張繼效,徐 海
(1.中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室,西安710061;2. 中國科學(xué)院大學(xué),北京100049;3.西安交通大學(xué) 人居環(huán)境與建筑工程學(xué)院 環(huán)境科學(xué)與技術(shù)系,西安710049)
植物微體遺存分析在第四紀(jì)環(huán)境研究中的應(yīng)用:綜述與展望
張繼效1,2,徐 海1,3
(1.中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點(diǎn)實(shí)驗(yàn)室,西安710061;2. 中國科學(xué)院大學(xué),北京100049;3.西安交通大學(xué) 人居環(huán)境與建筑工程學(xué)院 環(huán)境科學(xué)與技術(shù)系,西安710049)
以孢粉、植硅體等為代表的植物微體遺存由于其分布廣泛,容易保存,可反映母體植物類型的優(yōu)點(diǎn),在第四紀(jì)環(huán)境研究中得到了廣泛應(yīng)用。本文介紹了植物微體遺存的概念、常見類型,以及它們的提取方法和原理,綜述了利用植物微體遺存重建古環(huán)境的傳統(tǒng)方法和近年來發(fā)展的幾種古植被與古氣候定量重建方法,最后簡述了植物微體遺存在年代測定、穩(wěn)定同位素分析研究上的應(yīng)用進(jìn)展與實(shí)例。文末指出了現(xiàn)有研究方法的問題與不足,并對今后的多代用指標(biāo)的綜合研究提出了展望。
植物微體遺存;孢粉;植硅體;提取方法;定量氣候重建;穩(wěn)定同位素
第四紀(jì)是地球歷史上至關(guān)重要的時(shí)期,在這一時(shí)期全球經(jīng)歷了頻繁而迅速的氣候變化,與此同時(shí)人類活動也逐漸增強(qiáng),因此第四紀(jì)環(huán)境變化成為多年來研究的熱點(diǎn)之一。在長期的研究過程中,多種技術(shù)方法被應(yīng)用于第四紀(jì)古環(huán)境重建,例如極地冰芯中氧同位素的研究(Johnsen et al,2001)、海洋沉積物中有孔蟲(Di Stefano et al,2012)和微量元素的研究(Müller and Knies,2013)、動物遺存的研究(陳少坤等,2013)、黃土沉積物粒度(昝金波等,2014)和古地磁的研究(劉平等,2008),等等。地球上有幾十萬種植物,它們分布于各種生態(tài)條件下,不同的氣候、地形、土壤類型對應(yīng)著不同的植物組合。例如在熱帶海灘上常分布有紅樹林,亞熱帶季風(fēng)區(qū)多分布有常綠闊葉林,溫帶半干旱區(qū)域常見植被類型為草原,而溫帶森林中潮濕的區(qū)域常分布有沼澤植被(武吉華等,2004)。反過來,研究地層中保存的植物殘?bào)w或遺存可以推測出一個地區(qū)的古環(huán)境。因此,植物是第四紀(jì)研究中不可缺少的一部分。然而,植物體在死亡之后,通常很難完整地在地層中保存下來,單純依賴種子、葉片、樹干等大的植物殘?bào)w進(jìn)行環(huán)境研究具有極大的局限性。相比之下,植物的孢粉、植硅體、碳屑、淀粉粒等由于其個體微小、數(shù)量大、易保存的優(yōu)點(diǎn),在古環(huán)境研究中的應(yīng)用更為廣泛,在本文中將它們統(tǒng)稱為植物微體遺存(Scaife,1987;Horrocks and Lawlor,2006)。此外,真菌孢子、浮游藻類在第四紀(jì)研究中同樣發(fā)揮著重要作用,也可將它們納入植物微體遺存的范疇。由此可見植物微體遺存類型眾多,在第四紀(jì)科學(xué)中對其進(jìn)行綜合性研究可起到對照和補(bǔ)充的作用,使結(jié)論更為可靠。然而,目前學(xué)者們關(guān)于植物微體遺存的綜述性文章多局限于某種或少數(shù)幾種類型(楊曉燕等,2006;王偉銘,2009;唐領(lǐng)余等,2013),不夠系統(tǒng)和全面。為了系統(tǒng)性地總結(jié)植物微體遺存領(lǐng)域的研究成果,為相關(guān)人士提供參考,在前人和本文作者研究的基礎(chǔ)上,本文對其關(guān)鍵類型、提取方法和在第四紀(jì)環(huán)境研究中的應(yīng)用實(shí)例進(jìn)行了評述與分析,并對今后的多代用指標(biāo)的綜合研究提出了展望。
1.1 孢粉
孢粉是植物微體遺存中研究最為深入的一類。蕨類植物在繁殖過程中產(chǎn)生大量的孢子,種子植物在繁殖過程中產(chǎn)生大量的花粉,兩者合稱孢粉。孢粉外壁的主要組成物質(zhì)是孢粉素,這是一類十分穩(wěn)定的有機(jī)物,對酸、堿、高溫等有一定的耐受性,因而可在地層中長期保存(王開發(fā)和徐馨,1988)。不同類型的孢粉在形態(tài)上有明顯差別,如蕨類孢子通常具有單裂縫或三裂縫,裸子植物中的松科花粉通常具有雙氣囊結(jié)構(gòu)。被子植物的花粉具有復(fù)雜的孔、溝構(gòu)造和多變的表面紋飾,如桃金娘科花粉具有三合溝,桑科花粉具有三孔,禾本科花粉為球形具單孔(圖1)。以上特征使得鑒定孢粉母體植物的科屬乃至種一級成為可能。通過分析地層樣品中孢粉的類型和組成比,可推測出歷史時(shí)期植被組成,從而進(jìn)一步分析出降水和溫度等古環(huán)境信息。
1.2 植硅體
某些高等植物能形成硅質(zhì)的植物微體遺存,死后在土壤中保存下來。以禾本科植物為例,其在生長發(fā)育過程中會吸收大量硅質(zhì),這些硅質(zhì)沉積在細(xì)胞中成為晶體,它們被稱作植硅體。植物死后細(xì)胞腐爛但植硅體卻繼承了原有細(xì)胞的形態(tài)(Piperno,2014)。不同種類植物會形成類似或不同形態(tài)的植硅體,因而一定程度上可通過植硅體形態(tài)推測其母體植物類型(圖2)。例如棕櫚科植物發(fā)育有特異類型的刺球型植硅體,竹亞科植物常發(fā)育有長鞍型植硅體,水稻發(fā)育有特征扇型植硅體,而莎草科植物發(fā)育有多邊帽型植硅體(王永吉和呂厚遠(yuǎn),1993)。植硅體的分類特征不如孢粉明顯,但在很大程度上仍然可以反映出環(huán)境變化趨勢。在溫暖濕潤氣候條件下,植物產(chǎn)生較多的扇型、正方型、長方型等植硅體,而在寒冷干燥氣候條件下,植物產(chǎn)生較多的尖型、刺棒型植硅體,根據(jù)不同植硅體形的比例可重建環(huán)境變化(王偉銘等,2003)。
圖1 部分植物的孢粉形態(tài)1.蕨類三縫孢子;2.松屬花粉;3.蒿屬花粉;4.禾本科花粉;5.桃金娘科花粉;6.桑科花粉。根據(jù)張繼效(2015)改繪。Fig.1 Sporo-pollen morphology of some plants 1. Ferns, trilete spore; 2.Pinussp.; 3.Artemisiasp.; 4. Poaceae; 5. Myrtaceae; 6. Moraceae. Redraw according to Zhang (2015).
1.3 淀粉粒
淀粉是一種高分子有機(jī)物,它以淀粉粒的形式廣泛地存在于植物的根、莖及種子等器官中。不同植物的淀粉粒在形態(tài)、類型、大小、層紋和臍點(diǎn)等方面各有特征??勺鳛殍b定植物種類的依據(jù)之一(Matsushima,2015)。目前對淀粉粒形態(tài)的研究主要集中于栽培植物,因而其應(yīng)用也主要集中于和人類活動密切相關(guān)的考古遺址中。如在距今約8000年的浙江跨湖橋遺址中發(fā)現(xiàn)稻屬、薏米等植物的淀粉粒,揭示了古人的食物組成(楊曉燕和蔣樂平,2010)。對中國北方古代陶器碎片中淀粉粒的研究顯示,距今11000年陶器已經(jīng)被用于煮食谷物(Yang et al,2014)。在巴拿馬熱帶雨林中提取的淀粉粒揭示了早期人類對塊莖作物的栽培(Piperno and Holst,1998;Piperno et al,2000)。隨著對淀粉粒研究的深入開展,其應(yīng)用有望推廣至第四紀(jì)環(huán)境研究的其他領(lǐng)域(Lentfer et al,2002)。
圖2 部分植物的特異植硅體形態(tài)1. 水稻扇型植硅體;2. 蕨類植物;3. 木本植物導(dǎo)管;4. 棕櫚科植物;5. 木本植物;6. 莎草科植物。根據(jù)張繼效(2015)改繪,其中栽培稻植硅體圖片由中國科學(xué)技術(shù)大學(xué)科技史與科技考古系羅武宏博士提供。Fig.2 Specifi c phytolith morphology of some plants 1.Oryza sativa; 2. Ferns; 3. Catheter of woody plants; 4. Palmae; 5. Woody plants; 6. Cyperaceae. Redraw according to Zhang (2015), phytolith photo ofOryza sativais provided by Dr. Luo Wuhong, Department of the History of Science and Scientifi c Archelogy, University of Science and Technology of China.
1.4 其他植物微體遺存
在海洋、湖泊、濕地等的沉積物中,一般會有大量的微體藻類出現(xiàn),其種類復(fù)雜多樣。在各種微體藻類中,硅藻的分類研究較為細(xì)致,在古環(huán)境研究中的應(yīng)用也最為普遍。例如云南云龍?zhí)斐貛r芯中浮游硅藻和底棲硅藻的比值變化反映了湖泊水位和西南季風(fēng)的變遷(張東濤,2012)。輪藻的鈣質(zhì)藏卵器也是植物微體的一種,例如西藏臺錯古湖第四紀(jì)地層沉積有大量的輪藻藏卵器,據(jù)此可分析出該湖區(qū)的環(huán)境變化(劉俊英和王海雷,2011)。溝鞭藻類常多存在于海洋,少量存在于淡水或咸水湖泊中,其種屬變化可指示海平面變化等(D'Costa et al,2008)。盤星藻類在淡水湖泊中分布廣泛,其含量變化與區(qū)域降水呈一定的相關(guān)性(張華等,2004;Weckstr?m et al,2010)。
圖3 部分植物的特異淀粉粒形態(tài)1.小麥;2.水稻;3.粟;4.蓮藕;5.山藥;6.麻櫟。根據(jù)楊玉璋等(2015)改繪,比例尺均為 20 μm。Fig.3 Specifi c starch grains morphology of some plants 1.Triticum aestivum; 2.Oryza sativa; 3.Setaria italica; 4.Nelumbo mucifer; 5.Dioscorea opposita; 6.Quercus acutissima. Redraw according to Yang et al (2015), Scale bar: 20 μm.
在地層孢粉的分析過程中常見有黑色團(tuán)塊, 其中大部分是碳屑。碳屑是植物體不完全燃燒的產(chǎn)物,它可以保存原來植物的某些結(jié)構(gòu),也可以是無結(jié)構(gòu)的球形體。在一次火災(zāi)后,少量的碳屑會隨風(fēng)傳播,其余大部分由雨水等攜帶并沉積下來。碳屑在沉積物中可保存數(shù)千萬年不變,成為火災(zāi)歷史的最好記錄(Whitlock and Larsen,2001)。
孢粉的分析過程中通常還能見到真菌的孢子,它們在成分和形態(tài)上與通常意義上的孢粉具有明顯差別,也具有一定的環(huán)境指示意義(Davis and Shafer,2006)。例如Glomus在土表以下生長,其在湖相沉積中的出現(xiàn)可以用來指示該流域的土壤侵蝕(郝秀東和翁成郁,2015)。然而,由于對現(xiàn)生真菌孢子的形態(tài)研究極其有限,在第四紀(jì)環(huán)境研究中它的應(yīng)用受到很大的局限。
此外,在一些現(xiàn)生植物體內(nèi)還存在草酸鈣結(jié)晶,其成因與植硅體類似,可將其稱為“植鈣體”,具有一定的分類學(xué)意義(Franceschi and Nakata,2005;李秀麗等,2012)。目前對現(xiàn)生植鈣體形態(tài)的研究還較少,尚難應(yīng)用于第四紀(jì)環(huán)境研究,隨著今后基礎(chǔ)研究的展開,有望將植鈣體應(yīng)用于茶樹栽培歷史(Zhang et al,2014)、藜科植物區(qū)分(Cuadra and Hermann,2013)以及古環(huán)境研究(Moore et al,2000)等領(lǐng)域。
圖4展示了一些其他植物微體遺存的代表形態(tài)。由于各種植物微體遺存的化學(xué)成分不同,它們在地層中的保存性也有差異。孢粉適于在還原性、偏酸性地層中保存,在氧化性、堿性環(huán)境中易受破壞(Tian et al,2009;Lebreton et al,2010),而植硅體在氧化性地層中也可較好保存。可見,不同巖性的樣品適合采用不同的分析手段。此外不同禾本科植物的花粉形態(tài)相似,除非借助掃描電子顯微鏡等手段,否則難以區(qū)分(Mander et al,2013),而在植硅體形態(tài)上則有明顯差別,兩者起到互補(bǔ)作用。因此,綜合多種分析手段可更全面有效地獲取古環(huán)境信息。
植物微體遺存分散在地層沉積物中,個體微小,與各種無機(jī)礦物和有機(jī)雜質(zhì)混合在一起,要對它們進(jìn)行研究就必須將其從沉積物中進(jìn)行分離提純。按照不同類型植物微體遺存化學(xué)成分的不同,提取方法也有相應(yīng)的區(qū)別。
圖4 部分其他植物微體遺存形態(tài)1.輪藻藏卵器(李莎,2012);2.盤星藻(Lenarczyk et al,2015);3.溝鞭藻(Bringué et al,2016);4.真菌孢子(Cugny et al,2010);5.碳屑(陸岸青等,2009)。輪藻藏卵器的比例尺為100 μm,其余比例尺為10 μm。Fig.4 Morphology of some other plant microfossils 1. Charophytes oogonia (Li, 2012); 2.Pediastrum(Lenarczyk et al, 2015); 3. Dinofl agellate (Bringué et al, 2016); 4. fungal spore (Cugny et al, 2010); 5. charcoals (Lu et al,2009). Scale bar: Charophytes oogonia, 100 μm; others, 10 μm.
孢粉、真菌孢子和溝鞭藻、盤星藻等藻類由較難分解的高分子有機(jī)物組成,大小相近,其提取方法基本一致,碳屑的提取也與之一致。在長期的研究過程中,多種分析手段被應(yīng)用和改進(jìn)。這些方法均基于樣品本身的性質(zhì),如氫氟酸可以除去硅質(zhì),鹽酸可以除去碳酸鹽類,弱堿溶液可以去除腐殖酸等成分。孢粉的比重一般小于碎屑狀鹽類,所以使用適當(dāng)比重的重液可以提取孢粉富集物(Nakagawa et al,1998)。絕大多數(shù)孢粉的直徑在7—150 μm,因而利用不同孔徑的篩網(wǎng)可過濾除去部分雜質(zhì)(李育等,2007)??偨Y(jié)起來,孢粉的提取方法主要有氫氟酸篩選法(李春海和何翠玲,2004)、重液浮選法(李小強(qiáng)等,2006)、篩濾分析法(李小強(qiáng)等,1999),實(shí)際提取過程中,以上方法經(jīng)常綜合運(yùn)用。本文綜合以上研究方法,結(jié)合實(shí)驗(yàn)樣品分析經(jīng)驗(yàn),給出了孢粉分析的流程(圖5),由于第四紀(jì)樣品類型繁多,成分、含量多變,每一步所需的樣品量和反應(yīng)時(shí)間都需要具體問題具體分析,不可完全套用模版。值得一提的是7—10 μm過篩這一步由于篩子的網(wǎng)眼孔徑不一致,且篩網(wǎng)容易破損,常常會造成孢粉的丟失,經(jīng)筆者嘗試可用低速離心法代替。低速離心法的依據(jù)是物理學(xué)上的斯托克斯沉降公式(鄭其良和錢志偉,1998),不同粒徑的顆粒在液體中沉降速率不同,該公式表達(dá)式如下:
其中:υ是沉降速度,ρ是顆粒比重,ρ0是液體比重,η是液體的粘滯系數(shù),g是沉降加速度,r是顆粒半徑,κ是形狀系數(shù)。在凈水中,g等于重力加速度,而在離心機(jī)中,g= 4π2Rn2,其中R為離心機(jī)半徑,n為轉(zhuǎn)速。以7 μm大小的孢粉為例,在半徑0.1 m的離心機(jī)中以5 轉(zhuǎn)/s(即300轉(zhuǎn)/min)轉(zhuǎn)速的沉降而言:ρ=1800 kg·m-3,ρ0=1000 kg·m-3,η= 1.0×10-3kg·(m×s)-1,g= 98.7 m·s-2,r=7×10-6m,κ= 1。據(jù)此計(jì)算得出的孢粉沉降速度為5 cm·min-1,這意味著在高度10 cm的離心管中,300轉(zhuǎn)/min的轉(zhuǎn)速下,7 μm以上的孢粉在僅需2 min可完全沉降在管底,而雜質(zhì)留在上層液體中。此過程重復(fù)多次,可除去大部分粒徑小于孢粉的有機(jī)雜質(zhì),起到與篩網(wǎng)類似的效果。
植硅體主要成分為硅質(zhì),與硅藻等統(tǒng)稱為生物硅,它們在沉積物中常常共存。提取植硅體的要點(diǎn)在于:用稀鹽酸除去樣品中的碳酸鹽等可溶性礦物;用濃硝酸等氧化劑除去樣品中的有機(jī)成分;用沉降法或微波消融法(Parr et al,2001)或過篩法除去樣品中的粘土;用篩子除去大顆粒成分;用重液浮選出植硅體等(吳妍,2008)。與孢粉的提取類似,植硅體也可應(yīng)用重液浮選法,但它們的比重較孢粉高,孢粉的比重約1.8,而植硅體的比重可達(dá)2.3(Banning,2000),因此需選用比重大于2.3的重液。植硅體的直徑通常大于5 μm,對小于5 μm的雜質(zhì)也可利用低速離心法除去。植硅體的沉降速率和孢粉對比有3個參數(shù)不同:ρ= 2290 kg·m-3,r= 5×10-6m,κ= 0.9,其余一致。據(jù)此計(jì)算,在半徑0.1 m的離心機(jī)中以300轉(zhuǎn)/min轉(zhuǎn)速離心,得出的沉降速度為3.8 cm·min-1,這意味著在高度10 cm的離心管中,5 μm以上的孢粉或植硅體僅需約2.5 min可完全沉降在管底,而雜質(zhì)留在上層液體中。重復(fù)該步驟可起到與沉降法類似的效果。綜合前人研究成果,并結(jié)合本文實(shí)驗(yàn)經(jīng)驗(yàn),圖6列出了植硅體提取的步驟。硅藻的化學(xué)成分與植硅體類似,但更容易破碎,在含量較豐富的樣品中,使用鹽酸和氧化劑處理即可,而對含量較低或需要做特殊用途(如同位素分析)的樣品,則可采用與植硅體提取類似的方法(Parr et al,2004;劉娟等,2013)。
圖5 第四紀(jì)樣品中孢粉的提取流程Fig.5 The process of extraction of sporopollen in Quaternary samples
對植物鈣質(zhì)微體遺存如輪藻藏卵器的研究較少(García,1999;Soulié-M?rsche,2008),有關(guān)其提取方法可參考李莎(2012)對松遼盆地第三紀(jì)樣品的輪藻藏卵器研究。其基本提取方法為:用15%雙氧水氧化有機(jī)物并松散樣品;用孔徑1000 μm和100 μm的篩子分別過濾掉大于和小于輪藻藏卵器粒徑的雜質(zhì);烘干樣品;在顯微鏡下挑選樣品。淀粉粒目前的研究主要應(yīng)用在考古地層、糞化石中,其中一種提取方法為:加蒸餾水分散樣品;1500轉(zhuǎn)/min 離心5 min;比重1.8的重液浮選樣品;洗滌并干燥(葛威,2010)。
有時(shí)為加快實(shí)驗(yàn)流程,減少樣品用量,可利用重液提取等方法在同一樣品中同時(shí)獲得多種植物微體遺存(Lentfer and Boyd,2000;Coil et al,2003)。
傳統(tǒng)的植物微體遺存分析方法是依據(jù)地層中主要植物微體遺存的種類和數(shù)量變化來重建古環(huán)境和古氣候。典型的例子如唐領(lǐng)余等(2007)以孢粉分析為手段對黃土高原西部四萬年來的環(huán)境研究,根據(jù)孢粉組合成分和植物生態(tài)特征,將地層剖面劃分為若干個孢粉帶,分析各個時(shí)期的植被狀況。再如新疆巴里坤湖的植被和環(huán)境分析(陶士臣等,2010),也是通過分析湖泊地層沉積物中各類孢粉的百分含量變化來重建植被變化,并依據(jù)某些特征類型如蒿屬和藜科花粉的比值來分析濕度變化。植硅體的研究方法與孢粉類似,如Lü and Liu(2005)把美國東南沿海沉積物中的植硅體組合作為重建該地區(qū)海岸帶環(huán)境變化的重要依據(jù), 并由此推測了Western湖中的沙層來源于颶風(fēng)侵蝕。以硅藻為手段重建古氣候也采用類似的方法,如Li et al(2015)研究了云南澄海鉆孔中的硅藻,根據(jù)Cyclotella rhomboideo-elliptica等主要屬種7.8 ka BP以來的相對數(shù)量變化建立組合帶,并進(jìn)一步探討了其對應(yīng)的亞洲季風(fēng)波動。
圖6 第四紀(jì)樣品中植硅體的提取流程Fig.6 The process of extraction of phytolith and diatom in Quaternary samples
植硅體和硅藻等由于其移動性相對較差,多為原地保存,所以它們在沉積物中的含量變化通常反映了原有的植物狀況。但對于孢粉而言,不同植物的孢粉在數(shù)量和傳播距離上都是不同的。松樹的花粉產(chǎn)量很高,而且容易遠(yuǎn)距離傳播,所以地層中其含量常常較為豐富,但卻不一定說明當(dāng)時(shí)有大量松樹存在,因?yàn)檫@些花粉也有可能是遠(yuǎn)距離傳播來的;而榆樹等植物則相反,即使地層中只有少量榆樹花粉,也可以表明當(dāng)時(shí)有榆樹林的存在(許清海等,2007)。因此,傳統(tǒng)上單純依賴孢粉百分含量變化來重建古植被和古氣候就有一定的局限性,通常只能定性地分析出溫度和降水的相對變化,而無法得出確定的溫度和降水值。為探討孢粉與植被、氣候的定量關(guān)系,空氣孢粉和表土孢粉譜的研究正受到廣泛重視,這些研究對了解孢粉散布、搬運(yùn)和沉積機(jī)制,建立現(xiàn)代孢粉-植被-氣候關(guān)系模型提供可靠的依據(jù)(楊振京和徐建明,2002)。例如,對云南亞熱帶南部表土的孢粉分析表明,木本、草本植物花粉基本代表了區(qū)域內(nèi)喬木和草本植物特征, 而蕨類植物孢子則具有超代表性(潘韜等,2008)。對中國北方森林植被主要表土花粉類型的研究顯示,幾種主要花粉類型百分比與母體植物蓋度的相關(guān)性有明顯差異(李月叢等,2005)。Lü et al(2011)分析了青海青藏高原地區(qū)不同海拔高度的若干表土樣品的孢粉類型和比例,將其與年均降水量、年均溫度、海拔高度、相對濕度等指標(biāo)進(jìn)行對比,結(jié)果發(fā)現(xiàn)年均降水量是影響孢粉分布的最主要因素。對青海湖附近表土花粉的分析表明,風(fēng)速和風(fēng)向?qū)η嗪:ǚ鄣纳⒉寂c沉積影響巨大,湖泊的匯聚作用以及河流和湖流作用等也造成了花粉沉積的局部差異性(尚雪等,2009)。結(jié)合GIS等技術(shù)手段,現(xiàn)代植被孢粉數(shù)據(jù)庫正在建立和完善(肖霞云等,2002;Gajewski,2008;Fyfe et al,2009;Zheng et al,2014)。
隨著全球孢粉、植被和氣象數(shù)據(jù)庫的逐漸完善,基于孢粉資料重建古氣候的方法迅速向定量化方向發(fā)展,并涌現(xiàn)出了大量可靠的古氣候定量重建方法(Birks et al,2010;秦鋒和趙艷,2013),依據(jù)其原理的不同大致包括:指示種法,如共存分析法(Mosbrugger and Utescher,1997)和分布區(qū)疊加分析法(Overpeck et al,1985);多元函數(shù)法,如轉(zhuǎn)換函數(shù)法(ter Braak and Juggins,1993);集合法,如現(xiàn)代類比法(Thompson et al,2008)和響應(yīng)曲面法(Bartlein et al,1986)。在指示種法方面,Klotz et al(2003)根據(jù)松屬(Pinus Linn)、云杉屬(Picea Dietr.)、冷杉屬(Abies Mill)、櫟屬(Quercus L.)、榛屬(Corylus L.)等的共存組合變化推測了歐洲大陸北部阿爾卑斯前沿地在Eemian間冰期至Würmian冰期之間的冬季和夏季平均溫度以及年降水量。在多元函數(shù)法方面,朱誠等(2008)運(yùn)用線性回歸方法,選取10種代表性花粉,根據(jù)表土數(shù)據(jù)確定每種花粉在線性方程中的系數(shù),從而建立了神農(nóng)架地區(qū)孢粉與年平均溫度的線性函數(shù),并進(jìn)一步重建了該地區(qū)15.753 ka BP 以來的年平均溫度序列。Park and Park(2015)利用在韓國濟(jì)州島漢拿山采集的表土孢粉建立起孢粉-溫度函數(shù),并通過該函數(shù)分析了哈農(nóng)古瑪珥湖在末次盛冰期的溫度。在現(xiàn)代類比法方面,Tarasov et al(2011)整理了日本和俄羅斯遠(yuǎn)東地區(qū)的表土孢粉數(shù)據(jù),將這些數(shù)據(jù)與日本Biwa湖的孢粉記錄做對比,得出日本中部地區(qū)在冰期及間冰期時(shí)最熱月和最冷月的平均溫度、年均降水量等數(shù)值。黃康有等(2013)將神農(nóng)架大九湖沼澤剖面孢粉數(shù)據(jù)和東亞表土孢粉數(shù)據(jù)庫進(jìn)行對比計(jì)算,選取其中相似度最高的樣品,從而獲得相應(yīng)的古溫度數(shù)據(jù)。在響應(yīng)曲面法方面,許清海等(2003)重建了全新世以來岱海盆地的7月均溫和年降水量,其原理是根據(jù)各物種花粉在不同氣候條件下的豐度建立非線性的多項(xiàng)式函數(shù),再根據(jù)地層里該物種花粉的豐度值推斷氣候參數(shù)值。由于孢粉和氣候數(shù)據(jù)關(guān)系的復(fù)雜性,上述古氣候定量重建方法適用范圍也有差別,需根據(jù)不同的研究區(qū)域和研究時(shí)間段確定其中最合適的方法。
與孢粉相比,植硅體和硅藻等已采用的氣候定量重建方法相對較少,一般采用線性回歸方程。例如對東北泥炭地沉積植硅體的研究,首先根據(jù)聚類分析確定表土植硅體中與氣候密切相關(guān)的形態(tài)類型,再結(jié)合氣象資料建立年均溫度、年均降水、年均濕度與這些植硅體類型的線性函數(shù),然后依據(jù)線性函數(shù)繪制3000 a來榆樹剖面的溫度、降水、濕度變化曲線(張新榮等,2008)。Lü et al(2006,2007)首先利用典范對應(yīng)分析和除趨勢對應(yīng)分析等數(shù)學(xué)手段建立了中國表土植硅體組合與年均溫等指標(biāo)的對應(yīng)氣候模型,進(jìn)而重建了渭南黃土沉積136 ka BP以來的年均溫度和年均降水?dāng)?shù)據(jù)。格陵蘭西部海域?qū)柙宓牡湫拖嚓P(guān)分析顯示硅藻分布與海冰密度有顯著相關(guān)性,據(jù)此可構(gòu)建兩者的線性回歸模型,從而重建長時(shí)間尺度的古海冰變化(蔣輝,2012)。Gomes et al(2014)在巴西Boqueir?o湖的不同區(qū)域采集表層沉積物樣品中,根據(jù)其中硅藻類型變化建立起硅藻-湖泊深度模型,并將其應(yīng)用于湖泊古深度的重建。通過硅藻分析還可重建沉積物pH變化,如利用英國威爾士地區(qū)湖泊表層沉積物的現(xiàn)代硅藻組合可建立硅藻-pH轉(zhuǎn)換函數(shù),定量重建湖泊在歷史時(shí)期的pH變化曲線(成小英和李世杰,2006)。
從上述研究可以看到,孢粉等植物微體遺存重建古環(huán)境的原理是依據(jù)其大小、形態(tài)的不同確定所屬植物種類,通過與現(xiàn)代植被的對比確定它們和氣候因子的相關(guān)關(guān)系,進(jìn)而從地層植物微體遺存的種類和數(shù)量變動曲線判斷環(huán)境變化過程。但近年來,對植物微體遺存的研究已經(jīng)超出形態(tài)范疇,拓展到其本身化學(xué)組成,如碳同位素等。
孢粉由有機(jī)質(zhì)組成,含有豐富的碳元素,因而可用于碳同位素研究。某些沉積物中有機(jī)質(zhì)含量很低,難以達(dá)到14C測年的要求,此時(shí)如能從沉積物中提取到足夠量的孢粉濃縮物,借助AMS手段,同樣可達(dá)到測年目的(Brown,1992;李宜垠等,2007)。例如Piotrowska et al(2004)通過貝加爾湖不同鉆孔孢粉提取物的AMS14C數(shù)據(jù)討論了湖區(qū)不同部位的沉積速率。再如李育等(2012)通過孢粉濃縮物的AMS14C 測年手段,討論了甘肅省豬野澤全新世湖泊沉積物的再沉積作用,發(fā)現(xiàn)通過孢粉測出的年齡略偏老。植硅體在形成過程中,其內(nèi)部常常會包埋有碳,且植硅體在沉積物中分布廣泛,故也可用于測年。例如金和天等(2014)對浙江余姚田螺山遺址進(jìn)行了植硅體測年分析,并與同層位的植物種子測年結(jié)果對比,發(fā)現(xiàn)結(jié)果相近,但前者年齡略偏老。Yin et al(2014)對現(xiàn)代植物中提取出的植硅體進(jìn)行14C測年,結(jié)果顯示植硅體在900℃以下提取出的有機(jī)碳測年結(jié)果較好,高于這一溫度測出的溫度偏老。因此不排除前述的測年結(jié)果偏老與測年流程存在錯誤有關(guān)。總體來看,利用孢粉和植硅體進(jìn)行測年是可行的,但結(jié)果可能需要校正。
除利用放射性同位素測年外,孢粉和植硅體等的穩(wěn)定同位素研究也已展開。常見的植物依據(jù)光合作用途徑的不同分為C3和C4植物,兩者在同位素上的差異主要表現(xiàn)為δ13C的不同,孢粉和植硅體作為植物體的一部分,與植物整體的δ13C相近,故而可用于δ13C測定(Kelly et al,1991;邊葉萍和翁成郁,2009)。有研究認(rèn)為,孢粉的δ13C與溫度之間存在正相關(guān)性(Loader and Hemming,2001;Hatté et al,2009),但近來也有學(xué)者對此提出疑問(King et al,2012);在孢粉的δ13C與年降水量方面,多數(shù)人認(rèn)為兩者呈負(fù)相關(guān),但也有少數(shù)學(xué)者認(rèn)為兩者無關(guān)或呈正相關(guān)(Kohn,2010)。故而,孢粉和植硅體δ13C與溫度、降水的關(guān)系還有待深入研究。此外,植硅體中的δ18O已被證實(shí)和生長時(shí)的土壤含水量有關(guān),故而在重建古環(huán)境過程中有望提供年均降水和年均溫信息(Alexandre et al,2012)。相比孢粉和植硅體,穩(wěn)定同位素研究在硅藻上的應(yīng)用更加廣泛,尤其是在海洋沉積物中,如以δ13C指示海洋生產(chǎn)力,以δ15N指示硝酸鹽利用程度,以δ30Si指示硅酸鹽利用程度等,以δ18O指示海表溫度等(李鐵剛和熊志方,2010);在淡水湖泊中,目前研究較多的是硅藻的δ18O(Leng et al,2001)。
孢粉、植硅體、硅藻等植物微體遺存分析在第四紀(jì)環(huán)境領(lǐng)域已經(jīng)得到了較為較廣泛的應(yīng)用。它們在重建古植被、年均溫、年均降水等古氣候信息方面都有著獨(dú)特的優(yōu)勢,在穩(wěn)定同位素分析和測年等研究領(lǐng)域也有一定的交叉應(yīng)用研究潛力。目前尚待解決和完善的問題有:現(xiàn)代植物微體形態(tài)(如孢粉形態(tài)分類)研究還不夠細(xì)化,有些孢粉類型難以鑒定到種、屬乃至科一級,這些局限性給地層孢粉樣品的鑒定帶來了挑戰(zhàn)與不確定;現(xiàn)代植被類型和孢粉等的定量關(guān)系研究還不夠全面,因而從地層中獲取的古溫度等信息不夠精確,需要完善相關(guān)的數(shù)據(jù)庫,同時(shí)也有賴于更好的數(shù)學(xué)模型的建立;目前的植物微體遺存研究多集中于孢粉、植硅體、硅藻等領(lǐng)域,尚有許多類型的如真菌孢子缺乏研究,而且將多種植物微體遺存結(jié)合起來的研究存在不足;對植物微體遺存的穩(wěn)定同位素等的研究還比較少,有待進(jìn)一步展開,其次,植物遺存分析與其他地球化學(xué)指標(biāo)的綜合分析研究也有待加強(qiáng)。
邊葉萍, 翁成郁. 2009. 孢粉穩(wěn)定碳同位素研究進(jìn)展[J].海洋地質(zhì)與第四紀(jì)地質(zhì), 29(3): 141 – 148. [Bian Y P, Weng C Y. 2009. An overview of carbon stable isotope analysis of pollen [J].Marine Geologe & Quaternary Geology, 29(3): 141 – 148.]
陳少坤, 龐麗波, 賀存定, 等. 2013. 重慶市鹽井溝第四紀(jì)哺乳動物化石經(jīng)典產(chǎn)地的新發(fā)現(xiàn)與時(shí)代解釋[J].科學(xué)通報(bào), 58(20): 1962 – 1968. [Chen S K, Pang L B, He C D, et al. 2013. New discoveries from the classic Quaternary mammalian fossil area of Yanjinggou, Chongqing, and their chronological explanations [J].Chinese Science Bulletin, 58(31): 3780 – 3787.]
成小英, 李世杰. 2006. 利用硅藻-pH 轉(zhuǎn)換函數(shù)定量重建Llyn Hir湖pH 的變化[J].中國科學(xué)院研究生院學(xué)報(bào), 23(3): 357 – 363. [Cheng X Y, Li S J. 2006. Quantitative Reconstruction for Lake Environmental Changes Using the Diatom-pH Transfer Function [J].Journal of the Graduate School of the Chinese Academy of Sciences, 23(3): 357 – 363.]
葛 威. 2010. 淀粉粒分析在考古學(xué)中的應(yīng)用[D]. 合肥: 中國科學(xué)技術(shù)大學(xué). [Ge W. 2010. The application of Starch analysis in Archaeology [D]. Hefei: University of Science and Technology of China.]
郝秀東, 翁成郁. 2015. 糞生真菌孢子在古生態(tài)學(xué)研究中的指示意義[J].海洋地質(zhì)與第四紀(jì)地質(zhì), 35(1): 175 – 184. [Hao X D, Weng C Y. 2015. The indicative signifi cance of spores of coprophilous fungi in paleoecological research [J].Marine Geology & Quaternary Geology, 35(1): 175 – 184.]
黃康有, 魏金輝, 陳碧珊, 等. 2013. 最佳類比法的孢粉-古氣候定量重建研究進(jìn)展[J].第四紀(jì)研究, 33(6): 1069 – 1079. [Huang K Y, Wei J H, Chen B S, et al. 2013. Research progress of pollen based quantitative paleoclimate reconstruction using modern analogue technique [J].Quaternary Science, 33(6): 1069 – 1079.]
蔣 輝. 2012. 格陵蘭西部海域1200年以來硅藻記錄及古氣候、古海冰重建[D].上海: 華東師范大學(xué). [Jiang H. 2012. Diatom-based reconstruction of palaeoclimatic changes and sea-ice concentration of West Greenland during the last 1200 years [D]. Shanghai: East China Normal University.]
金和天, 潘 巖, 楊穎亮, 等. 2014. 浙江余姚田螺山遺址土壤植硅AMS14C測年初步研究[J].第四紀(jì)研究, 34(1): 1 – 7. [Jin H T, Pan Y, Yang Y L, et al. 2014. A primary study on AMS14C dating of phytolith at Tianluoshan site, Zhejiang Province [J].Quaternary Sciences, 34 (1): 1 – 7.]
李 莎. 2012. 松科1井北孔晚白堊世至古新世早期輪藻化石組合[D]. 北京: 中國地質(zhì)大學(xué). [Li S. 2012. Late Cretaceous-early Paleocene charophytes from Songliao Basin, North China: SK1 (N) Core [D]. Beijing: China University of Geosciences.]
李 育, 王乃昂, 李卓侖, 等. 2012. 通過孢粉濃縮物AMS14C測年討論豬野澤全新世湖泊沉積物再沉積作用[J].中國科學(xué): 地球科學(xué), 42(9) : 1429 – 1440. [Li Y, Wang N A, Li Z L, et al. 2012. Reworking effects in the Holocene Zhuye Lake sediments: A case study by pollen concentrates AMS14C dating [J].Science China (Earth Sciences), 50(10): 1669 – 1678.]
李 育, 王乃昂, 許清海, 等. 2007. 中國北方第四紀(jì)孢粉提取方法研究[J].沉積學(xué)報(bào), 25(1): 124 – 130. [Li Y, Wang N A, Xu Q H, et al. 2007. Investigation of Quaternary pollen and spores extraction methods in North China [J].Acta Sedimentologica Sinica, 25(1): 124 – 130.]
李春海, 何翠玲. 2004. 黃土孢粉HF處理方法[J].微體古生物學(xué)報(bào), 21(3): 346 – 348. [Li C H, He C L. 2004. Preparation technique of HF treatment for extracting pollen and spores from loess sediments [J].Acta Micropalaeontologica Sinica, 21(3): 346 – 348.]
李鐵剛, 熊志方. 2010. 海洋硅藻穩(wěn)定同位素研究進(jìn)展[J].海洋與湖沼, 41(4): 645 – 655. [Li T G, Xiong Z F. 2010. A review of diatom stable isotopes in paleoceanography [J].Oceanologia et Limnologia Sinica, 41(4): 645 – 655.]
李小強(qiáng), 尚 雪, 周新郢, 等. 2006. 黃土花粉分析的篩析——重液綜合法[J].干旱區(qū)地理, 29(5): 663 – 667. [Li X Q, Shang X, Zhou X Y, et al. 2006. Integrative method of sieving and heavy liquid in pollen analysis of loess-data analysis and processing [J].AriaLandGeography, 29(5): 663 – 667.]
李小強(qiáng), 周 杰, Ashraf A R. 1999. 黃土孢粉分析的新途徑——篩濾分析法[J].中國沙漠, 19(4): 399 – 402. [Li X Q, Zhou J, Ashraf A R. 1999. A new way of spore-pollen analysis in loess deposits: sieving-analysis method [J].Journal of Desert Research, 19(4): 399 – 402.]
李秀麗, 張文君, 魯劍巍,等. 2012.植物體內(nèi)草酸鈣的生物礦化[J].科學(xué)通報(bào), 57(26): 2443 – 2455. [Li X L, Zhang W J, Lu J W. 2012. Calcium oxalate bio-mineralization in plants [J].Chinese Science Bulletin, 57(26): 2443 – 2455.]
李宜垠, 魏 芳, 周力平. 2007. 泥炭樣品的AMS14C年齡測定:全樣、植物殘?bào)w和孢粉濃縮物[J].第四紀(jì)研究, 27(4): 499 – 506. [Li Y Y, Wei F, Zhou L P. 2007. AMS14C dating using bulk samples, plant residues and pollen concentrates from a peat profi le at Kunlun, Inner Mongolia [J].Quaternary Science, 27(4): 499 – 506.]
李月叢, 許清海, 肖舉樂, 等. 2005. 中國北方森林植被主要表土花粉類型對植被的指示性[J].第四紀(jì)研究, 25(5): 598 – 608. [Li Y C, Xu Q H, Xiao J L, et al. 2005. Indication of some major pollen taxa in surface samples to their parent plants of forest in northern China [J].Quaternary Science, 25(5): 598 – 608.]
劉 娟, 段昌兵, 唐紅渠, 等. 2013.沉積物硅藻提純方法的優(yōu)化[J].生態(tài)科學(xué), 32(6): 763 – 768. [Liu J, Duan C B, Tang H Q, et al. 2013. An improved method for extraction and concentration of sediment diatoms [J].Ecological Science, 32(6): 763 – 768.]
劉 平, 張 崧, 韓家懋, 等. 2008. 甘肅龍擔(dān)早第四紀(jì)黃土堆積古地磁年代研究[J].第四紀(jì)研究, 28(5): 796 – 805. [Liu P, Zhang S, Han J M, et al. 2008. Paleomagnetic chronology of quaternary stratigraphy of the Longdan section in Gansu Province of China [J].Quaternary Sciences, 28(5): 796 – 805.]
劉俊英, 王海雷. 2011. 西藏臺錯古湖晚第四紀(jì)輪藻類及其生態(tài)環(huán)境、氣候變化探討[J].微體古生物學(xué)報(bào), 28(3): 261-283. [Liu J Y, Wang H L. 2011. Study on the Late Quaternary charophytes, ecological environment and climate at paleolake Taicuo, Tibet [J].ActaMicropalaeontologica Sinica, 28(3): 261 – 283.]
陸岸青, 李 珍, 李 杰, 等. 2009. 越南紅河流域沉積物的鏡下碳屑分析實(shí)驗(yàn)室處理方法對比研究[J].第四紀(jì)研究,29(4): 825 – 830. [Lu A Q, Li Z, Li J, et al. 2009. Comparative experiments of extracting charcoals from sediment with microscope in the Red River Basin, Vietnam [J].Quaternary Science, 29(4): 825 – 830.]
潘 韜, 吳紹洪, 戴爾阜, 等. 2008. 云南亞熱帶南部表土孢粉組合與植被間的定量關(guān)系[J].生態(tài)學(xué)報(bào), 28(12): 6060 – 6068. [Pan T, Wu S H, Dai E F, et al. 2008. Quantitative relationships between surface pollen and spores assemblages and vegetation in the Southern Subtropics of Yunnan Province, China [J].Acta Ecologica Sinica, 28(12): 6060 – 6068.]
秦 鋒, 趙 艷. 2013. 基于孢粉組合定量重建古氣候的方法在中國的運(yùn)用及思考[J].第四紀(jì)研究, 33(6): 1054 – 1068. [Qin F, Zhao Y. 2013. Methods of quantitative climate reconstruction based on palynological data and their applications in China [J].QuaternarySciences, 33(6): 1054 – 1068.]
尚 雪, 李小強(qiáng), 安芷生, 等. 2009. 青海湖流域表土花粉分析[J].中國科學(xué)D輯:地球科學(xué), 39(9): 1288 – 1296. [Shang X, Li X Q, An Z S, et al. 2009. Modern pollen rain in the Lake Qinghai basin, China [J].Science in China Series D: Earth Sciences, 52(10): 1510 – 1519.]
唐領(lǐng)余, 李春海, 安成邦, 等. 2007. 黃土高原西部4 萬多年以來植被與環(huán)境變化的孢粉記錄[J].古生物學(xué)報(bào), 46(1): 45 – 61. [Tang L Y, Li C H, An C B, et al. 2007. Vegetation history of the western Loess Plateau of China during the last 40 ka based on pollen record [J].Acta Palaeontologica Sinica, 46(1): 45 – 61.]
唐領(lǐng)余, 毛禮米, 呂新苗, 等. 2013. 第四紀(jì)沉積物中重要蕨類孢子和微體藻類的古生態(tài)環(huán)境指示意義[J].科學(xué)通報(bào), 58(20): 1969 – 1983. [Tang L Y, Mao L M, Lü X M, et al. 2013. Palaeoecological and paleoenvironmental signifi cance of some important spores and micro-algae in Quaternary deposits [J].Chinese Science Bulletin, 58(25): 3125 – 3139.]
陶士臣, 安成邦, 陳發(fā)虎, 等. 2010. 孢粉記錄的新疆巴里坤湖16.7 cal ka BP以來的植被與環(huán)境[J].科學(xué)通報(bào), 55(11): 1026 – 1035. [Tao S C, An C B, Chen F H, et al. 2010. Pollen-inferred vegetation and environmental changes since 16.7 cal BP at Balikun Lake, Xinjiang [J].ChineseScience Bulletin, 55(11): 1026 – 1035.]
王開發(fā), 徐 馨. 1988. 第四紀(jì)孢粉學(xué)[M]. 貴陽: 貴州人民出版社. [Wang K F, Xu X. 1988. Quaternary palynology [M]. Guiyang: Guizhou People's Publishing House.]
王偉銘, 劉金陵, 周曉丹. 2003. 南京直立人洞穴沉積的植硅體氣候指數(shù)研究[J].科學(xué)通報(bào), 48(11): 1205 – 1208. [Wang W M, Liu J L, Zhou X D. 2003. Climate indexes of phytoliths fromHomo erectus'cave deposits in Nanjing [J].Chinese Science Bulletin, 48(18): 2005 – 2009.]
王偉銘. 2009. 中國孢粉學(xué)的研究進(jìn)展與展望[J].古生物學(xué)報(bào), 48(3): 338 – 346. [Wang W M. 2009. Progress and prospect of studies on palynology in China [J].Acta Palaeontologica Sinica, 48(3): 338 – 346.]
王永吉, 呂厚遠(yuǎn). 1993. 植物硅酸體研究及應(yīng)用[M]. 北京:海洋出版社.[Wang Y J, Lü H Y. 1993. Research and application of plant [M]. Beijing: Ocean Press.]
吳 妍. 2008. 植硅體分析方法的應(yīng)用與改進(jìn)[D]. 合肥:中國科學(xué)技術(shù)大學(xué). [Wu Y. 2008. The application and improvement of phytolith analysis method [D]. Hefei: University of Science and Technology of China.]
武吉華, 張 紳, 江 源, 等. 2004. 植物地理學(xué)(第四版)[M].北京: 高等教育出版社. [Wu J H, Zhang S, Jiang Y, et al. 2004. Plant geography (Fourth Edition) [M]. Beijing: Higher Education Press.]
肖霞云, 蕭家儀, 張瑞虎, 等. 2002. GIS 支持的孢粉信息管理系統(tǒng)[J].南京師大學(xué)報(bào)(自然科學(xué)版), 25(2): 48 – 52. [Xiao X Y, Xiao J Y, Zhang R H, et al. 2002. Sporopollen information management system supported by GIS [J].Journal of Nanjing Normal University (Natural Science), 25(2): 48 – 52.]
許清海, 李月叢, 陽小蘭, 等. 2007. 中國北方幾種主要花粉類型與植被定量關(guān)系[J].中國科學(xué)D輯:地球科學(xué), 37(2): 192 – 204. [Xu Q H, Li Y C, Yang X L, et al. 2007. Quantitative relationship between pollen and vegetation in northern China [J].Science in China Series D: Earth Sciences, 50(4): 582 – 599.]
許清海, 肖舉樂, 中村俊夫, 等. 2003. 孢粉資料定量重建全新世以來岱海盆地的古氣候[J].海洋地質(zhì)與第四紀(jì)地質(zhì), 23(4): 99 – 108. [Xu Q H, Xiao J L, Nakamura T, et al. 2003. Quantitative reconstructed climatic changes of Daihai basin by pollen data [J].Marine Geology & Quaternary Geology, 23(4): 99 – 108.]
楊曉燕, 蔣樂平. 2010. 淀粉粒分析揭示浙江跨湖橋遺址人類的食物構(gòu)成[J].科學(xué)通報(bào), 55(7): 596 – 602. [Yang X Y, Jiang L P. 2010. Starch grain analysis reveals ancient diet at Kuahuqiao site, Zhejiang Province [J].Chinese Science Bulletin, 55(12): 1150 – 1156.]
楊曉燕, 呂厚遠(yuǎn), 夏正楷. 2006.植物淀粉粒分析在考古學(xué)中的應(yīng)用[J].考古與文物, (3): 87 – 91. [Yang X Y, Lü H Y, Xia Z K. 2006. Application of plant starch grain analysis in archaeology [J].Archaeology and Cultural Relics, (3): 87 – 91.]
楊玉璋, 李為亞, 姚 凌, 等. 2015. 淀粉粒分析揭示的河南唐戶遺址裴李崗文化古人類植物性食物資源利用[J].第四紀(jì)研究, 35(1): 229 – 239. [Yang Y Z, Li W Y, Yao L, et al. 2015. Plant resources utilization at the Tanghu site during the Peiligang culture period based on starch grain analysis, Henan Province [J].Quaternary Science, 35(1): 229 – 239.]
楊振京, 徐建明. 2002. 孢粉-植被-氣候關(guān)系研究進(jìn)展[J].植物生態(tài)學(xué)報(bào), 26(S1): 73 – 81. [Yang Z J, Xu J M. 2002. Advances in studies on relationship among pollen, vegetation and climate [J].Acta Phytoecologica Sinica, 26(S1): 73 – 81.]
昝金波, 楊勝利, 方小敏. 2014. 西昆侖山黃土1 Ma 以來的粒度變化特征及其古氣候意義[J].地球環(huán)境學(xué)報(bào), 5(2): 120 – 126. [Zan J B, Yang S L, Fang X M. 2014. Grain size composition of West Kunlun Mountains loess in the past 1 Ma and its paleoclimatic implications [J].Journal of Earth Environment, 5(2): 120 – 126.]
張 華, 鄭 卓, 王建華, 等. 2004. 海南島近2500a來盤星藻記錄的周期性氣候變化[J].熱帶地理, 24(2): 109 – 112. [Zhang H, Zheng Z, Wang J H, et al. 2004. Climate changes for the last 2500 years based on pediastrum record from Hainan Island [J].Tropical Geography, 24(2): 109 – 112.]
張東濤. 2012. 云南省云龍?zhí)斐?8—14 ka B.P.硅藻化石記錄的古環(huán)境變化[D]. 北京: 中國地質(zhì)大學(xué). [Zhang D T. 2012. A record of environmental change between 18,000 and14,000 calendar years B.P. indicated by diatom assemblages from Yunlongtianchi [D]. Beijing: China University of Geosciences.]
張繼效. 2015. 云南兩個舊石器時(shí)代中晚期遺址的古環(huán)境研究——基于孢粉和植硅體分析方法[D]. 北京: 中國科學(xué)院大學(xué). [Zhang J X. 2015. Environmental Archaeology of two Middle-Upper paleolithic sites in Yunnan Province — Based on sporo-pollen and phytolith analytical methods [D]. Beijing: University of Chinese Academy of Sciences.]
張新榮, 胡 克, 方 石, 等. 2008. 東北泥炭表土沉積植硅體-氣候因子轉(zhuǎn)換函數(shù)建立及應(yīng)用[J].沉積學(xué)報(bào), 26(4): 676 – 682. [Zhang X R, Hu K, Fang S, et al. 2008. Construction and application of phytolith-climate transfer function in peat surface deposits of Northeast China [J].Acta Sedimentologica Sinica, 26(4): 676 – 682.]
鄭其良, 錢志偉. 1998. 斯托克斯(Stokes)定律在混濁型飲料中的應(yīng)用[J].飲料工業(yè), 1(1): 24 – 25. [Zheng Q L, Qian Z W. 1998. Application of the Stokes Law in cloudy beverages [J].Beverage Industry, 1(1): 24 – 25.]
朱 誠, 陳 星, 馬春梅, 等. 2008. 神農(nóng)架大九湖孢粉氣候因子轉(zhuǎn)換函數(shù)與古氣候重建[J].科學(xué)通報(bào), 53(S1): 38 – 44. [Zhu C, Chen X, Ma C M, et al. 2008. Spore-pollenclimate factor transfer function and paleoenvironment reconstruction in Dajiuhu, Shennongjia, Central China [J].Chinese Science Bulletin, 53(S1): 42 – 49.]
Alexandre A, Crespin J, Sylvestre F, et al. 2012. The oxygen isotopic composition of phytolith assemblages from tropical rainforest soil tops (Queensland, Australia): validation of a new paleoenvironmental tool [J].Climate of the Past, 8(1): 307 – 324.
Banning E B. 2000. The archaeologist's laboratory: The analysis of archaeological data [M]. Netherlands: Springer Science & Business Media: 221.
Bartlein P J, Prentice I C, Webb III T. 1986. Climatic response surfaces from pollen data for some eastern North American taxa [J].Journal of Biogeography, 13(1): 35 – 57.
Birks H J B, Heiri O, Sepp? H, et al. 2010. Strengths and weaknesses of quantitative climate reconstructions based on late-Quaternary biological proxies [J].Open Ecology Journal, 3(6): 279 – 280.
Bringué M, Pospelova V, Calvert S E, et al. 2016. High resolution dinoflagellate cyst record of environmental change in Effingham Inlet (British Columbia, Canada) over the last millennium [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 787 – 810.
Brown T A, Farwell G W, Grootes P M, et al. 1992. Radiocarbon AMS dating of pollen extracted from peat samples [J].Radiocarbon, 34(3): 550 – 556.
Coil J, Korstanje M A, Archer S, et al. 2003. Laboratory goals and considerations for multiple microfossil extraction inarchaeology [J].Journal of Archaeological Science, 30(8): 991 – 1008.
Cuadra V P, Hermann P. 2013. Characterization and macropattern of calcium oxalate phytoliths in argentinean endemic species of Chenopodioideae (Amaranthaceae) [J].Quaternary International, 287: 83 – 88.
Cugny C, Mazier F, Galop D. 2010. Modern and fossil nonpollen palynomorphs from the Basque mountains (western Pyrenees, France): the use of coprophilous fungi to reconstruct pastoral activity [J].Vegetation History and Archaeobotany, 19(5 / 6): 391 – 408.
Davis O K, Shafer D S. 2006. Sporormiella fungal spores, a palynological means of detecting herbivore density [J].Paleogeography, Paleoclimatology, Paleoecology, 237(1): 40 – 50.
D'Costa P M, Anil A C, Patil J S, et al. 2008. Dinofl agellates in a mesotrophic, tropical environment influenced by monsoon [J].Estuarine, Coastal and Shelf Science, 77(1): 77 – 90.
Di Stefano E, Agate M, Incarbona A, et al. 2012. Late Quaternary high uplift rates in northeastern Sicily: evidence from calcareous nannofossils and benthic and planktonic foraminifera [J].Facies, 58(1): 1 – 15.
Franceschi V R, Nakata P A. 2005. Calcium oxalate in plants: formation and function [J].Annual Review of Plant Biology, 56: 41 – 71.
Fyfe R M, de Beaulieu J L, Binney H, et al. 2009. The European Pollen Database: past efforts and current activities [J].Vegetation History and Archaeobotany, 18(5): 417 – 424.
Gajewski K. 2008. The Global Pollen Database in biogeographical and palaeoclimatic studies [J].Progress in Physical Geography, 32(4): 379 – 402.
García A. 1999. Quaternary charophytes from Salina del Bebedero, Argentina: their relation with extant taxa and palaeolimnological significance [J].Journal of Paleolimnology, 21(3): 307 – 323.
Gomes D F, Albuquerque A L S, Torgan L C, et al. 2014. Assessment of a diatom-based transfer function for the reconstruction of lake-level changes in Boqueir?o Lake, Brazilian Nordeste [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 415: 105 – 116.
Hatté C, Rousseau D D, Guiot J. 2009. Climate reconstruction from pollen andδ13C records using inverse vegetation modeling: implication for past and future climates [J].Climate of the Past, 5: 147 – 156.
Horrocks M, Lawlor I. 2006. Plant microfossil analysis of soils from Polynesian stonefi elds in South Auckland, New Zealand [J].Journal of Archaeological Science, 33(2): 200 – 217.
Johnsen S J, Dahl-Jensen D, Gundestrup N, et al. 2001. Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and North GRIP [J].Journal of Quaternary Science, 16(4): 299 – 307.
Kelly E F, Amundson R G, Marino B D, et al. 1991. Stable isotope ratios of carbon in phytoliths as a quantitative method of monitoring vegetation and climate change [J].Quaternary Research, 35(2): 222 – 233.
King D C, Schubert B A, Jahren A H. 2012. Practical considerations for the use of pollenδ13C value as a paleoclimate indicator [J].Rapid Communications in Mass Spectrometry, 26(18): 2165 – 2172.
Klotz S, Guiot J, Mosbrugger V. 2003. Continental European Eemian and early Würmian climate evolution: comparing signals using different quantitative reconstruction approaches based on pollen [J].Global and Planetary Change, 36(4): 277 – 294.
Kohn M J. 2010. Carbon isotope compositions of terrestrial C3plants as indicators of (paleo) ecology and (paleo) climate [J].Proceedings of the National Academy of Sciences, 107(46): 19691 – 19695.
Lebreton V, Messager E, Marquer L, et al. 2010. A neotaphonomic experiment in pollen oxidation and its implications for archaeopalynology [J].Review of Palaeobotany and Palynology, 162(1): 29 – 38.
Lenarczyk J, Ko?aczek P, Jankovská V, et al. 2015. Palaeoecological implications of the subfossil Pediastrum argentinense-type in Europe [J].Review of Palaeobotany and Palynology, 222: 129 – 138.
Leng M, Barnker P, Greenwood P, et al. 2001. Oxygen isotope analysis of diatom silica and authigenic calcite from Lake Pinarbasi, Turkey [J].Journal of Paleolimnology, 25(3): 343 – 349.
Lentfer C J, Boyd W E. 2000. Simultaneous extraction of phytoliths, pollen and spores from sediments [J].Journal of Archaeological Science, 27(5): 363 – 372.
Lentfer C, Therin M, Torrence R. 2002. Starch grains andenvironmental reconstruction: a modern test case from West New Britain, Papua New Guinea [J].Journal of Archaeological Science, 29(7): 687 – 698.
Li Y L, Liu E F, Xiao X Y, et al. 2015. Diatom response to Asian monsoon variability during the Holocene in a deep lake at the southeastern margin of the Tibetan Plateau [J].Boreas, 44(4): 785 – 793.
Loader N J, Hemming D L. 2001. Spatial variation in pollenδ13C correlates with temperature and seasonal development timing [J].The Holocene, 11(5): 587 – 592.
Lü H Y, Liu K B. 2005. Phytolith assemblages as indicators of coastal environmental changes and hurricane overwash deposition [J].The Holocene, 15(7): 965 – 972.
Lü H Y, Wu N Q, Liu K B, et al. 2007. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China Ⅱ: paleoenvironmental reconstruction in the Loess Plateau [J].Quaternary Science Reviews, 26(5): 759 – 772.
Lü H Y, Wu N Q, Liu K B, et al. 2011. Modern pollen distributions in Qinghai-Tibetan Plateau and the development of transfer functions for reconstructing Holocene environmental changes [J].Quaternary Science Reviews, 30(7): 947 – 966.
Lü H Y, Wu N Q, Yang X D, et al. 2006. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China Ⅰ: phytolith-based transfer functions [J].Quaternary Science Reviews, 25(9): 945 – 959.
Mander L, Li M, Mio W, et al. 2013. Classification of grass pollen through the quantitative analysis of surface ornamentation and texture [J].Proceedings of the Royal Society of London B: Biological Sciences, 280(1770): 20131905, doi: 10.1098/rspb.2013.1905.
Matsushima R. 2015. Morphological variations of starch grains [M] // Nakamura Y. Starch. Japan: Springer: 425 – 441.
Moore S, Beazley M J, McCallum M R, et al. 2000. Can calcium oxalate residues from lichen activity reflect past climate change? [J].Extended Abstracts, 40(2): 4 – 5.
Mosbrugger V, Utescher T. 1997. The coexistence approach—a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 134(1): 61 – 86.
Müller A, Knies J. 2013. Trace elements and cathodoluminescence of detrital quartz in Arctic marine sediments [J].Climate of the Past, 9(6): 2615 – 2630.
Nakagawa T, Brugiapaglia E, Digerfeldt G, et al. 1998. Densemedia separation as a more efficient pollen extraction method for use with organic sediment/deposit samples: Comparison with the conventional method [J].Boreas, 27(1): 15 – 24.
Overpeck J T, Webb T, Prentice I C. 1985. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs [J].Quaternary Research, 23(1): 87 – 108.
Park J, Park J. 2015. Pollen-based temperature reconstructions from Jeju island, South Korea and its implication for coastal climate of East Asia during the late Pleistocene and early Holocene [J].Palaeogeography, Palaeoclimatology, Palaeoecology, 417: 445 – 457.
Parr J F, Dolic V, Lancaster G, et al. 2001. A microwave digestion method for the extraction of phytoliths from herbarium specimens [J].Review of Palaeobotany and Palynology, 116(3): 203 – 212.
Parr J F, Taffs K H, Lane C M. 2004. A microwave digestion technique for the extraction of fossil diatoms from coastal lake and swamp sediments [J].Journal of Paleolimnology, 31(3): 383 – 390.
Piotrowska N, Bluszcz A, Demske D, et al. 2004. Extraction and AMS radiocarbon dating of pollen from Lake Baikal sediments [J].Radiocarbon, 46(1): 181 – 188.
Piperno D R, Holst I. 1998. The presence of starch grains on prehistoric stone tools from the humid neotropics: indications of early tuber use and agriculture in Panama [J].Journal of Archaeological Science, 25(8): 765 – 776.
Piperno D R, Ranere A J, Holst I, et al. 2000. Starch grains reveal early root crop horticulture in the Panamanian tropical forest [J].Nature, 407(6806): 894 – 897.
Piperno D R. 2014. Phytolith analysis: an archaeological and geological perspective [M]. Netherlands: Elsevier.
Scaife R G. 1987. A review of later Quaternary plant microfossil and macrofossil research in Southern England; with special reference to environmental archaeological evidence [J].Environmental Archaeology: A RegionalReview, 2: 125 – 203.
Soulié-M?rsche I. 2008. Charophytes, indicators for low salinity phases in North African sebkhet [J].Journal of African Earth Sciences, 51(2): 69 – 76.
Tarasov P E, Nakagawa T, Demske D, et al. 2011. Progress in the reconstruction of Quaternary climate dynamics in the Northwest Pacific: A new modern analogue reference dataset and its application to the 430-kyr pollen record from Lake Biwa [J].Earth-Science Reviews, 108(1): 64 – 79.
ter Braak C J F, Juggins S. 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages [J].Hydrobiologia, 269(1): 485 – 502.
Thompson R S, Anderson K H, Bartlein P J. 2008. Quantitative estimation of bioclimatic parameters from presence/ absence vegetation data in North America by the modern analog technique [J].Quaternary Science Reviews, 27(11): 1234 – 1254.
Tian F, Cao X Y, Xu Q H, et al. 2009. A laboratorial study on influence of alkaline and oxidative environment on preservation ofPinustabulaeformis pollen [J].Frontiers of Earth Science in China, 3(2): 226 – 230.
Weckstr?m K, Weckstr?m J, Yliniemi L M, et al. 2010. The ecology ofPediastrum(Chlorophyceae) in subarctic lakes and their potential as paleobioindicators [J].Journal of Paleolimnology, 43(1): 61 – 73.
Whitlock C, Larsen C. 2001. Charcoal as a fire proxy [M]. Netherlands: Springer: 75 – 97.
Yang X Y, Ma Z K, Wang T, et al. 2014. Starch grain evidence reveals early pottery function cooking plant foods in North China [J].Chinese Science Bulletin, 59(32): 4352 – 4358.
Yin J H, Yang X, Zheng Y G. 2014. Influence of increasing combustion temperature on the AMS14C dating of modern crop phytoliths [J].Scientific Reports, 4, doi: 10.1038/ srep06511.
Zhang J, Lü H Y, Huang L P. 2014. Calciphytoliths (calcium oxalate crystals) analysis for the identifi cation of decayed tea plants (Camellia sinensisL.) [J].Scientifi c Reports, 4, doi: 10.1038/srep06703.
Zheng Z, Wei J, Huang K, et al. 2014. East Asian pollen database: modern pollen distribution and its quantitative relationship with vegetation and climate [J].Journal of Biogeography, 41(10): 1819 – 1832.
Application of plant microfossils in Quaternary environmental research: a review and perspective
ZHANG Jixiao1,2, XU Hai1,3
(1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Department of Environment Science and Technology, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China)
Background, aim, and scopePlant microfossils, such as sporopollen, phytoliths, starch grains and charcoals, have been widely used in Quaternary environmental research due to their features of huge quantity, wide distribution and easy preservation. However, review articles on plant microfossils in China so far have not been systematic and comprehensive enough. In this paper, key types, extraction methods and application examples in Quaternary environmental research of plant microfossils are reviewed and analyzed, and the prospects on integrated multi-proxy studies are proposed.Materials and methodsFerns spores and pollen of seed plants are collectively referred to as sporopollen, and they can be identifi ed and categorized in different parent plants by comparing their morphologies. By analyzing the types and composition ratios of sporopollen in sedimentary strata, the vegetation composition, precipitation and temperature in the historical period may become available. Some plants such as grasses can form a type of silica-plant microfossils called phytolith, which can be preserved in the soil after its death. Different plants can form distinct or similar forms of phytolith, so phytolith can also be usedin Quaternary research. Similarly, starch grains of different plants have their own characteristics and are a basis for the identifi cation of plant species. So starch grains are expected to be used in Quaternary research, especially in archaeology. In the oceans, lakes, wetlands and other sediments, a large number of micro-algaes, such as diatoms, Charophytes oogonia, dinofl agellates,Pediastrummay appear, which are complex and diverse, and they can be categorized in the plant microfossils too. Generally, during the analytic process of sporopollen, charcoals and fungal spores can be found. Charcoals are commonly used in the study on the history of fi re. Fungal spores can implicate some certain environmental information. Furthermore, some plants contain calcium oxalate crystals, which are similar to phytoliths and can be referred to as “plant calcium body”, and now studies on them are relatively less, but with the deepening of the research, they could be expected to be used in Quaternary research. Plant microfossils is dispersed in sediments and mixed with organic and inorganic impurities, so they should be separated and purifi ed for the implementation of further research. Depending on the chemical composition of plant microfossils in different types, extraction method also has a corresponding difference. To sum up, the method to extract sporopollen mainly includes hydrofluoric acid screening method, heavy liquid flotation method and screening method, and in actual extraction process, all these methods are integratedly used. Phytoliths and diatoms are mainly composed of the silicon, and they often coexist in the sediments. To extract them, oxidants are used to remove organic components, while hydrochloric acid is used to remove the soluble carbonate minerals. Besides, sedimentation method, microwave ablation method or sieving method is used to remove clay during the extraction process of phytoliths. In physics, different sizes of particles have different sedimentation velocities in a liquid, which can be calculated by Stokes sedimentation equation. Based on this principle, the author of this article uses the low-speed centrifugation method to remove those impurities which are smaller than sporopollen or phytoliths, and finds it can replace the screening method. Sometimes, in order to speed up the extraction process and reduce the dosage of samples, heavy liquid extraction methods and so on are used to obtain various plant microfossils at the same time.ResultsTraditionally, plant microfossils are used in reconstructing paleoenvironment and paleoclimate by identifying their species and comparing relative quantity changes among major species in sediments. For example, the pollen ratio ofArtemisiaand Chenopodiaceae is often applied in analyzing humidity changes. Phytoliths and diatoms, due to their relatively poor mobility, especiallyin situconservation, their content changes in sediments usually refl ect the original plant condition. But for pollen, yielding quantity and propagation distance in different plants are different, so relying solely on pollen content change to rebuild paleovegetation and paleoclimate has certain limitations. To explore the quantitative relationship between pollen and vegetation or climate, surface pollen and air pollen spectrum research are widely carried out, thus providing a reliable basis for modern pollen-vegetationclimate relationship model. With the gradual replenish of the global pollen, vegetation and meteorological databases, a large number of reliable quantitative paleoclimate reconstruction methods are built, and according to their different principles they generally include: indicator species method, such as the coexistence analysis and areal overlay analysis method; multivariate function method, such as converting function method; assemblage method, such as modern analogy and response surface method.DiscussionIn recent years, the study on plant microfossils has transcended the limitation of morphology and expanded to their chemical composition, such as carbon isotope. For example, some sediments contain a low content on other organic matters but are rich in sporopollen, so sporopollen can be extracted for dating. Some studies show that theδ13C content of sporopollen is related to its temperature and annual precipitation. Therefore, it is expected to provide useful information during the process of reconstructing paleoenvironment. Furthermore,δ18O in phytolith has been verifi ed of its relation to soil moisture duringits growth andδ13C in diatoms of marine sediments can refl ect the ocean productivity.ConclusionsAll in all, plant microfossils have been widely used in Quaternary research, and they have unique advantages in providing useful information in rebuilding paleovegetation and paleoenvironment, and also have potential uses in dating and stable isotope analysis.Recommendations and perspectivesHowever, some problems still remain: the morphology of modern plant microfossils (such as pollen) requires further research; the quantitative relationship between vegetation and modern pollen etc. is not comprehensive enough; some types of plant microfossils (such as fungal spores) are lack of the research on them; stable isotope study of plant microfossils is still few, and comprehensive analysis of plant microfossils and other geochemical indicators should also be strengthened.
plant microfossils; sporopollen; phytolith; extraction methods; quantitative climate reconstruction; stable isotope
ZHANG Jixiao, E-mail: zhangjx@ieecas.cn
10.7515/JEE201603003
2015-12-02;錄用日期:2015-12-25
Received Date:2015-12-02;Accepted Date:2015-12-25
國家自然科學(xué)基金項(xiàng)目(41473120);國家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)(2013CB955903)
Foundation Item:National Natural Science Foundation of China (41473120); National Basic Research Program of China (973 Program) (2013CB955903)
張繼效,E-mail: zhangjx@ieecas.cn