N2O排放的時(shí)空變化特征,結(jié)合氣象資料討論了氣候和管理措施變化背景下N2O排放的變化趨勢和可能影響因素,旨在為未來區(qū)域尺度農(nóng)田土壤N2O的排放變化預(yù)測提供支持。
1.1 研究區(qū)域
本研究區(qū)域位于東經(jīng)73°41'— 111°14',北緯31°43'— 49°10',包括陜西、甘肅、寧夏、青海、新疆五省區(qū)的全部。區(qū)內(nèi)地貌復(fù)雜,植被類型多樣,地域差異明顯。氣候資源隨海拔、緯度分配嚴(yán)重不均,總體熱量不足、降水少、干旱問題突出。研究區(qū)內(nèi)農(nóng)業(yè)植被主要以一年制旱地作物和蔬菜為主,僅陜南及內(nèi)陸少部分灌區(qū)有水稻種植(張小燕和楊改河,2005)。
1.2 研究資料
模擬所需氣象資料包括1981 — 2000年日最高、最低溫度和降水。降水采用MERRA數(shù)據(jù)(Rienecker et al,2011)。土壤理化性質(zhì)數(shù)據(jù)來源于全國土壤普查資料(全國土壤普查辦公室,1993 — 1997)和中國土壤圖集(1:14000000)(中國科學(xué)院南京土壤研究所,1986)。植被管理數(shù)據(jù)來源于農(nóng)業(yè)普查和各種文獻(xiàn)資料(崔讀昌等,1984;劉巽浩和陳阜,2005)(http://data.cma.gov. cn)。基于西北地區(qū)典型耕作方式對西北地區(qū)農(nóng)田土壤進(jìn)行了20年模擬。模型參數(shù)中秸稈量估算據(jù)李長生等(2003),數(shù)據(jù)庫中基肥施用量及灌溉參數(shù)來源自國家農(nóng)業(yè)共享數(shù)據(jù)中心(http://www. agridata.cn)。
1.3 模型框架
DNDC 模型含土壤氣候、植物生長和有機(jī)質(zhì)分解以及硝化、脫氮和發(fā)酵等模塊。在區(qū)域模擬中,首先利用西北地區(qū)的氣象、土壤、植被、土地利用和農(nóng)田耕作管理等數(shù)據(jù)建立基礎(chǔ)數(shù)據(jù)庫,其后調(diào)用數(shù)據(jù)庫模擬植物-土壤系統(tǒng)中諸環(huán)境因子的動態(tài)變化,實(shí)現(xiàn)追蹤農(nóng)田土壤碳氮循環(huán)。數(shù)據(jù)庫建立以及參數(shù)設(shè)置詳見Zhang et al(2006)。
2.1 西北地區(qū)農(nóng)田N2O排放的空間分布
西北地區(qū)氣候資源分布地域性差異顯著,熱量資源以陜西南部、關(guān)中和新疆中部地區(qū)最高,日均溫高于10°C,青海、新疆南部部分地區(qū)熱量資源不足,年均溫度較低。降水資源基本從東南部的陜西、甘肅向西北部的新疆地區(qū)過渡性減少(圖1)。全區(qū)農(nóng)田N2O排放分布格局總體呈現(xiàn)從東南部向西南部隨降水和溫度降低而逐漸減少的趨勢(圖2)。寧夏地區(qū)排放最低,年排放量7 t · a-1,僅占全區(qū)總排放的5%。青海和新疆地域面積廣闊,但水熱資源不協(xié)調(diào),耕地僅占全區(qū)耕地總面積的26.64%,N2O排放基本低于20 t · a-1。陜西地區(qū)最高,排放量為75.58 t · a-1,耕地面積占全區(qū)的31%,但貢獻(xiàn)了50% 的N2O排放,并且表現(xiàn)出顯著的南北差異。陜西南部地區(qū)水熱資源豐富,西北地區(qū)的水田作物及二熟、三熟作物主要種植在該地區(qū),并有大面積的蔬菜種植,N2O排放系數(shù)較高。
圖1 西北地區(qū)年均溫度及年均降水分布Fig.1 Distribution of average annual temperature and precipitation in Northwest China
2.2 西北地區(qū)農(nóng)田N2O排放的時(shí)間序列變化
20世紀(jì)80 — 90年代整個(gè)西北地區(qū)N2O排放總量呈波動式增長,20世紀(jì)80年代年平均排放總量為137.5 t · a-1,90年代為163.7 t · a-1,增幅19%(圖3),20年平均N2O排放通量為0.016 kgN·hm-2·a-1。陜西地區(qū)年際變化明顯,20年間平均排放通量為0.078 kgN·hm-2·a-1,20世紀(jì)80年代排放通量為0.069 kgN·hm-2·a-1,20世紀(jì)90年代增加了24%,達(dá)到0.086 kgN·hm-2·a-1。甘肅地區(qū)20年間有微弱的N2O排放增加,而寧夏、青海、新疆沒有顯著變化。
2.3 西北地區(qū)農(nóng)田N2O排放的影響因素
旱作農(nóng)業(yè)區(qū)氮肥的施用會對N2O排放具有明顯促進(jìn)作用,因此各省施肥量差異對西北地區(qū)N2O排放的空間分布有決定性作用。全區(qū)排放量結(jié)果顯示(圖2)陜西年均排放通量較高,西北地區(qū)最高值集中出現(xiàn)在陜西南部和關(guān)中地區(qū)。1980年至2000年間,陜西地區(qū)是西北區(qū)氮肥用量最高的省份,總量達(dá)到77.8萬噸,遠(yuǎn)高于其他省份(劉全清等,2005)。其中,關(guān)中地區(qū)施肥量嚴(yán)重過量,小麥田過量施用氮肥達(dá)55 kg · hm-2,玉米田間過量施肥56 kg · hm-2(同延安等,2004)。筆者認(rèn)為過量的氮肥施用是該地區(qū)N2O排放明顯較高的主要原因。由于我國農(nóng)業(yè)肥料的平均利用率還較低(國家發(fā)展與改革委員會,2013),大量的氮肥施用還會進(jìn)一步加劇土壤面源污染問題(張維理,2004)。因此該地區(qū)合理的化肥施用比例也是農(nóng)業(yè)生態(tài)管理的重要問題。
各類田間試驗(yàn)的結(jié)果還顯示,溫度、降水的變化會影響N2O排放(Magg and Vinther,1996;Smith et al,1998)。因此除施肥等管理?xiàng)l件的影響外,區(qū)域N2O排放量變化還與氣候變化相關(guān)。對降水而言,絕大多數(shù)西北地區(qū)屬于干旱、半干旱氣候,降水很少且季節(jié)性明顯(丁一匯等,2013)。由于在土壤低濕度情況下,N2O排放與降水量存在正相關(guān)性(鄭循華等,1996;徐文彬等,2002;Zheng et al,2004;張小燕和楊改河,2005)。在西北地區(qū)降水相對較高的陜西南部,這一因素可能加強(qiáng)了由于過量氮肥施用而導(dǎo)致的N2O排放。降水和氮肥的綜合效應(yīng)使得該地區(qū)成為西北地區(qū)N2O排放高值集中出現(xiàn)的區(qū)域。
圖2 西北地區(qū)農(nóng)田土壤N2O排放通量分布a. 全區(qū)排放通量分布;b. N2O排放和年際溫度變化呈顯著正相關(guān)區(qū)域Fig.2 N2O emission fl ux in cropland soil in Northwest China a. N2O emission fl ux; b. The area of signifi cant correlation between temperature and annual N2O emissions
圖3 西北地區(qū)1981—2000年農(nóng)田土壤N2O排放Fig.3 N2O emission in cropland soil in Northwest China from 1981 to 2000
但降水對N2O年際變化的影響并不明顯。從372個(gè)研究點(diǎn)的逐縣相關(guān)分析結(jié)果看,僅甘肅中南部以及青海個(gè)別縣的N2O排放量與年降水表現(xiàn)出顯著的正相關(guān)(p< 0.05)。比如20世紀(jì)90年代在青海東南部地區(qū)、甘肅中南部降水略有減少(劉德祥等,2005;時(shí)興合等,2007),這一時(shí)段N2O排放都有所降低。20世紀(jì)80年代青海地區(qū)N2O排放量為0.029 kgN·hm-2·a-1,20世紀(jì)90年代下降為0.025 kgN·hm-2·a-1。但在西北地區(qū)絕大多數(shù)區(qū)域,降水的年際變化與N2O排放并沒有表現(xiàn)出確定的相關(guān)關(guān)系。在20世紀(jì)80—90年代西北降水整體表現(xiàn)為平穩(wěn)的年際波動,時(shí)間上的變化幅度遠(yuǎn)小于各區(qū)域的空間差異,這可能是年際降水對N2O排放影響不明顯的主要原因。
對溫度而言,適度的升溫可以加強(qiáng)微生物活動,從而促進(jìn)土壤硝化反硝化作用,因此溫度一直被認(rèn)為是農(nóng)田N2O排放的主要控制因子(陳衛(wèi)衛(wèi)等,2007;王立剛等,2008)。從N2O排放量與年均溫度的相關(guān)分析看,表現(xiàn)出顯著正相關(guān)(p< 0.05)的區(qū)域集中在整體高排放量的陜西南部地區(qū)(圖2b)。由于20世紀(jì)80 —90年代西北地區(qū)氣溫在20年間呈整體上升趨勢(于淑秋等,2003),其中陜西南部整體溫度較高且升溫最快。因此這一區(qū)域土壤溫度對N2O排放具有很強(qiáng)的促進(jìn)效應(yīng)。但同時(shí)也應(yīng)該注意到,溫度升高會加劇土壤水分的散失,當(dāng)土壤濕度過低時(shí)又會抑制N2O排放。因此在其他低降水的區(qū)域,N2O的排放并沒表現(xiàn)出與溫度的顯著相關(guān)。低降水區(qū)域的溫度對N2O排放的促進(jìn)可能被升溫導(dǎo)致的干旱所抵消。因此氣候因子對N2O排放變化的影響根據(jù)不同的水熱組合而具有區(qū)域差異。
對西北干旱半干旱地區(qū)農(nóng)田土壤N2O排放估算分析表明,西北地區(qū)農(nóng)田N2O排放相對較低。農(nóng)田土壤N2O平均排放通量為0.016 kgN·hm-2·a-1,N2O排放分布格局總體呈現(xiàn)從東南部向西南部逐漸減少的趨勢。在西北地區(qū),陜西南部N2O排放量最高,過量的氮肥施用為主要原因。同時(shí)陜西南部較高的降水量以及明顯的增溫效應(yīng)也會進(jìn)一步增強(qiáng)N2O排放。因此加強(qiáng)對農(nóng)業(yè)氮肥和水資源的控制及合理有效利用,降低N2O的排放潛力,應(yīng)成為未來西北旱作農(nóng)業(yè)的重點(diǎn)管理環(huán)節(jié)。
陳衛(wèi)衛(wèi), 張友民, 王毅勇, 等. 2007. 三江平原稻田N2O通量特征[J].農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 26(1): 364 – 368. [Chen W W, Zhang Y M, Wang Y Y, et al. 2007. Characteristics of N2O fluxes in paddy fields of the Sanjiang Plain [J].Journal of Agro-Environment Science, 26(1): 364 – 368.]
崔讀昌, 劉洪順, 閔謹(jǐn)如. 1984. 中國主要農(nóng)作物氣候資源圖集[M]. 北京: 氣象出版社. [Cui D C, Liu H S, Min J R. 1984. Atlas of major agricultural climate resources of China [M]. Beijing: Meteorological Press.]
丁一匯, 王紹武, 鄭景云, 等. 2013. 中國氣候[M]. 北京: 科學(xué)出版社. [Ding Y H, Wang S W, Zheng J Y, et al. 2013. Climate in China [M]. Beijing: Science Press.]
國家發(fā)展與改革委員會. 2004. 中華人民共和國氣候變化初始國家信息通報(bào)[M]. 北京: 中國計(jì)劃出版社. [National Development and Reform Commission. 2004. The Peoples's Republic of China initial national communication on climate change [M]. Beijing: China Planning Press.]
國家發(fā)展與改革委員會. 2013. 全國高標(biāo)準(zhǔn)農(nóng)田建設(shè)總體規(guī)劃[A]. [National Development and Reform Commission. 2013. The master plan of national high standard farmland construction [A].]
李長生, 肖向明, Frolking S, 等. 2003. 中國農(nóng)田的溫室氣體排放[J].第四紀(jì)研究, 23(5): 493 – 503. [Li C S, Xiao X M, Frolking S. et al. 2003. Greenhouse gas emissions from croplands of China [J].Quaternary Sciences, 23(2): 493 – 503.]
劉德祥, 董安祥, 鄧振鏞. 2005. 中國西北地區(qū)近43年降水資源變化對農(nóng)業(yè)的影響[J].干旱地區(qū)農(nóng)業(yè)研究, 23(4): 179 – 185. [Liu D X, Dong A X, Deng Z Y. 2005. Impact of precipitation vacillation on agriculture for the past 43 years in Northwest China [J].Agricultural Research in the Arid Areas, 23(4): 179 – 185.]
劉全清, 張衛(wèi)鋒, 杜 森,等. 2005. 中國西北地區(qū)肥料使用和生產(chǎn)現(xiàn)狀及問題[J].磷肥與復(fù)肥, 20(5): 69 – 73. [Liu Q Q, Zhang W F, Du S, et al. 2005. The status and problems of fertilizer production and application in northwest area of China and some suggestions [J].Phosphate & Compound Fertilizer, 20(5): 69 – 73.]
劉巽浩, 陳 阜. 2005. 中國農(nóng)作制[M]. 北京: 中國農(nóng)業(yè)出版社. [Liu X H, Chen F. 2005. Farming systems in China [M]. Beijing: China Agriculture Press.]
全國土壤普查辦公室. 1994. 中國土種志[M]. 北京: 中國農(nóng)業(yè)出版社. [China NSSO. 1994. Soils in China [M]. Beijing: Agricultural Publishing House.]
時(shí)興合,汪青春, 趙燕寧, 等. 2007. 青海東部氣候變化及其對農(nóng)牧業(yè)生產(chǎn)的影響[J].青海農(nóng)林科技, (4): 51 – 57. [Shi X H, Wang Q C, Zhao Y N, et al. 2007. Change and effect on climate to agriculture and animal husbandry in east of Qinghai [J].Science and Technology of Qinghai Agriculture and Forestry, (4): 51 – 57.]
同延安, Emteryd O, 張樹蘭, 等. 2004. 陜西省氮肥過量施用現(xiàn)狀評價(jià)[J].中國農(nóng)業(yè)科學(xué), 37(8): 1239 – 1244.[Tong Y A, Emteryd O, Zhang S L, et al. 2004. Evalution of over-application of nitrogen fertilizer in China's Shaanxi Province [J].Scientia Agricultura Sinca, 37(8): 1239 – 1244.]
王立剛, 李 虎, 邱建軍. 2008. 黃淮海平原典型農(nóng)田土壤N2O 的排放特征[J].中國農(nóng)業(yè)科學(xué), 41(4): 1248 – 1254. [Wang L G, Li H, Qiu J J. 2008. Characterization of emissions of nitrous oxide from soils of typical crop fi elds in Huang-Huai-Hai Plain [J].Scientia Agricultura Sinca, 41(4): 1248 – 1254.]
席承藩. 1984. 中國自然區(qū)劃概要[M]. 北京: 科學(xué)出版社. [Xi C P. 1984. Physio-geographic regionalization of China: introduction [M]. Beijing: Science Press.]
信乃詮. 2002. 中國北方旱區(qū)農(nóng)業(yè)研究[M]. 北京: 中國農(nóng)業(yè)出版社. [Xin N Q. 2002. Agricultural research in arid regions in northern China [M]. Beijing: Agricultural Publishing House.]
邢光熹, 顏曉元. 2000. 中國農(nóng)田N2O排放的分析估算與減緩對策[J].農(nóng)村生態(tài)環(huán)境, 16(4): 1 – 6. [Xing G X, Yan X Y. 2000. Analysis and estimation of N2O emissions from croplands in China and its mitigation options [J].Rural Eco-Environment, 16(4): 1 – 6.]
徐文彬, 洪業(yè)湯. 2000. 貴州省旱田土壤 N2O 釋放及其環(huán)境影響因素[J].環(huán)境科學(xué), 21(1): 7 – 11. [Xu W B, Hong Y T. 2000. N2O emission from upland soils in Guizhou and its environmental controlling factors[J].Environmental Science, 21(1): 7 – 11.]
徐文彬, 劉廣深, 劉維屏. 2002. 降雨和土壤濕度對貴州旱田土壤 N2O 釋放的影響[J].應(yīng)用生態(tài)學(xué)報(bào), 13(1): 67 – 70. [Xu W B, Liu G S, Liu W P. 2002. Effects of precipitation and soil moisture on N2O emissions from upland soils in Guizhou [J].Chinese Journal of Applied Ecology, 13(1): 67 – 70.]
于淑秋, 林學(xué)椿, 徐祥德. 2003. 我國西北地區(qū)近50年降水和溫度的變化[J].氣候與環(huán)境研究, 8: 9 – 18. [Yu S Q, Lin X C, Xu X D. 2003. The climatic change in Northwest China in recent 50 years [J].Climatic and Environmental Research, 8: 9 – 18.]
張維理, 武淑霞, 冀宏杰, 等. 2004. 中國農(nóng)業(yè)面源污染形勢估計(jì)及控制對策Ⅰ: 21 世紀(jì)初期中國農(nóng)業(yè)面源污染的形勢估計(jì)[J].中國農(nóng)業(yè)科學(xué), 37(7): 1008 – 1017. [Zhang W L, Wu S X, Ji H J, et al. 2004. Estimation of agricultural non-point source pollution in China and the alleviating strategiesⅠ. Estimation of agricultural nonpoint source pollution in China in early 21 century [J].Scientia Agricultura Sinca, 37(7): 1008 – 1017.]
張小燕, 楊改河. 2005. 中國西北地區(qū)退耕還林還草研究[M]. 北京: 科學(xué)出版社. [Zhang X Y, Yang G H. 2005. Research of return farmland to forests or grassland in northwest China [M]. Beijing: Science Press.]
鄭循華, 王明星, 王躍思, 等. 1996. 稻麥輪作生態(tài)系統(tǒng)中土壤濕度對N2O產(chǎn)生與排放的影響 [J]. 7(3): 273 – 279. [Zheng X H, Wang M X, Wang Y S, et al. 1996. Impact of soil humidity on N2O production and emission from a rice-wheat rotation ecosystem [J].Chinese Journal of Applied Ecology, 7(3): 273 – 279.]
中國科學(xué)院南京土壤研究所. 1986. 中國土壤圖集[M]. 北京:地圖出版社. [Institute of Soil Science, Chinese Academy of Sciences. 1986. The soil atlas of China [M]. Beijing: Cartographic Publishing House.]
Babu Y J, Li C, Frolking S, et al. 2006. Fielding validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of India [J].Nutrient Cycling in Agroecosystems, 74: 157 – 174.
Beheydt D, Boeckx P, Sleutel S, et al. 2007. Validation of DNDC for 22 long-term N2O field emission measurements [J].Atmospheric Environment, 41: 6196 – 6211.
Brown L, Syed B, Jarvis S C, et al. 2002. Development and application of a mechanistic model to estimate emission of nitrous oxide from UK agriculture [J].Atmospheric Environment, 36(6): 917 – 928.
Cai Z, Sawamoto T, Li C, et al. 2003. Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems [J].Global Biogeochemical Cycles, 17(4), 1107, doi:10.1029/2003GB002046.
Crutzen P J. 1970. The influence of nitrogen oxides on the atmospheric ozone content [J].Quarterly Journal of the Royal Meteorological Society, 96(408): 320 – 325.
Frolking S, Mosier A R, Ojima D S, et al. 1998. Comparison of N2O emissions from soils at three temperate agricultural sites: simulations of year-round measurements by four models [J].Nultrient Cycling in Agroecosystems, 55: 77 – 105.
Grant B, Smith W N, Desjardins R, et al. 2004. Estimated N2O and CO2emissions as infl uenced by agricultural practices in Canada [J].Climatic Change, 65: 315 – 322.
IPCC. 2007. Climate Change 2007: The Physical Science Basis [R].Cambridge: Cambridge University Press.
Li C, Aber J, Stange F, et al. 2000. A process-oriented model of N2O and NO emissions from forest soils: 1 Model development [J].Journal of Geophysical Research, 105: 4369 – 4384.
Li C, Steve F, Robert H. 1994. Modeling carbon biogeochemistry in agricultural soils [J].Global Biogeochemical Cycles, 8(3): 237 – 254.
Magg M, Vinther F P. 1996. Nitrous oxide emission by nitrifi cation and denitrifi cation in different soil types and at different soil moisture contents and temperatures [J].Applied Soil Ecology, 4: 5 – 14.
Prather M J. 1998. Time scales in atmospheric chemistry: coupled perturbations to N2O, NOy, and O3[J].Science, 279(5355): 1339 – 1341.
Rienecker M M, Suarez M J, Gelaro R, et al. 2011. MERRA: NASA's modern-era retrospective analysis for research and applications [J].Journal of Climate, 24(14): 3624 – 3648.
Smith K A, Thomson P E, Clayton H, et al. 1998. Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils [J].Atmospheric Environment, 32(9): 3301 – 3309.
Smith K. 1997. The potential for feedback effects induced by global warming on emissions of nitrous oxide by soils [J].Global Change Biology, 3(4): 327 – 338.
Stange F, Butterbach-Bahl K, Papen H, et al. 2000. A processoriented model of N2O and NO emissions from forest soils: sensitivity analysis and validation [J].Journal of Geophysical Research: Atmospheres, 105(D4): 4385 – 4398.
Zhang F, Li C, Wang Z, et al. 2006. Modeling impacts of management alternatives on soil carbon storage of farmland in Northwest China [J].Biogeosciences, 3: 451 – 466.
Zhang F, Li C, Wang Z, et al. 2015. Modeling impacts of management on farmland soil carbon dynamics along a climate gradient in Northwest China during 1981—2000 [J].Ecological Modelling, 312: 1 – 10.
Zhang Y, Li C, Trettin C C, et al. 2002. An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems [J].Global Biogeochemical Cycles, 16(4): 1 – 17.
Zheng X, Han S, Huang Y, et al. 2004. Re-quantifying the emission factors based on field measurements and estimating the direct N2O emission from Chinese croplands [J].Global Biogeochemical Cycles, 18(2): 1 – 19.
Spatial variation and infl uence factors of cropland N2O emission in the Northwest Arid Area
ZHANG Fan1, WANG Zheng2, LI Xuxiang1
(1. Department of Environmental Science and Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China; 2. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China)
Background, aim, and scopeUpland soil is considered as an important source of N2O emissions. At present there are many research about the field influence factors on N2O emissions. However, in traditional rainfed agricultural region of Northwest China, it still lack of in-depth discussion about how these factors affect N2O emissions synthetically at regional scale. In this study the change trend of N2O emissions and its influence factors under climate fluctuation and management change were discussed based on regional simulation to support the future prediction of change of cropland N2O emissions.Materials and methodsDaily weather data for simulation were taken from the Modern-Era Retrospective Analysis for Research and Application (MERRA). Soil property data were collected form the national soil survey and the Chinese Soil Atlas. Crop parameters, fertilizer application rates were described in the database using agriclutural census data and other sources. Twenty years simulation about the N2O emissions of cropland in Northwest China were made based on these database.ResultsThe analysis of the cropland N2O emission in arid and semi-arid areas of Northwest China show that the regional N2O flux is relatively low and reduced gradually from southeast to southwest with thedecreasing precipitation and temperature overall. The lowest emissions appeared in Ningxia, which account for only 5% of total N2O emissions. Shaanxi has the highest N2O emission, accounting for 50% of the total N2O emissions of the region. There showed signifi cant regional difference and the highest fl ux appeared in southern Shaanxi. Through the 20 years average N2O fl ux was 0.016 kgN·hm-2·a-1and increased fl uctuantly in Nothwest China in the 1980s and 1990s.DiscussionFertilizer rate has decisive effect to the spatial distribution of N2O emissions. High N2O emissions value concentrated in southern Shaanxi and Guanzhong regions mainly due to excessive nitrogen fertilization application in these areas. In addition, this high N2O emissions could be strengthened in southern Shaanxi because of the increased soil moisture caused by higher level of precipitation. However it should also be noticed that southern Shaanxi have higher temperature and is warming fastest. The increasing of soil temperature can promote N2O emissions. Rising temperature can also promote soil water loss and inhibits N2O emission when soil moisture is too low. The influence of climate factor on N2O emissions changed according to different hydrothermal condition.ConclusionsCropland N2O emissions in the Northwest Arid Area was relatively low. N2O emissions reduced gradually from southeast to southwest. Excessive fertilization lead to high N2O emissions in southern Shaanxi. High precipitation and signifi cant warming can further enhance N2O emissions.Recommendations and perspectivesIn the future strengthen the management and effective utilization of chemical fertilizer and water resource to reduce N2O emissions should be the focus of northwest dryland farming management.
cropland soil; N2O; arid and semi-arid area
ZHANG Fan, E-mail: zhangfan@mail.xjtu.edu.cn
10.7515/JEE201603008
2015-11-20;錄用日期:2016-01-04
Received Date:2015-11-20;Accepted Date:2016-01-04
國家自然科學(xué)基金項(xiàng)目(41301213);中央高?;究蒲袠I(yè)務(wù)費(fèi);黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室開放基金(SKLLQG1522)
Foundation Item:National Natural Science Foundation of China (41301213); Fundamental Research Funds for the Central Universities; State Key Laboratory of Loess and Quaternary Geology, IEECAS (SKLLQG1522)
張 凡,E-mail: zhangfan@mail.xjtu.edu.cn