薛飛, 方光戰(zhàn), 唐業(yè)忠
(中國科學院成都生物研究所兩棲爬行動物研究室,成都610041)
大腦聽覺偏側性的特征與演化
薛飛, 方光戰(zhàn)*, 唐業(yè)忠
(中國科學院成都生物研究所兩棲爬行動物研究室,成都610041)
作為生物體適應環(huán)境的特征,偏側性在人類和動物中普遍存在。偏側性能提升個體處理環(huán)境信息的效率并更快對環(huán)境刺激做出響應,從而提升個體對環(huán)境的適合度。聽覺作為重要的感知方式也具有偏側性,并且在多個類群中具有相似趨勢。本文總結了聽覺偏側性在不同動物類群間的相似性和特異性,對聽覺偏側性的產生機制進行了歸納,并探討了群體水平聽覺偏側性的成因。最后對研究的不足之處提出了可能的解決方案,并對聽覺偏側性研究方向進行了展望。
聽覺偏側性;腦功能偏側性;群體水平偏側性;適合度;作用機制
偏側性指生物體在行為和感知的過程中偏好使用單側肢體、感覺器官和大腦半球的現象。偏側性是生物界普遍存在的現象,例如約90%的人是右利手(Hardyck & Petrinovich,1977),同樣,類人猿亦偏好使用某側前肢掏取食物,且偏側肢隨物種而異(Hopkinsetal.,2011)。鸚鵡習慣用左腳爪抓握食物(Rogers & Workman,1993);安樂蜥Anoliscarolinensis傾向于攻擊左側視野內的同類(Deckel,1995);蟾蜍在捕食右側視野內的食物時更迅捷(Vallortigaraetal.,1998);聚群的魚類在遭遇天敵時總是轉向相同方向逃走(Cantalupoetal.,1995);甚至在多種無脊椎動物類群中也發(fā)現了這種不對稱使用肢體或感覺器官的現象(Frasnellietal.,2012)。偏側性可能是動物適應性進化的結果,對生物體的生存有積極作用(Rogers,2002;Rogersetal.,2004;Vallortigara & Rogers,2005):偏側性使大腦左、右半球功能特化,能夠同步處理來自軀體兩側的不同信號,優(yōu)化整個神經網絡的利用率;單側半球具有主導地位,能夠避免左、右半球競爭控制權而導致的反應延遲甚至反應錯誤,使個體能夠對外界環(huán)境做出更精準的反應并能完成更加復雜的工作,從而提高個體的競爭力和適合度。除了這些積極作用外,偏側性也會帶來諸如減弱非優(yōu)勢側主導的感覺器官對競爭對手、獵物或天敵的響應,群體中多數個體表現出的相同偏側性會導致個體行為易被競爭對手或天敵預測等不利影響,但由于大腦偏側性能使生物體具備同時處理多種信號的能力,提升了個體在復雜環(huán)境中的適應性,因此偏側性對個體和群體而言,優(yōu)勝于劣(Vallortigara,2006)。作為主要的感知方式之一,聽覺是個體感知外界環(huán)境、維持生存和繁殖活動的重要途徑。近年來,聽覺偏側性研究(特別是其特征和普遍性)一直是大腦功能研究領域的熱點之一。
在右利手的人群中,左側顳葉皮層受損的病人在分辨語音信息時的準確率明顯低于右側受損的病人(Kimura,1961a,1961b)。由于人體感覺器官的輸出信號大部分都投射到對側大腦半球(Carpenter,1976),因此在語言交流中存在右耳/左半球優(yōu)勢(right-ear advantage)。隨后的實驗證實,通常右耳/左半球傾向于處理與語言相關的信號,左耳/右半球則對音調及環(huán)境聲音更加敏感(Paquetteetal.,1996;Kimura,2011)。而在非人哺乳類中,條件反射訓練和腦損毀研究均證實左半球在識別同種叫聲的過程中起主導作用(Petersenetal.,1978;Ehret,1987;Fitchetal.,1993;Heffner & Heffner,1995)。利用朝向不對稱實驗范式(orienting-asymmetry paradigm,即在個體的正后方播放聲音刺激,記錄其耳朵或頭部轉動方向來分析被試是否具有耳偏側性)對獼猴Macacamulatta(Hauser & Andersson,1994;Hauseretal.,1998)、海獅Zalophuscalifornianus(B?yeetal.,2005)、家馬Equuscaballus(Basileetal.,2009)、家犬Canisfamiliaris(Siniscalchietal.,2008;Reinholz-Trojanetal.,2012)和角雕Harpiaharpyja(Palleroni & Hauser,2003)測試的結果顯示:成年個體聽到來自身體正后方的同種鳴叫時會轉動右耳廓或將頭轉向右側,聽到異種或新穎的叫聲則相反。這些結果表明包括人在內的哺乳動物、鳥類在感知同種鳴叫時具有右耳/左半球優(yōu)勢,而感知異種叫聲或環(huán)境聲音時左耳/右半球更加敏感。在兩棲動物中,行為(Xueetal.,2015)及電生理(Fangetal.,2012,2014)研究證實仙琴蛙Babinadaunchina具有類似的耳優(yōu)勢,即其左側中腦主導著對同種鳴叫的處理和識別(Fangetal.,2015)。
有意思的是獼猴和海獅的幼體對所有聲音都沒有明顯的偏側性(Hauser & Andersson,1994;B?yeetal.,2005),而角雕(Palleroni & Hauser,2003)在聽到獵物叫聲時會根據捕食經驗的有無而向右或向左轉頭,同時只有具有繁殖經驗的雌性小鼠會對幼崽的叫聲表現出偏側性(Ehret,1987),這表明聽覺偏側性具有可塑性,暗示聽覺偏側性在物種演化過程中會在不同類群甚至個體之間存在差異。事實上,在感知語言時,左利手人群中具有左耳/右半球優(yōu)勢的人數百分比高于右利手人群中具有同樣優(yōu)勢的人數百分比(Perlakietal.,2013);在非人靈長類中,利用行為(Gil-da-Costa & Hauser,2006)、事件相關電位(event-relative potential,ERP)(Berntsonetal.,1993)和正電子發(fā)射斷層成像(positron emission tomography,PET)(Taglialatelaetal.,2009)發(fā)現黑猩猩Pantroglodytes和非洲綠猴Cercopithecusaethiops在處理熟悉聲音或同種鳴叫時具有右半球優(yōu)勢;左側聽皮層受損的獼猴在一定訓練之后,其分辨能力可以恢復到受損前的水平,推測是右側聽皮層起到了補償作用(Heffner & Heffner,1995);另外帕氏髯蝠Pteronotusparnellii在感知同種鳴叫和定位回聲時分別具有左、右半球優(yōu)勢(Kanwal,2012)。這些特化的聽覺偏側性一般被解釋為是物種在進化過程中受到不同環(huán)境選擇壓力所致(Ward & Hopkins,1993;Gil-da-Costa & Hauser,2006)。
這一系列的研究證實在大多數四足動物中,聽覺偏側性是一種普遍存在的現象,而且和人類的聽覺偏側性具有十分相似的趨勢:右耳/左半球主導同種交流信號(語言、鳴聲等)和熟悉的聲音;左耳/右半球負責處理異種鳴叫、突發(fā)刺激以及環(huán)境聲音等。這些證據表明聽覺偏側性雖然是人類語言交流中的一個重要特征,但它并非是人類所特有,而是與其他物種聲音通訊系統所共有。由于四足動物的聽覺通路總體上具有很高的相似性而且部分核團和腦區(qū)具有同源性(Manleyetal.,2004;Butler & Hodos,2005),因此普遍存在且模式十分相似的聽覺偏側性被認為是在進化過程中來源于共同的祖先物種的腦功能特征(Vallortigaraetal.,1999,2011)。偏側性能夠提升個體的適合度,因此具有聽覺偏側性的個體在自然選擇的過程中所占比例逐漸提升;而特定形式的偏側性一旦形成,便會作為高度保守的腦功能并在物種演化過程中得以保留(Rogers,2000)。
研究證實個體偏側性可能是在發(fā)育過程中由基因調控形成,并能遺傳給后代(Corballisetal.,2012;McManusetal.,2013)。聽覺偏側性能夠使個體從外界環(huán)境的噪聲中快速準確地提取出與自身相關的信息,這種優(yōu)勢使其更容易在自然選擇過程中得以保留,從而使具有偏側性的個體在群體中占據優(yōu)勢地位。聽覺偏側性的產生機制一直是研究熱點,主要機制模型包括結構模型、信號處理不對稱模型、注意模型及混合模型等。
2.1 結構模型
對人類而言,雖然有左半球語言優(yōu)勢的人數在左、右利手人群中所占的百分比不同(分別為78%,95%),但語言中樞通常位于左半球,右半球則是關注非語言聲音刺激(Broca,1861;Sperry,1974)。由于聽覺信號主要是對側投射(Carpenter,1976),據此Kimura(1973)提出了基于非對稱性聽覺通路和語言中樞的右耳優(yōu)勢結構模型。具體而言,語言相關信號經右耳和左側聽皮層后,直接傳遞到位于左側的語言感知中樞;而左耳的信號則需先傳到右側聽皮層再經胼胝體傳遞到左側語言中樞,同時該傳遞過程還受到左側聽覺通路抑制(Brancuccietal.,2004),整體傳遞效率低于右耳,因而右耳在處理與語言相關的信號時具有優(yōu)勢。除非對稱性語言中樞外,胼胝體的選擇性傳遞也被認為是聽覺偏側性的形成原因(Zaidel,1989);此外還有基于耳蝸和腦干結構的傳出信號不對等模型(McFadden,1993)等。雖然這些模型所關注的具體解剖結構各不相同,但是對于聽覺偏側性的形成都有著相同的核心觀點:聽覺偏側性是由于解剖結構的不對稱性所導致的聲音信號不對等傳遞的結果。
2.2 信號處理不對等模型
Ivry和Robertson(1997)提出了雙重頻率濾波模型(double-filtering-by-frequency model)來解釋聽覺偏側性。該模型認為聽覺感知依賴于注意調節(jié)的分頻點,左半球主要處理信號的高頻部分,而低頻部分則主要由右半球處理。時域非對稱采樣假說(asymmetric sampling in time hypothesis)持有相似的觀點(Poeppel,2003):最初由聲音信號激活的神經信號傳遞到聽皮層時是兩側相等的,之后由于左側聽皮層采集信號的時間窗較短(20~40 ms),而右側聽皮層的時間窗更長(150~250 ms),從而使得兩側聽皮層偏愛加工的聲音信號頻率不同。由于同種叫聲和環(huán)境聲音的頻率范圍不同,因此左、右聽皮層偏愛獲取并加工的信號具有差異性。這類模型的建立基于兩側聽皮層之間處理聲音信號的不對稱性,帶有一定結構差異的要素;而其重點是在處理加工的過程而不是信號采集過程,有別于結構模型,可以認為是結構模型的延伸。
2.3 注意模型
根據一系列雙耳分聽實驗結果,Kinsbourne(1975)提出聽覺偏側性的產生可能與大腦皮層的動態(tài)偏側性激活有關。他們認為,感知或預期語言信號輸入可使被試左半球進入更高的激活狀態(tài),隨后這種偏側性的激活狀態(tài)會擴展至額葉眼區(qū),從而調動注意資源偏側至右側感覺器官以獲取準確的語音信息輸入,最終導致右耳/左半球優(yōu)勢(Hiscock & Kinsbourne,2011)。在執(zhí)行對音調的特征進行分辨的聽覺任務中,當被試聽到與任務不相關的響度/頻率偏差的聲音刺激時,包括左側前額葉在內的多個與注意相關的腦區(qū)高激活,提示注意轉移(Rinneetal.,2007;Salmietal.,2009);在聽到同種鳴叫后,動物會傾向于將右側感覺器官朝向聲源方向(Hauser & Andersson,1994;Hauseretal.,1998;Palleroni & Hauser,2003;B?yeetal.,2005;Siniscalchietal.,2008;Basileetal.,2009;Reinholz-Trojanetal.,2012)。這些結果表明聲音刺激能引起注意,進而調動注意資源偏向單側感覺器官,最終導致聽覺偏側性。
另一方面,和無線索相比,在提示被試注意混合聲音中的某種特定聲音時,其雙側額下回、左側顳上回等區(qū)域高激活(Osnesetal.,2012)。而相對被動聽覺實驗,當要求被試響應語音靶刺激時,左額眼區(qū)高激活,并且要求注意單側耳時,其左額眼區(qū)激活水平更高(Thomsenetal.,2004);當要求被試響應音調靶刺激時,前額葉尤其是右側前額葉高激活(J?nckeetal.,2003)。這些結果說明,在聽覺任務中線索產生的預期能激活注意相關腦區(qū),這些腦區(qū)與視覺任務中預期所激活的腦區(qū)高度相似(Sakai & Passingham,2003),這是由于不同感覺模態(tài)的注意調控是由共同的神經機制完成(Shinn-Cunningham,2008)。據此推測,對刺激的預期激活了注意相關腦區(qū),從而引起自上而下的調控,加強聽覺皮層非對稱性激活,進而導致聽覺偏側性。
注意模型還提出注意調節(jié)能夠對聽覺偏側性產生影響(Hiscock & Kinsbourne,2011)。在雙耳分聽任務下,當要求被試注意雙側或右耳聲音時,其左側顳葉高激活,表現出右耳優(yōu)勢;在注意右耳時,即使左側聲音聲壓級相對右側更高(非注意條件下會引起左耳優(yōu)勢),被試也表現出右耳優(yōu)勢(Westerhausenetal.,2010),當要求注意左耳時,右側顳葉的激活狀態(tài)更高,說明耳優(yōu)勢發(fā)生了逆轉(J?nckeetal.,2001;Alhoetal.,2012)。這些結果表明注意對聽覺偏側性的調控作用,支持了注意模型的有效性。
2.4 混合模型
關于結構模型和注意模型的有效性一直存在爭論:結構模型雖然有解剖結果的強力支持,但是很難解釋耳優(yōu)勢在注意調節(jié)下的反轉,即從右耳優(yōu)勢到左耳優(yōu)勢的反轉(Foundasetal.,2006);注意模型則是強調高級神經中樞的調控能力而淡化了解剖結構顯著差異性的固有影響(Hiscock & Kinsbourne,2011)。Fang等(2014)通過控制雙耳注意差異,證實仙琴蛙的右耳優(yōu)勢是以結構差異為基礎并受注意調節(jié)影響的結果,說明右耳優(yōu)勢的形成機制更可能是一種綜合了結構模型和注意模型的混合模型。
在具有個體偏側性的物種中,某側半球占主導地位在本質上并無優(yōu)劣之分,因此理論上群體中左側和右側半球占主導地位的個體應該各占50%。然而在具有個體偏側性的社會性物種中,其群體中多數個體(60%~90%)的偏側性都呈現出同樣的方向,表現出群體水平的偏側性(Vallortigara & Rogers,2005;Vallortigara,2006)。群體水平偏側性并不像個體偏側性那樣能提高個體的競爭力和適合度,反而因個體行為易被預測而在反捕食或競爭過程中存在劣勢,說明必定存在某種機制使得群體水平出現偏側性并維持穩(wěn)定。進化穩(wěn)定策略(evolution stable strategy)(Ghirlanda & Vallortigara,2004;Ghirlandaetal.,2009)認為這種群體水平的偏側性是在外界環(huán)境壓力和群體中個體相互作用的雙重影響下所形成能夠使群體適合度達到最優(yōu)的一種生存策略。然而這一假說只能解釋為何群體水平偏側性能夠在群體中維持穩(wěn)定,關于最初某一側腦功能偏側性為何會在群體水平上占有優(yōu)勢這一問題依然需要更加完善的理論來解答。
在人類、哺乳類、鳥類和蛙類中,占主導地位的聽覺感知中樞和發(fā)聲中樞一般位于左半球(Bolhuisetal.,2010;Moormanetal.,2012),解剖學(Hutsler & Galuske,2003)和彌散張量成像(Nuciforaetal.,2005)證實人類同側的發(fā)聲中樞和聽覺感知中樞有神經束直接相連;蛙類發(fā)聲控制和聽覺感知也被證實由左半球主導(Bauer,1993;Fangetal.,2014)。這種相似性證實了聽覺和發(fā)聲作為聲音通訊的兩個方面是協同進化的(Boteroetal.,2010)。另一方面,發(fā)聲涉及到發(fā)聲器官的運動,在絕大多數聲音通訊物種中,發(fā)聲中樞和肢體運動中樞的優(yōu)勢側相同且絕大多數位于左半球(Rogers,2000)。這種肢體偏側性和感知偏側性的密切相關被認為具有因果關系,但誰因誰果仍然充滿爭議。一種觀點認為肢體偏側性最先出現,進而引起了整個神經系統的偏側性,最終導致感知偏側性(MacNeilage,2007);另一種觀點則認為神經系統先產生了偏側性,然后才引起了感知器官和肢體的偏側性(Rogers,2009)。在魚類中的研究傾向于神經系統偏側性優(yōu)先產生的觀點:在迂回行為實驗中,鐮形吉拉德食蚊魚Girardinusfalcatus會依據視野中是否出現具有生物學意義的刺激而表現或不表現出群體水平的方向偏側,這表明其行為的偏側性更多是受到視覺感知的驅動(Facchinetal.,1999)。這種神經系統偏側性先出現的觀點為聽覺感知偏側性的形成提供了一種可能的解釋:由于具有偏側性的個體對其左側視野中的其他個體表現出更強的攻擊性,同時同種信號更多由右側器官感知(Rogers,2000),因此個體在非爭斗的情況下都會傾向于將其他個體置于自己的右側或者從右側接近其他個體,以降低不必要的爭斗并更好進行同種信息的交流(Salvaetal.,2012);這種偏好鞏固了左半球在群體水平上對同種信號處理的主導地位,從而產生了群體水平上的偏側性。特定形式的偏側性一旦形成,便會作為高度保守的腦功能并在物種演化過程中得以保留(Rogers,2000),因此在聲音通訊物種中,左側的聽覺中樞繼承了這種對同種信號感知的主導地位,進而產生了群體水平的聽覺偏側性。
朝向不對稱實驗范式被廣泛運用于動物聽覺偏側性研究,然而隨著相關研究的開展,該范式存在的問題也逐漸浮現。聯合使用功能性磁共振成像(functional magnetic resonance imaging,fMRI)和朝向不對稱實驗范式發(fā)現,成年人聽到語音后左半球Broca區(qū)激活明顯,然而被試卻更多地向左轉頭,這被認為是聽覺偏側性和頭部轉向行為并沒有直接關系的證據(Fischeretal.,2009)。由于聽覺偏側性在不同物種中具有多樣性和可塑性,Teufel等(2010)指出在使用朝向不對稱實驗范式時可能存在未控制的變量,從而造成實驗結果與預測不符甚至完全相反,因此在聽覺偏側性和頭部轉向行為的關系被完全闡明之前,選用這個實驗范式的時候需要十分謹慎。除了開發(fā)新的實驗范式外,由于聽覺偏側性是大腦功能偏側性的一種形式,大腦聽皮層的活動不對等能夠直接反映出聽覺偏側性,因此選用朝向不對稱實驗范式研究聽覺偏側性時,與能夠直接反應大腦活動的研究方式相結合,例如fMRI、PET和腦電圖(electroencephalogram,EEG)相結合,從腦功能和行為兩個水平上同時進行研究,就能取得更有效可靠的結果。Fang等(2014)、Xue等(2015)結合行為和EEG研究仙琴蛙的右耳優(yōu)勢及其形成機制就是有益的嘗試。
聽覺偏側性是大腦功能偏側性的表現形式之一,是大腦執(zhí)行正常功能的途徑,但是聽覺偏側性與其他大腦功能的關系還不清楚,比如聽覺偏側性與其他感覺偏側性如何協同作用以實現對目標的注意與識別。另外相關研究主要集中在人類、哺乳類、鳥類和兩棲類中,而爬行類至今尚無報道,這使得探究聽覺偏側性演化過程的數據出現了斷層。在更多的物種上對聽覺偏側性進行研究勢在必行。此外在一些不以聲音為主要交流方式甚至完全不發(fā)聲的物種中,其聽覺感知是否存在偏側性,如果存在,其表現形式及形成原因如何,這些問題同樣值得深入研究。
Alho K, Salonen J, Rinne T,etal. 2012. Attention-related modulation of auditory-cortex responses to speech sounds during dichotic listening[J]. Brain Research, 1442: 47-54.
Basile M, Boivin S, Boutin A,etal. 2009. Socially dependent auditory laterality in domestic horses (Equuscaballus)[J]. Animal Cognition, 12(4): 611-619.
Bauer RH. 1993. Lateralization of neural control for vocalization by the frog (Ranapipiens)[J]. Psychobiology, 21(3): 243-248.
Berntson GG, Boysen ST, Torello MW. 1993. Vocal perception: brain event-related potentials in a chimpanzee[J]. Developmental Psychobiology, 26(6): 305-319.
Bolhuis JJ, Okanoya K, Scharff C. 2010. Twitter evolution: converging mechanisms in birdsong and human speech[J]. Nature Reviews Neuroscience, 11(11): 747-759.
Botero CA, Pen I, Komdeur J,etal. 2010. The evolution of individual variation in communication strategies[J]. Evolution, 64(11): 3123-3133.
B?ye M, Güntürkün O, Vauclair J. 2005. Right ear advantage for conspecific calls in adults and subadults, but not infants, California sea lions (Zalophuscalifornianus): hemispheric specialization for communication?[J]. European Journal of Neuroscience, 21(6): 1727-1732.
Brancucci A, Babiloni C, Babiloni F,etal. 2004. Inhibition of auditory cortical responses to ipsilateral stimuli during dichotic listening: evidence from magnetoencephalography[J]. European Journal of Neuroscience, 19(8): 2329-2336.
Broca P. 1861. Remarks on the seat of the faculty of articulated language, following an observation of aphemia (loss of speech)[J]. Bulletin de la Société Anatomique, 6: 330-357.
Butler AB, Hodos W. 2005. Comparative vertebrate neuroanatomy: evolution and adaptation[M]. Hoboken, New Jersey, US: John Wiley & Sons.
Cantalupo C, Bisazza A, Vallortigara G. 1995. Lateralization of predator-evasion response in a teleost fish (Girardinusfalcatus)[J]. Neuropsychologia, 33(12): 1637-1646.
Carpenter MB. 1976. Human neuroanatomy[M]. Baltimore: Williams & Wilkins.
Corballis MC, Badzakova-Trajkov G, H?berling IS. 2012. Right hand, left brain: genetic and evolutionary bases of cerebral asymmetries for language and manual action[J]. Wiley Interdisciplinary Reviews: Cognitive Science, 3(1): 1-17.
Deckel AW. 1995. Laterality of aggressive responses inAnolis[J]. Journal of Experimental Zoology, 272(3): 194-200.
Ehret G. 1987. Left hemisphere advantage in the mouse brain for recognizing ultrasonic communication calls[J]. Nature, 325(6101): 249-251.
Facchin L, Bisazza A, Vallortigara G. 1999. What causes lateralization of detour behavior in fish? Evidence for asymmetries in eye use[J]. Behavioural Brain Research, 103(2): 229-234.
Fang G, Xue F, Yang P,etal. 2014. Right ear advantage for vocal communication in frogs results from both structural asymmetry and attention modulation[J]. Behavioural Brain Research, 266: 77-84.
Fang G, Yang P, Cui J,etal. 2012. Mating signals indicating sexual receptiveness induce unique spatio-temporal EEG theta patterns in an anuran species[J]. PLoS ONE, 7(12): e52364.
Fang G, Yang P, Xue F,etal. 2015. Sound classification and call discrimination are decoded in order as revealed by event-related potential components in frogs[J]. Brain, Behavior and Evolution, 86(3-4): 232-245.
Fischer J, Teufel C, Drolet M,etal. 2009. Orienting asymmetries and lateralized processing of sounds in humans[J]. BMC Neuroscience, 10(1): 14-23.
Fitch RH, Brown CP, O’Connor K,etal. 1993. Functional lateralization for auditory temporal processing in male and female rats[J]. Behavioral Neuroscience, 107(5): 844-850.
Foundas AL, Corey DM, Hurley MM,etal. 2006. Verbal dichotic listening in right and left-handed adults: laterality effects of directed attention[J]. Cortex, 42(1): 79-86.
Frasnelli E, Vallortigara G, Rogers LJ. 2012. Left-right asymmetries of behaviour and nervous system in invertebrates[J]. Neuroscience & Biobehavioral Reviews, 36(4): 1273-1291.
Ghirlanda S, Frasnelli E, Vallortigara G. 2009. Intraspecific competition and coordination in the evolution of lateralization[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1519): 861-866.
Ghirlanda S, Vallortigara G. 2004. The evolution of brain lateralization: a game-theoretical analysis of population structure[J]. Proceedings of the Royal Society B: Biological Sciences, 271(1541): 853-858.
Gil-da-Costa R, Hauser MD. 2006. Vervet monkeys and humans show brain asymmetries for processing conspecific vocalizations, but with opposite patterns of laterality[J]. Proceedings of the Royal Society B: Biological Sciences, 273(1599): 2313-2318.
Hardyck C, Petrinovich LF. 1977. Left-handedness[J]. PsychologicalBulletin, 84(3): 385.
Hauser MD, Agnetta B, Perez C. 1998. Orienting asymmetries in rhesus monkeys: the effect of time-domain changes on acoustic perception[J]. Animal Behaviour, 56(1): 41-47.
Hauser MD, Andersson K. 1994. Left hemisphere dominance for processing vocalizations in adult, but not infant, rhesus monkeys: field experiments[J]. Proceedings of the National Academy of Sciences, 91(9): 3946-3948.
Heffner HE, Heffner RS. 1995. Role of auditory cortex in the perception of vocalizations by Japanese macaques[M]. US: Springer: 207-219.
Hiscock M, Kinsbourne M. 2011. Attention and the right-ear advantage: what is the connection?[J]. Brain and Cognition, 76(2): 263-275.
Hopkins WD, Phillips KA, Bania A,etal. 2011. Hand preferences for coordinated bimanual actions in 777 great apes: implications for the evolution of handedness in hominins[J]. Journal of Human Evolution, 60(5): 605-611.
Hutsler J, Galuske RA. 2003. Hemispheric asymmetries in cerebral cortical networks[J]. Trends in Neurosciences, 26(8): 429-435.
Ivry R, Robertson L. 1997. The two sides of perception[M]. Cambridge: MIT Press.
J?ncke L, Buchanan T, Lutz K,etal. 2001. Focused and nonfocused attention in verbal and emotional dichotic listening: an FMRI study[J]. Brain and Language, 78(3): 349-363.
J?ncke L, Specht K, Shah JN,etal. 2003. Focused attention in a simple dichotic listening task: an fMRI experiment[J]. Cognitive Brain Research, 16(2): 257-266.
Kanwal JS. 2012. Right-left asymmetry in the cortical processing of sounds for social communication vs. navigation in mustached bats[J]. European Journal of Neuroscience, 35(2): 257-270.
Kimura D. 1961a. Cerebral dominance and the perception of verbal stimuli[J]. Canadian Journal of Psychology, 15(3): 166.
Kimura D. 1961b. Some effects of temporal-lobe damage on auditory perception[J]. Canadian Journal of Psychology, 15(3): 156.
Kimura D. 1973. The asymmetry of the human brain[J]. Scientific American, 228(3): 70-78.
Kimura D. 2011. From ear to brain[J]. Brain and Cognition, 76(2): 214-217.
Kinsbourne M. 1975. The mechanism of hemispheric control of the lateral gradient of attention[M].London: Academic Press.
MacNeilage PF. 2007. Present status of the postural origins theory[M]//Hopkins WD. The evolution of hemispheric specialization in primates. Oxford, UK: Elsevier, 5: 58-91.
Manley GA, Popper AN, Fay RR. 2004. Evolution of the vertebrate auditory system[M]. New York: Springer.
McFadden D. 1993. A speculation about the parallel ear asymmetries and sex differences in hearing sensitivity and otoacoustic emissions[J]. Hearing Research, 68(2): 143-151.
McManus I, Davison A, Armour JA. 2013. Multilocus genetic models of handedness closely resemble single-locus models in explaining family data and are compatible with genome-wide association studies[J]. Annals of the New York Academy of Sciences, 1288(1): 48-58.
Moorman S, Gobes SM, Kuijpers M,etal. 2012. Human-like brain hemispheric dominance in birdsong learning[J]. Proceedings of the National Academy of Sciences, 109(31): 12782-12787.
Nucifora PG, Verma R, Melhem ER,etal. 2005. Leftward asymmetry in relative fiber density of the arcuate fasciculus[J]. Neuroreport, 16(16): 791-794.
Osnes B, Hugdahl K, Hjelmervik H,etal. 2012. Stimulus expectancy modulates inferior frontal gyrus and premotor cortex activity in auditory perception[J]. Brain and Language, 121(1): 65-69.
Palleroni A, Hauser M. 2003. Experience-dependent plasticity for auditory processing in a raptor[J]. Science, 299(5610): 1195.
Paquette C, Bourassa M, Peretz I. 1996. Left ear advantage in pitch perception of complex tones without energy at the fundamental frequency[J]. Neuropsychologia, 34(2): 153-157.
Perlaki G, Horvath R, Orsi G,etal. 2013. White-matter microstructure and language lateralization in left-handers: a whole-brain MRI analysis[J]. Brain and Cognition, 82(3): 319-328.
Petersen MR, Beecher MD, Moody D,etal. 1978. Neural lateralization of species-specific vocalizations by Japanese macaques (Macacafuscata)[J]. Science, 202(4365): 324-327.
Poeppel D. 2003. The analysis of speech in different temporal integration windows: cerebral lateralization as ‘asymmetric sampling in time’[J]. Speech Communication, 41(1): 245-255.
Reinholz-Trojan A, Wodarczyk E, Trojan M,etal. 2012. Hemispheric specialization in domestic dogs (Canisfamiliaris) for processing different types of acoustic stimuli[J]. Behavioural Processes, 91(2): 202-205.
Rinne T, Kirjavainen S, Salonen O,etal. 2007. Distributed cortical networks for focused auditory attention and distraction[J]. Neuroscience Letters, 416(3): 247-251.
Rogers LJ, Workman L. 1993. Footedness in birds[J]. Animal Behaviour, 45(2): 409-411.
Rogers LJ, Zucca P, Vallortigara G. 2004. Advantages of having a lateralized brain[J]. Proceedings of the Royal Society B: Biological Sciences, 271(Suppl 6): S420-S422.
Rogers LJ. 2000. Evolution of side biases: motor versus sensory lateralization[M]. Netherlands: Springer: 3-40.
Rogers LJ. 2002. Advantages and disadvantages of lateralization[M]. Cambridge: Cambridge University Press: 126-153.
Rogers LJ. 2009. Hand and paw preferences in relation to the lateralized brain[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1519): 943-954.
Sakai K, Passingham RE. 2003. Prefrontal interactions reflect future task operations[J]. Nature Neuroscience, 6(1): 75-81.
Salmi J, Rinne T, Koistinen S,etal. 2009. Brain networks of bottom-up triggered and top-down controlled shifting of auditory attention[J]. Brain Research, 1286: 155-164.
Salva OR, Regolin L, Mascalzoni E,etal. 2012. Cerebral and behavioural asymmetries in animal social recognition[J]. Comparative Cognition & Behavior Reviews, 7(10): 110-138.
Shinn-Cunningham BG. 2008. Object-based auditory and visual attention[J]. Trends in Cognitive Sciences, 12(5): 182-186.
Siniscalchi M, Quaranta A, Rogers LJ. 2008. Hemispheric specialization in dogs for processing different acoustic stimuli[J]. PLoS ONE, 3(10): e3349.
Sperry R. 1974. Lateral specialization in the surgically separated hemispheres[M]. Cambridge: MIT Press.
Taglialatela JP, Russell JL, Schaeffer JA,etal. 2009. Visualizing vocal perception in the chimpanzee brain[J]. Cerebral Cortex, 19(5): 1151-1157.
Teufel C, Ghazanfar AA, Fischer J. 2010. On the relationship between lateralized brain function and orienting asymmetries[J]. Behavioral Neuroscience, 124(4): 437-445.
Thomsen T, Rimol LM, Ersland L,etal. 2004. Dichotic listening reveals functional specificity in prefrontal cortex: an fMRI study[J]. Neuroimage, 21(1): 211-218.
Vallortigara G, Chiandetti C, Sovrano VA. 2011. Brain asymmetry (animal)[J]. Wiley Interdisciplinary Reviews: Cognitive Science, 2(2): 146-157.
Vallortigara G, Rogers L, Bisazza A. 1999. Possible evolutionary origins of cognitive brain lateralization[J]. Brain Research Reviews, 30(2): 164-175.
Vallortigara G, Rogers LJ, Bisazza A,etal. 1998. Complementary right and left hemifield use for predatory and agonistic behaviour in toads[J]. Neuroreport, 9: 3341-3344.
Vallortigara G, Rogers LJ. 2005. Survival with an asymmetrical brain: advantages and disadvantages of cerebral lateralization[J]. Behavioral and Brain Sciences, 28(4): 575-588.
Vallortigara G. 2006. The evolutionary psychology of left and right: costs and benefits of lateralization[J]. Developmental Psychobiology, 48(6): 418-427.
Ward JP, Hopkins WD. 1993. Primate laterality: current behavioral evidence of primate asymmetries[M].New York: Springer.
Westerhausen R, Moosmann M, Alho K,etal. 2010. Identification of attention and cognitive control networks in a parametric auditory fMRI study[J]. Neuropsychologia, 48(7): 2075-2081.
Xue F, Fang G, Yang P,etal. 2015. The biological significance of acoustic stimuli determines ear preference in the music frog[J]. Journal of Experimental Biology, 218(5): 740-747.
Zaidel E. 1989. Hemispheric independence and interaction in word recognition[M]. Hampshire: McMillan: 77-97.
Characteristic and Evolution of Brain Auditory Lateralization
XUE Fei, FANG Guangzhan*, TANG Yezhong
(Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences,Chengdu 610041, China)
Lateralization is a common characteristic among the vertebrates including humans and is proposed to improve animals’ fitness through processing environmental information efficiently and responding to events more rapidly. As one of the major perceptual functions, asymmetric auditory perception has been found in various species with similar tendency: the right-ear/left-hemisphere dominates conspecific sound perception while the left-ear/right-hemisphere preferentially processes interspecific and novel sounds. Previous studies concerning auditory lateralization in different animal species were reviewed and the similarity and specificity across species were compared. The possible mechanisms underlying auditory lateralization in individual level and the possible cause of auditory lateralization in population level were summarized. Finally, some protocols for studies on lateralization and the possible prospects in the future were proposed.
auditory lateralization; asymmetry of brain function; population lateralization; fitness; mechanism
2016-01-08 接受日期:2016-04-24 基金項目:國家自然科學基金項目(No.31372217)
薛飛, 男, 博士, 研究方向:動物聲音通訊及其神經機理, E-mail:xf19880825@gmail.com
*通信作者Corresponding author, E-mail:fanggz@cib.ac.cn
10.11984/j.issn.1000-7083.20160010
Q955
A
1000-7083(2016)04-0626-06