国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

高濃麥汁改良提高啤酒酵母發(fā)酵性能的研究進展

2016-03-27 17:34:47趙伯辰雷宏杰
釀酒科技 2016年10期
關(guān)鍵詞:麥汁釀造啤酒

趙伯辰,雷宏杰

(1.西北農(nóng)林科技大學食品科學與工程學院,陜西楊凌712100;2.雪花啤酒(西安)有限公司,陜西西安710018)

高濃麥汁改良提高啤酒酵母發(fā)酵性能的研究進展

趙伯辰1,2,雷宏杰1

(1.西北農(nóng)林科技大學食品科學與工程學院,陜西楊凌712100;2.雪花啤酒(西安)有限公司,陜西西安710018)

啤酒高濃釀造技術(shù)由于可在不增加生產(chǎn)設(shè)備的基礎(chǔ)上大幅提高啤酒產(chǎn)量、降低能耗和勞動力、改善啤酒口感而深受啤酒釀造商的青睞。但該技術(shù)對酵母菌種的要求非??量?,高滲透壓脅迫和高乙醇毒性導致酵母生長緩慢、細胞活性降低,嚴重影響到酵母的發(fā)酵性能和啤酒品質(zhì)。目前,多種酵母營養(yǎng)添加物已經(jīng)應(yīng)用于高濃麥汁中來改善酵母的發(fā)酵性能,包括金屬離子、脂肪酸、甾醇和氮源等。改善麥汁營養(yǎng)組成可降低酵母細胞對外界壓力的敏感性從而提高其發(fā)酵性能。但是,麥汁組成的改變很可能對啤酒口感、酒體穩(wěn)定性和啤酒泡沫產(chǎn)生不利的影響。系統(tǒng)綜述了國內(nèi)外通過添加多種營養(yǎng)物質(zhì)優(yōu)化麥汁組成改善細胞生理特性、酵母發(fā)酵性能及啤酒產(chǎn)品質(zhì)量的研究進展。

啤酒;高濃麥汁;啤酒酵母;啤酒質(zhì)量

啤酒高濃釀造技術(shù)在現(xiàn)代啤酒工業(yè)生產(chǎn)中得到了廣泛的應(yīng)用。該技術(shù)優(yōu)勢是可大幅提高生產(chǎn)能力及設(shè)備利用率、降低能耗及勞動力、減少廢水的排放量[1]。盡管大多數(shù)啤酒釀造商采用高濃麥汁(16~18°P)進行啤酒生產(chǎn),但一些半工業(yè)規(guī)模的試驗已經(jīng)提出了超高濃麥汁釀造的可行性(20~25°P)[2]。超高濃麥汁發(fā)酵表現(xiàn)出較低的發(fā)酵速度、酯類物質(zhì)含量顯著升高、酵母細胞生長的遲滯期延長、啤酒泡沫穩(wěn)定性差、啤酒殘?zhí)橇可摺⒔湍秆h(huán)利用次數(shù)減少等缺點[3]。超高濃啤酒釀造技術(shù)的進一步產(chǎn)業(yè)化需要對一系列因素進行逐一優(yōu)化(酵母細胞的耐受性、發(fā)酵性能、發(fā)酵過程工藝參數(shù)等)。本文綜述了通過在麥汁中添加金屬離子、脂類及酵母營養(yǎng)劑來改善發(fā)酵性能的可行性,并分析了其對啤酒質(zhì)量的影響。

1 金屬離子(Zn2+)

很早就有學者提出Zn2+在麥汁發(fā)酵中起到非常關(guān)鍵的作用。目前啤酒釀造工業(yè)生產(chǎn)中Zn2+的添加最為普遍。麥汁中通常含有0.1~5.0 mg/L的Zn2+,其含量的大小取決于麥芽的品種及麥汁的制備工藝[4]。麥汁中的Zn2+只代表麥芽中Zn2+的一小部分,大部分Zn2+仍然存在于麥糟中或者參與了蛋白質(zhì)的沉降及麥汁的澄清[5]。Zn2+在酵母細胞中扮演多重角色,可作為一系列蛋白質(zhì)(糖酵解和醇類合成途徑的蛋白酶)的結(jié)構(gòu)或者催化輔因子[6]。在搖瓶發(fā)酵[7]和恒化器培養(yǎng)[8]過程中,Zn2+的缺乏會導致幾十個基因的調(diào)控發(fā)生改變,這是由于大約3%的酵母蛋白組需要Zn2+的參與才能發(fā)揮正常的功能[9]。De Nicola等[8]發(fā)現(xiàn):受Zn2+調(diào)控其轉(zhuǎn)錄的基因扮演著多種多樣的生物學角色,包括儲存碳水化合物的代謝、線粒體的生物發(fā)生學以及通過支鏈氨基酸合成基因調(diào)控風味物質(zhì)的形成。而且,Zn2+在鋅指結(jié)構(gòu)DNA結(jié)合蛋白(Msn2p和Msn4p)的形成過程中起著非常重要的作用,此類蛋白質(zhì)調(diào)控酵母細胞對外界壓力的響應(yīng)[10]。

Zn2+在啤酒釀造過程中的重要性可反映在發(fā)酵開始的幾小時內(nèi)酵母細胞對其的快速吸收[11]。Zn2+通過細胞壁被運輸至胞內(nèi)儲存于液泡中[12]。麥汁中Zn2+的水平經(jīng)常處于波動狀態(tài),但常濃麥汁中(12°P)0.2 mg/L的Zn2+濃度可保證最佳的發(fā)酵速度,如果低于0.1 mg/L則會影響發(fā)酵的正常進行。Zn2+的添加可提高酵母的生長速度,改善其發(fā)酵性能[13]。然而,在發(fā)酵過程中有很多因素會影響到酵母細胞對Zn2+的需求。Helin和Slaughter[14]研究發(fā)現(xiàn),細胞對Zn2+的需求受到麥汁中Mn2+濃度的影響,當麥汁中Mn2+水平很低(<0.01 mg/L)時,0.6 mg/L的Zn2+對發(fā)酵產(chǎn)生抑制作用。但酵母的生理狀況不會受到Zn2+濃度的影響(即使達到500 mg/L)[15]。盡管存在菌種特異性,但一般來講,與上面發(fā)酵酵母菌株相比,下面發(fā)酵酵母菌株能更好地適應(yīng)過高濃度的Zn2+。過高濃度的Zn2+所產(chǎn)生的不利影響在超高濃麥汁(20°P)發(fā)酵中并不明顯,這可能是因為原麥汁中Zn2+水平較低或者Mn2+濃度的不同所致[16]。然而,金屬離子之間的相互作用并不局限于Mn2+,其他金屬離子(Ca2+、Mg2+、K+和Na+)也會影響Zn2+對酵母發(fā)酵性能的促進效果[13]。這些作用可能涉及到多種離子對螯合大分子如麥汁中的氨基酸和肽鏈上的結(jié)合位點存在競爭性的作用。

Zn2+的添加量達到0.5 mg/L時對酵母細胞代謝(高級醇和酯類化合物)會產(chǎn)生較大的影響[13]。添加Zn2+會導致啤酒中異丁醇和異戊醇的濃度升高,酯類物質(zhì)的合成也會受到高濃度Zn2+的刺激,乙酸乙酯、乙酸異戊酯、己酸乙酯等含量均呈上升趨勢。Zn2+對啤酒泡沫特性也有一定的影響,Evans和Sheehan[17]研究表明,麥芽中的多種金屬離子濃度(包括Zn2+)和泡沫穩(wěn)定性之間存在著正相關(guān)性。這是因為麥芽蛋白含量改變或麥汁中Zn2+含量的升高(酵母活力)會降低對泡沫不利的物質(zhì)的釋放(如蛋白酶等)。研究發(fā)現(xiàn)金屬離子對泡沫穩(wěn)定性的影響與麥芽中的離子含量有關(guān),與啤酒中的離子含量無關(guān),表明離子并不是通過與異α-酸之間的交聯(lián)作用來穩(wěn)定啤酒泡沫[18]。

2 脂肪酸

麥汁中的懸浮固形物種類繁多[19],很多研究提出了其中脂肪酸的重要性,特別是軟脂酸(16∶0)和亞油酸(18∶2)對發(fā)酵以及啤酒特征具有突出的貢獻。早期研究表明,純亞油酸對酵母細胞產(chǎn)生醋酸酯類化合物有著不利的影響[20]。Lentini[21]發(fā)現(xiàn)在發(fā)酵過程中酵母細胞膜上來源于麥芽的亞油酸與酯類化合物的合成直接相關(guān)。其他研究者提出,亞油酸的添加可提高發(fā)酵速度,增大酵母細胞生長量以及細胞活性,促進乙醇的生成,但不會提高高級醇的生成[22]。麥汁中添加軟脂酸和油酸可增強酵母細胞對氮的吸收,同樣在葡萄汁中添加亦可提高酵母的生長速度、改善發(fā)酵性能、增強風味化合物的形成[23]。

Moonjai等[22]則致力于通過添加油脂來降低發(fā)酵系統(tǒng)對氧氣需求量的可行性。在麥汁中充入少量的氧氣就可以提高啤酒的風味穩(wěn)定性,也可以限制酵母細胞中潛在的氧化應(yīng)激反應(yīng)。不飽和脂肪酸(UFA)通常是經(jīng)過耗氧反應(yīng)生成,UFA的添加可減少酵母細胞對氧的需求。Hull[24]探索了在工業(yè)大生產(chǎn)中添加UFA來替代麥汁充氧的可行性,在其研究中,發(fā)酵前接種酵母液中添加橄欖油(油酸中的一種)來代替麥汁充氧,對啤酒質(zhì)量沒有大的影響。因此,UFA的添加可作為充氧的替代手段,特別是在氧氣溶解很大程度上受到抑制的高濃和超高濃麥汁中具有非常重要的意義[25]。同樣,通過在高濃麥汁中添加UFA提高細胞膜的不飽和度也可增強酵母細胞對乙醇的耐受性[26],確保發(fā)酵的正常進行。

啤酒泡沫的泡持性和掛壁會受到長鏈脂肪酸的影響,而受到短鏈脂肪酸(≤C10)的影響較小。但麥汁中的長鏈脂肪酸濃度非常低,對泡沫的影響不大[27]。據(jù)研究表明,如果麥汁中加入對泡沫不利的油脂,其作用會暫時受到限制,當時間充分時,這種不利的影響會通過油脂與油脂結(jié)合蛋白之間的相互作用而消失[28]。固定化油脂結(jié)合蛋白的使用可增強很多商業(yè)啤酒的泡沫穩(wěn)定性[29]。事實上油脂也可能對啤酒泡沫特性產(chǎn)生好的影響。Furukubo等[30]發(fā)現(xiàn),堿性氨基酸與促進起泡的異α-酸之間相互作用而導致啤酒泡沫變差,但可通過添加UFA提高細胞對氨基酸的吸收而得到緩解[23]。

3 甾醇

甾醇在酵母細胞膜中影響多重生物學過程[31],但與UFA一樣,在高濃釀造中緩解細胞壓力上起到了重要的作用。然而當酵母細胞在乙醇存在的情況下甾醇含量卻較低,麥角固醇含量較高[32]。而且細胞膜上高濃度的麥角固醇與細胞對乙醇的耐受性呈現(xiàn)明顯的正相關(guān)[33]。麥角固醇的保護作用機制是降低細胞膜的流動性[34]。酵母細胞無法在無氧條件下合成麥角固醇,可通過促進擴散從麥汁中吸收[35]。在無氧的高濃麥汁中添加麥角固醇可提高發(fā)酵速度、生產(chǎn)力、氨基氮的消耗和細胞生長及活性[36]。此外,麥角固醇的添加還可以提高酵母的循環(huán)利用次數(shù)至5次且發(fā)酵性能沒有明顯的降低[37]。

培養(yǎng)基中添加多種甾醇可提高酵母細胞對高滲透壓的耐受性,麥角固醇和豆甾醇的效果最佳[38]。另外,當酵母細胞受到鹽的壓力脅迫時細胞膜上的麥角固醇含量也會升高[39]。因此,高濃釀造條件下麥角固醇也可能參與到保護細胞免受滲透壓破壞的過程中。

4 酵母營養(yǎng)劑(酵母膏)

已經(jīng)有人證實,在培養(yǎng)基中加入酵母膏或者由酵母膏制成的營養(yǎng)劑均可改善酵母發(fā)酵性能。該培養(yǎng)基包括:富含葡萄糖的培養(yǎng)基[40]、龍舌蘭汁[41]、高濃及超高濃麥汁[36]。酵母膏的使用可提高酵母的生長及細胞活性、提高糖的利用率及乙醇產(chǎn)量[41]。在使用酵母營養(yǎng)劑時,不僅是游離氨基氮水平,其氨基酸組成也是非常關(guān)鍵的因素。不同的氨基酸對發(fā)酵性能的影響不同,例如脯氨酸在發(fā)酵過程中就不會被酵母利用,但在保護酵母細胞抵抗高乙醇或高滲透壓脅迫的過程中起到了很重要的作用[42]。Thomas等[43]發(fā)現(xiàn),谷氨酸(3 g/L)可改善小麥芽糖化液的發(fā)酵性能,但甘氨酸的作用卻是相反的,賴氨酸的添加降低了細胞活性和發(fā)酵性能,與單一的氮源相比,復雜的氮源(酪蛋白水解物)則更有利于提高酵母的發(fā)酵性能。Ingledew等[44]認為,酵母營養(yǎng)劑改善發(fā)酵性能不僅提高了氮源的利用率,而且還為酵母細胞提供了維生素和金屬離子。很多研究表明,酵母膏或者營養(yǎng)劑中含有Mg2+,有助于提高酵母的發(fā)酵性能[45]。

常濃麥汁中添加酵母營養(yǎng)劑會刺激高級醇和酯類化合物的合成,這是因為營養(yǎng)劑提高了酵母對麥汁中氨基酸的吸收率[46]。Casey等[47]則發(fā)現(xiàn),在超高濃麥汁中添加酵母膏會降低啤酒中的高級醇濃度,提高酯類化合物的濃度,乙酸乙酯和乙酸異戊酯的含量可分別提高40%和80%。研究表明,酵母膏的添加對高輔料麥汁更加有利,由40%大米輔料的麥汁發(fā)酵生產(chǎn)的啤酒感官品評較差,雙乙酰含量較高、口感較差。而酵母膏的添加可明顯改善以上問題,幾乎和全麥芽麥汁發(fā)酵的啤酒口感相同[48]。酵母膏和營養(yǎng)劑成分的復雜性導致人們對啤酒風味物質(zhì)及感官品評結(jié)果難以進行解釋。風味物質(zhì)可能更大程度上跟添加物的氨基酸組成有關(guān),眾所周知,酵母膏的氨基酸組成含量因原料問題經(jīng)常波動較大,進而會影響到高級醇、酯和SO2的生成[49]。

5 結(jié)論

國內(nèi)外研究學者盡管歷經(jīng)數(shù)十年的研究探索,超高濃麥汁釀造技術(shù)(≥20°P)迄今為止并未在工業(yè)生產(chǎn)中得到應(yīng)用。目前所關(guān)注的能耗問題及原輔材料的可利用程度給予了我們新的研究方向。本文論述了高濃麥汁中營養(yǎng)物質(zhì)的補充對改善酵母發(fā)酵性能的促進作用以及對啤酒質(zhì)量的影響。多種多樣的添加物已經(jīng)廣泛地應(yīng)用于生物乙醇的超高濃發(fā)酵過程中,并且近幾年人們對此有了進一步的了解。然而啤酒釀造過程因多種因素的限制變得更為復雜(發(fā)酵過程參數(shù)、風味、泡沫、酵母活力),因此在啤酒釀造中添加營養(yǎng)物質(zhì)的時候必須綜合各項因素考慮。超高濃麥汁釀造技術(shù)的成功應(yīng)用勢必具有非常大的優(yōu)勢,特別是在降低環(huán)境污染及節(jié)約能源方面。但是,需要設(shè)計出一套完善的方案,不僅僅是優(yōu)化麥汁的營養(yǎng)組成,還要對釀造工藝參數(shù)進行調(diào)整,并且篩選出具有良好發(fā)酵性能的酵母菌種。

[1]Stewart G G.High-gravity brewing and distilling-past experiences and future prospects[J].Journal of theAmerican Society of Brewing Chemists,2010,68:1-9.

[2]McCaig R,McKee J,Pfisterer EA,et al.Very high gravity brewing-laboratory and pilot plant trials[J].Journal of the American Society of Brewing Chemists,1992,50:18-26.

[3]Cahill G,Murray D M,Walsh P K,et al.Effect of the concentration of propagation wort on yeast cell volume and fermentation performance[J].Journal of theAmerican Society of Brewing Chemists,2000,58:14-20.

[4]Kühbeck F,Schütz M,Thiele F,et al.Influence of lauter turbidity and hot trub on wort composition,fermentation,and beer quality[J].Journal of theAmerican Society of Brewing Chemists,2006,64:16-28.

[5]LentiniA,Rogers P,Higgins V,et al.The impact of ethanol stress on yeast physiology[M]//Smart K.Brewing Yeast Fermentation Performance.2nd ed.Wiley-Blackwell,2002:25-38.

[6]De Smidt O,Du Preez J C,Albertyn J.The alcohol dehydrogenases of Saccharomyces cerevisiae:a comprehensive review[J].FEMS Yeast Research,2008,8:967-978.

[7]Higgins V J,Rogers P J,Dawes I W.Application of genome-wide expression analysis to identify molecular markers useful in monitoring industrial fermentations[J]. Applied and Environmental Microbiology,2003,69:7535-7540.

[8]De Nicola R,Hazelwood LA,De Hulster EAF,et al. Physiological and transcriptional responses of Saccharomycescerevisiae to zinc limitation in chemostat cultures[J].Applied and Environmental Microbiology,2007,73:7680-7692.

[9]Eide D J.Multiple regulatory mechanisms maintain zinc homeostasis in Saccharomyces cerevisiae[J].Journal of Nutrition,2003,133:1532S-1535S.

[10]Martinez-Pastor M T,Marchler G,Schuller C,et al.The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element(STRE)[J].EMBO Journal,1996,15:2227-2235.

[11]PoredaA,Antkiewicz P,Tuszyński T,et al.Accumulation and release of metal ions by brewer's yeast during successive fermentations[J].Journal of the Institute of Brewing,2009,115:78-83.

[12]De Nicola R,Walker G M.Accumulation and cellular distribution of zinc by brewing yeast[J].Enzyme and Microbial Technology,2009,44:210-216.

[13]TosunA,Ergun M.Use of experimental design method to investigate metal ion effects in yeast fermentations[J].Journal of Chemical Technology and Biotechnology,2007,82:11-15.

[14]Helin T,Slaughter J C.Minimum requirements for zinc and manganese in brewer's wort[J].Journal of the Institute of Brewing,1977,83:17-19.

[15]Frey S W,Dewitt W G,Bellomy B R.The effect of several trace metals on fermentation[J].Journal of theAmerican Society of Brewing Chemists,1967,199-205.

[16]Rees E M R,Stewart G G.Strain specific response of brewer's yeast strains to zinc concentrations in conventional and high gravity worts[J].Journal of the Institute of Brewing,1998,104:221-228.

[17]Evans D E,Sheehan M C.Don't be fobbed off:the substance of beer foam-a review[J].Journal of theAmerican Society of Brewing Chemists,2002,60:47-57.

[18]Hughes P S,Simpson W J.Interactions between hop bitter acids and metal cations assessed by ultra-violet spectrophotometry[J].Cerevisia,1995,20:35-39.

[19]Narzi? L.Die Technologie der Wurzebereitung[M].7th ed. Stuttgart:Ferdinand Enke Verlag,1992.

[20]Thurston PA,Quain D E,Tubb R S.Lipid metabolism and the regulation of volatile ester synthesis in Saccharomyces cerevisiae[J].Journal of the Institute of Brewing,1982,88:90-94.

[21]LentiniA,Takis S,Hawthorne D B,et al.The influence of trub on fermentation and flavour development[J].Institute of Brewing,1994,23:89-95.

[22]Moonjai N,Verstrepen K J,Shen H Y,et al.Linoleic acid supplementation of a cropped brewing lager strain:effects on subsequent fermentation performance with serial repitching[J].Journal of the Institute of Brewing,2003,109:262-272.

[23]Stewart G G,Martin SA.Wort clarity:effects on fermentation[J].Technical Quarterly-Master BrewersAssociation of America,2004,41:18-26.

[24]Hull G.Olive oil addition to yeast as an alternative to wort aeration[J].Technical Quarterly-Master BrewersAssociation ofAmerica,2008,45:17-23.

[25]Baker C,Morton S.Oxygen levels in air-saturated worts[J]. Journal of the Institute of Brewing,1977,83:348-349.

[26]RoseAH.The role of oxygen in lipid metabolism and yeast activity during fermentation[J].European Brewery Convention Mongraph,Verlag Hans Carl Getr?nke-Fachverlag:Nürnberg,1978,5:96-107.

[27]Heintz O E.Aspects of beer foam formation and head retention[J].Technical Quarterly-Master BrewersAssociation of America,1987,24:58-60.

[28]Bamforth C W,Jackson G.Aspects of foam lacing[C]// Proceedings of the European Brewery Convention.London: IRL Press,1983:331-338.

[29]Dickie K H,Cann C,Norman E C,et al.Foam-negative materials[J].Journal of theAmerican Society of Brewing Chemists,2001,59:17-23.

[30]Furukubo S,Shobayashi M,F(xiàn)ukui N,et al.Anew factor which affects the foam adhesion of beer[J].Technical Quarterly-Master BrewersAssociation ofAmerica,1993,30:155-158.

[31]Daum G,Lees N D,Bard M,et al.Biochemistry,cell biology and molecular biology of lipids of Saccharomyces cerevisiae[J].Yeast,1998,14:1471-1510.

[32]Arneborg N,H?y C E,J?rgensen O B.The effect of ethanol and specific growth rate on the lipid content and composition of Saccharomyces cerevisiae grown anaerobically in a chemostat[J].Yeast,1995,11:953-959.

[33]Aguilera F,Peinado RA,Millán C,et al.Relationship between ethanol tolerance,H+ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains[J].International Journal of Food Microbiology,2006,110:34-42.

[34]Russell N J.Functions of lipids:Structural roles and membrane functions[M]//Microbial Lipids.London: Academic Press,1989:279-365.

[35]Nes W R,Dhanuka I C,Pinto W J.Evidence for facilitated transport in the absorption of sterols by Saccharomyces cerevisiae[J].Lipids,1986,21:102-106.

[36]Dragone G,Silva D P,Almeida e Silva J B,et al. Improvement of ethanol productivity in a high-gravity brewing at pilot plant scale[J].Biotechnology Letters,2003,25:1171-1174.

[37]Casey G P,Ingledew W M.Reevaluation of alcohol synthesis and tolerance in brewer's[J].Journal of theAmerican Societyof Brewing Chemists,1985,43:75-83.

[38]Hossack JA,RoseAH.Fragility of plasma membranes in Saccharomyces cerevisiae enriched with different sterols[J]. Journal of Bacteriology,1976,127:67-75.

[39]Hosono K.Effect of salt stress on lipid composition and membrane fluidity of the salt-tolerance yeast Zygosaccharomyces rouxii[J].Journal of General andApplied Microbiology,1992,138:91-96.

[40]Bafrncová P,?morovi?ová D,Sláviková I,et al.Improvement of very high gravity ethanol fermentation by media supplementation using Saccharomyces cerevisiae[J]. Biotechnology Letters,1999,21:337-341.

[41]Díaz-Monta?o D M,F(xiàn)avela-Torres E,Córdova J. Improvement of growth,fermentative efficiency and ethanol tolerance of Kloeckera africana during the fermentation of Agave tequilana juice by addition of yeast extract[J].Journal of the Science of Food andAgriculture,2009,90:321-328.

[42]Takagi H,Takaoka M,KawaguchiA,et al.Effect of L-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae[J].Applied and Environmental Microbiology,2005,71:8656-8662.

[43]Thomas K C,Hynes S H,Ingledew W M.Effects of particulate materials and osmoprotectants on very-highgravity ethanolic fermentation by Saccharomyces cerevisiae[J].Applied and Environmental Microbiology,1994,60:1519-1524.

[44]Ingledew M L,Sosulski F W,Magnus CA.An assessment of yeast foods and their utility in brewing and enology[J]. Journal of theAmerican Society of Brewing Chemists,1986,44:166-170.

[45]D'Amore T,Panchal C J,Russell I,et al.Osmotic pressure effects and intracellular accumulation of ethanol in yeast during fermentation[J].Journal of Industrial Microbiology,1988,2:365-372.

[46]Kruger L,PickerellAT W,Axcell B.The sensitivity of different brewing yeast strains to carbon dioxide inhibition: fermentation and production of flavour-active volatile compound[J].Journal of the Institute of Brewing,1992,98:133-138.

[47]Casey G P,Chen E C H,Ingledew W M.High-gravity brewing:production of high levels of ethanol without excessive concentrations of esters and fusel alcohols[J]. Journal of theAmerican Society of Brewing Chemists,1985,43:179-182.

[48]Le Van V M,Strehaiano P,Nguyen D L,et al.Microbial protease of yeast extract-alternative additions for improvement of fermentation performance and quality of beer brewed with a high rice content[J].Journal of theAmerican Society of Brewing Chemists,2001,59:10-16.

[49]Verstrepen K J,Derdelinckx G,Dufour J P,et al.Flavor active esters:adding fruitiness to beer[J].Journal of Bioscience and Bioengineering,2003,96:110-118.

Research Progress in High-Gravity Wort to Improve the Fermenting Performance of Beer Yeast

ZHAO Bochen1,2and LEI Hongjie1
(1.College of Food Science&Engineering,NorthwestA&F University,Yangling,Shaanxi 712100;2.Snow Beer(Xi'an)Co.Ltd.,Xi'an,Shaanxi 710018,China)

High-gravity brewing technology of beer is quite popular among breweries because it could greatly increase beer yield,reduce energy consumption and labor force,and improve beer taste without any addition of production equipments.However,such technology has extreme requirements for beer yeast species because osmotic stress and high-alcohol toxicity would result in slow growth of yeast and low cell activity which would further deteriorate yeast fermenting performance and beer quality.At present,multiple yeast nutritional additives including metal ions,fatty acids,sterol and nitrogen source etc.are used in high-gravity wort to improve the fermenting performance of yeast.The change in wort nutritional composition could decrease the sensitivity of yeast cells to ambient pressure and further improve yeast fermenting performance.However,the change in wort nutritional composition would possibly damage beer taste,beer stability and beer foam.In this paper,the research progress in the change of wort nutritional composition by adding multiple nutritional substances to improve yeast fermenting performance and beer quality at home and abroad was reviewed.(Trans.By YUE Yang)

beer;high-gravity wort;beer yeast;beer quality

TS262.5;TS262.54;TS262.57

A

1001-9286(2016)10-0094-05

10.13746/j.njkj.2016157

2016-05-09

優(yōu)先數(shù)字出版時間:2016-07-11;地址:http://www.cnki.net/kcms/detail/52.1051.TS.20160711.1043.001.html。

猜你喜歡
麥汁釀造啤酒
探究未過濾麥汁濁度的控制措施
小巧有力的糖化設(shè)計
黃昏十月末
揚子江(2019年1期)2019-03-08 02:52:34
《啤酒》
流行色(2018年10期)2018-03-23 03:36:24
哼哼豬買啤酒
啤酒和麥汁中反-2-壬烯醛前體物質(zhì)檢測方法的優(yōu)化及應(yīng)用
中國釀造(2016年12期)2016-03-01 03:08:24
陽朔啤酒魚
山東青年(2016年2期)2016-02-28 14:25:44
山西老陳醋釀造技藝
食品工程(2015年3期)2015-12-07 10:20:50
把第一部iPhone 6丟進啤酒
高蛋白含量大麥甘啤4號釀造特性
钟山县| 兴山县| 宣城市| 莱芜市| 永丰县| 上虞市| 邢台县| 阳西县| 田林县| 克山县| 昭觉县| 金塔县| 汶川县| 永靖县| 长乐市| 福州市| 高要市| 丰都县| 和政县| 宁南县| 湘阴县| 渑池县| 谷城县| 文登市| 博爱县| 红安县| 新绛县| 工布江达县| 浑源县| 美姑县| 和顺县| 城口县| 大同市| 平南县| 澎湖县| 怀宁县| 临洮县| 隆德县| 察隅县| 赫章县| 双牌县|