梁君妮,趙鈺玲,李春喜,楊麗君,*(.煙臺(tái)出入境檢驗(yàn)檢疫局,山東煙臺(tái)64000;.威海出入境檢驗(yàn)檢疫局,山東威海6400)
?
膜分離技術(shù)在色譜分析中的應(yīng)用
梁君妮1,趙鈺玲1,李春喜2,楊麗君2,*
(1.煙臺(tái)出入境檢驗(yàn)檢疫局,山東煙臺(tái)264000;2.威海出入境檢驗(yàn)檢疫局,山東威海264200)
摘要:闡述了膜分離技術(shù)在色譜分析中的應(yīng)用及發(fā)展,展望了膜分離技術(shù)在色譜分析方面的發(fā)展趨勢(shì)和應(yīng)用前景。關(guān)鍵詞:膜分離技術(shù);色譜分析;應(yīng)用
隨著農(nóng)獸藥大量的使用,農(nóng)獸藥殘留對(duì)人類健康危害的嚴(yán)重化,人們?cè)絹?lái)越關(guān)心農(nóng)獸藥殘留對(duì)食品安全方面的影響。目前,農(nóng)獸藥殘留的檢測(cè)方法主要是色譜分析,而在色譜分析過程中用于樣品制備的時(shí)間約占整個(gè)分析過程的三分之二,而只有10 %時(shí)間來(lái)進(jìn)行儀器分析[1]。因此,改善和優(yōu)化色譜分析樣品的前處理方法對(duì)提高檢測(cè)效率具有重要意義,已經(jīng)成為色譜分析發(fā)展的關(guān)鍵環(huán)節(jié)。
膜分離技術(shù)是一項(xiàng)高新技術(shù),發(fā)展時(shí)間雖然不長(zhǎng),但由于其獨(dú)具的優(yōu)越性,目前在工業(yè)中已得到廣泛的應(yīng)用,例如在化工、醫(yī)藥、污水處理、仿生和能源等領(lǐng)域都得到了廣泛的應(yīng)用[2]。膜分離技術(shù)由于具備分離效率高、低污染、可在線連接液相色譜系統(tǒng)和其它檢測(cè)設(shè)備等優(yōu)勢(shì),已經(jīng)成為前處理技術(shù)領(lǐng)域的研究熱點(diǎn)[3]。
目前用于液相色譜樣品前處理的膜可分為多孔膜和非多孔膜兩類[4]。多孔膜的選擇性依賴于孔徑的尺寸和分布,大分子物質(zhì)無(wú)法透過。利用多孔膜,主要進(jìn)行過濾、滲析和電滲析等樣品前處理,不涉及化學(xué)分離,也無(wú)法實(shí)現(xiàn)對(duì)目標(biāo)化合物的富集。非多孔膜是液體浸潤(rùn)膜或聚合物薄膜,目標(biāo)化合物在兩相及膜間按照分配系數(shù)進(jìn)行傳輸。利用非多孔膜,主要進(jìn)行支載液體膜萃取、液相微萃取、電膜萃取、微孔膜液液萃取、連續(xù)流動(dòng)膜萃取等。
1.1過濾(filtration)
膜過濾是以功能性分離膜作為過濾介質(zhì),當(dāng)膜兩側(cè)存在推動(dòng)力(壓力差、蒸汽分壓差、濃度差、電勢(shì)差等)時(shí),樣品中大小合適的目標(biāo)化合物分子由給體通過膜孔轉(zhuǎn)移到受體的過程。伴隨合成化學(xué)工業(yè)的迅速發(fā)展,分離膜具備了更小的孔徑、更窄的孔徑分布、幾乎不吸附目標(biāo)化合物并具有更長(zhǎng)的使用壽命等優(yōu)良特性。依據(jù)膜孔徑從大到小的順序,可分為微濾(microfiltration,孔徑0.05 μm~8 μm)、超濾(ultrafiltration,孔徑2 nm~100 nm)、納濾(nano-filtration,孔徑1 nm~ 2 nm)和反滲透(reverse osmosis,孔徑0.1 nm~1 nm)等。微濾膜是均勻的多孔薄膜,具有過濾精度高、濾速快、不參與化學(xué)反應(yīng)、吸附量少且無(wú)介質(zhì)脫落等特點(diǎn),可以去除水中的大部分微粒、細(xì)菌以及雙酚丙烷A等[5]化合物,一般作為超濾的前處理過程。超濾膜利用膜表面及膜孔對(duì)雜質(zhì)的吸附、膜孔阻塞和阻滯以及膜孔的機(jī)械篩分截留作用,實(shí)現(xiàn)蛋白質(zhì)等大分子的分級(jí)、純化。納濾膜本身帶有電荷,通過靜電相互作用,阻礙多價(jià)離子的滲透,用于分離溶液中相對(duì)分子質(zhì)量為200~1 000的低分子量物質(zhì),如抗生素、氨基酸、維生素等,其分離性能介于超濾與反滲透之間。反滲透膜利用界面現(xiàn)象和吸附作用,將溶液中的水優(yōu)先吸附,并以水流的形式通過膜的毛細(xì)管排除,具有良好的化學(xué)性質(zhì)。一般用于阻截除溶劑外所有的組分,主要用于小分子產(chǎn)品的濃縮。一般來(lái)說,影響膜過濾的主要因素除膜自身的阻力(膜面積、厚度以及膜孔徑和分布等)和傳質(zhì)阻力(累積在膜表面的不能透過膜的物質(zhì)形成濃度極化層)外,還包括膜兩側(cè)的推動(dòng)力、樣品黏度等參數(shù)[4]。膜過濾與液相色譜聯(lián)用的研究報(bào)道不多,Li等[6]使用高效液相色譜蒸發(fā)光散射檢測(cè)器,拓寬了納濾膜使用范圍。
1.2滲析(dialysis)
滲析是最早被發(fā)現(xiàn)的膜分離過程,目標(biāo)化合物在膜兩側(cè)濃度梯度的作用下,從給體穿過膜進(jìn)入受體。該過程可使用扁平膜或中空纖維膜,后者可浸在給體中而受體在纖維膜中流動(dòng),通過擴(kuò)大接觸面積增大分離效率,但存在不易操作和清洗困難等缺陷。膜滲析的主要機(jī)理是篩分和吸附擴(kuò)散,主要影響因素是膜自身阻力(膜面積和厚度、膜孔徑尺寸和分布等)、膜兩側(cè)的濃度梯度、溫度、受體的流速、目標(biāo)化合物的疏水性、pH、離子濃度以及樣品的黏度等[7]。膜滲析與液相色譜聯(lián)用,可開展醫(yī)藥學(xué)以及食品中添加劑成分檢測(cè)。例如,Liu等[8]分析了人血清白蛋白中山茱萸復(fù)雜成分,Alexander[9]等提出了腫瘤治療中皂角甙的一步提取法,Kritsunankul[10]等同時(shí)測(cè)定了軟飲料和其它液體食物中食品添加劑。
微滲析與液相色譜聯(lián)用技術(shù)除用于食品檢測(cè)外[11-12],對(duì)于活體內(nèi)復(fù)雜成分的分析也得到了快速發(fā)展,將帶有選擇性滲透膜的微滲析裝置植入活體,獲得低分子量的灌流成分,直接加入高效液相色譜檢測(cè)系統(tǒng)或收集起來(lái)進(jìn)一步分析,避免了樣品繼續(xù)代謝帶來(lái)干擾,可動(dòng)態(tài)檢測(cè)細(xì)胞外液成分的變化[13],如監(jiān)測(cè)小鼠紋狀體中黃嘌呤和次黃嘌呤[14]以及研究藥物在血液、膽汁中的代謝動(dòng)力學(xué)和藥物代謝作用[15]。此外,在線微滲析既可以結(jié)合固相萃取,以降低尿中氯胺酮及其代謝產(chǎn)物在高效液相色譜檢測(cè)中的基質(zhì)效應(yīng)[16],也可以聯(lián)用超高速液相色譜質(zhì)譜測(cè)定活鼠腦中川芎內(nèi)酯等藥物[17],顯示出巨大的應(yīng)用前景。
1.3電滲析(electro-dialysis)
電滲析是在滲析過程中,引入陰、陽(yáng)電極施加電壓,在分離膜兩側(cè)產(chǎn)生的電勢(shì)差的推動(dòng)下,帶電的溶質(zhì)透過分離膜發(fā)生定向遷移。電滲析膜是帶有離子交換基團(tuán)的網(wǎng)狀立體高分子膜,陽(yáng)離子交換膜選擇性透過陽(yáng)離子而截留陰離子,陰離子交換膜選擇性透過陰離子而截留陽(yáng)離子。電滲析過程中乳酸發(fā)酵液氨基酸遷移表明,各種不同氨基酸的遷移速率主要受自身初始濃度、電遷移率、陰離子交換膜對(duì)其選擇性以及給體和受體間pH的差值等因素影響[18];此外,目標(biāo)化合物的分子體積與其所帶電荷也是成為電滲析的主要影響因素,電滲析可與色譜在線聯(lián)用,檢測(cè)人血漿中麻黃素以及環(huán)境水樣中的一些酸堿化合物(蒽醌-1,8-二磺酸、百草枯、苯胺等)[19-21]。
2.1支載液體膜萃?。╯upported liquid membrane extraction,SLME)
在分析樣品前處理過程中,支載液體膜萃取方便高效,是應(yīng)用最廣泛的膜萃取技術(shù),一般用于萃取極性或中等極性物質(zhì)。它是包含一個(gè)有機(jī)相(有機(jī)液體)和兩個(gè)水相(水性給體和水性受體)的三相萃取系統(tǒng):支載膜內(nèi)的毛細(xì)管壓力可將有機(jī)相(有機(jī)液體)固定在支載膜上,水性給體中的目標(biāo)化合物,通過該疏水支撐膜被萃取到水性受體中。這與典型的化學(xué)液-液萃取與反萃取相類似,可視為兩種不同的平衡過程,引入反萃取過程的目的是為了顯著地增強(qiáng)萃取的選擇性。Audunsson等[22]以樣品胺的萃取為例,闡述了支載液體膜萃取的基本原理:首先通過調(diào)高給體槽中樣品液的pH,使胺分子不帶電從而可被含有機(jī)相的支載膜萃??;由于膜另一側(cè)的受體槽內(nèi)充滿靜止的酸性緩沖液,離子化的胺分子(BH+)只能從支載膜分散到受體槽中,而不能重返有機(jī)膜相,該過程不斷進(jìn)行,最終被水性受體富集。堿性樣品液中的中性復(fù)合物也可通過支載膜,但由于動(dòng)態(tài)平衡,在受體液中不能富集;而強(qiáng)酸性化合物和始終帶有電荷的化合物完全被支載膜排除在外。也就是說,支載膜對(duì)于小分子堿性化合物具有高度選擇性。研究表明,選用孔徑為0.2 μm的Fluoropore FGLP作為支載膜富集效果最好;為避免有機(jī)相揮發(fā)和流失,目前多采用具備非極性、低揮發(fā)性、低黏度等特點(diǎn)的正十一烷、二正己基醚、三正辛基磷酸脂等有機(jī)溶劑[23-24]。以此類推,調(diào)低給體槽中樣品的pH可萃取酸性復(fù)合物[25]。此外,在受體中加入離子對(duì)試劑或螯合試劑[26-27],可用來(lái)萃取始終帶有電荷的化合物以及金屬離子等。
支載液體膜萃取已經(jīng)發(fā)展出一系列商品化、制式化的自動(dòng)在線或離線操作設(shè)備。典型的膜萃取流動(dòng)系統(tǒng)通常由幾個(gè)單元組成:膜萃取、動(dòng)力以及用于連接色譜分析的接口等單元。膜萃取單元主要用于完成分析樣品的膜萃取。目前應(yīng)用最多的膜萃取單元可分為小體積的直線型、大體積的螺旋形單元兩類。二者均由支載液體膜和兩塊帶有凹槽(給體槽和受體槽)的惰性物質(zhì)構(gòu)成,凹槽的體積為10 μL~1000 μL。對(duì)于100 mL或更多的適當(dāng)樣品,可以采用蠕動(dòng)泵作為萃取動(dòng)力單元。在不具備實(shí)驗(yàn)室條件的現(xiàn)場(chǎng)環(huán)境,甚至可以采用手動(dòng)注射器作為萃取動(dòng)力。對(duì)于1 mL或更少的樣品,必須使用注射器泵,以彌補(bǔ)蠕動(dòng)泵準(zhǔn)確性不足的缺點(diǎn)。該技術(shù)需要更小的樣品量以及更精確的時(shí)間和泵入量。為了盡可能多的將分析物(約1 mL~2 mL)用于自動(dòng)化的高效液相色譜分析,還必須增加一個(gè)接口單元。該單元可采用自動(dòng)化的預(yù)柱[28]或中心切割技術(shù),前者由計(jì)算機(jī)控制氣動(dòng)或電動(dòng)進(jìn)樣閥,后者利用樣品環(huán)調(diào)整進(jìn)入高效液相色譜的萃取物體積。此外,連接注射器泵的自動(dòng)進(jìn)樣針也可吸取適當(dāng)?shù)木彌_液來(lái)調(diào)節(jié)樣品的pH。通過典型的膜萃取流動(dòng)系統(tǒng),實(shí)現(xiàn)了樣品從受體槽到高效液相色譜的樣品環(huán)的完整萃取,在樣品進(jìn)入高效液相色譜進(jìn)行分析的同時(shí),下一個(gè)樣品的萃取已在進(jìn)行。這樣,系統(tǒng)的循環(huán)時(shí)間被色譜分析時(shí)間所決定,萃取時(shí)間并沒有增加整個(gè)分析時(shí)間。該技術(shù)可廣泛應(yīng)用于檢測(cè)環(huán)境水中多種殘留抗生素(氟環(huán)丙沙星、恩氟沙星、氟哌酸和達(dá)氟沙星等)[29]、污染物及其代謝產(chǎn)物(氯酚類化合物[30]、磺酰脲類除草劑[31]、苯氧羧酸類除草劑和酚類化合物[32]),也可以檢測(cè)生物體液中的化學(xué)物質(zhì)(人尿中雜環(huán)芳族胺[33])。
2.2液相微萃?。╤ollow fiber liquid phase Micro-extraction,HF-LPME)
Rasmussen等[34]將SLME精簡(jiǎn)微型化,提出了液相微萃取技術(shù)。Lee等[35-36]也設(shè)計(jì)了與之相似的設(shè)備。首先將一根疏水性聚丙烯中空多孔纖維管用有機(jī)溶劑侵潤(rùn)飽和后,浸入盛有給體的樣品瓶,使給體在纖維管外、受體在纖維管內(nèi)不斷流動(dòng),目標(biāo)化合物不斷地被萃取到受體中。疏水性聚丙烯中空多孔纖維管與扁平膜相比較,具有如下優(yōu)點(diǎn):長(zhǎng)度可達(dá)80 cm[37],擴(kuò)大了接觸面積,可將受體濃縮至更小的體積(1 μL~2 μL);大分子、雜質(zhì)等無(wú)法透過纖維孔(孔徑0.2 μm),可以實(shí)現(xiàn)50倍~100倍的樣品富集[38];設(shè)備簡(jiǎn)單,可獲得更高的靈敏度和更低的檢測(cè)限[39]??善叫姓归_,適合大批量樣品的處理;節(jié)省有機(jī)溶劑,尤其適合生物體液等復(fù)雜樣品中的酸、堿等離子性化合物[40]。HF-LPME與液相色譜質(zhì)譜聯(lián)用,可用于檢測(cè)食品(酒精飲料[41]、蜂蜜[42])、環(huán)境樣品(水中16種不同極性和化學(xué)種類的殺蟲劑[43]、淤泥中甲氧萘丙酸和雙氯芬酸檢測(cè))以及生物體液樣品(羅西格列酮[44])。
2.3電膜萃取(Electromembrane Extraction,EME)
電膜萃取借鑒了HF-LPME的設(shè)計(jì)理念,兩者之間的化學(xué)區(qū)別是EME引入了電路:鉑電極提供的電壓產(chǎn)生了膜兩側(cè)的電勢(shì)差,推動(dòng)帶電荷的目標(biāo)化合物從給體轉(zhuǎn)移到膜中的有機(jī)物溶劑,再擴(kuò)散到帶相反電荷的受體。這樣,萃取機(jī)制在單純被動(dòng)擴(kuò)散的基礎(chǔ)上,增加了電動(dòng)轉(zhuǎn)移。Gjelstad等[45]以氟派啶醇為例,對(duì)兩者的萃取機(jī)制、時(shí)間、回收率和選擇性進(jìn)行了比較。由于EME的主要推動(dòng)力是電勢(shì)差,為使目標(biāo)化合物完全離子化,必須控制嚴(yán)格好給體和受體的pH[46-51]。滲透到SLM膜中的有機(jī)溶劑的性質(zhì)對(duì)于EME至關(guān)重要,在膜有機(jī)溶劑中低溶解的強(qiáng)極性藥物可以抵制電場(chǎng)的作用。為增加目標(biāo)分析物在膜有機(jī)物溶劑中的溶解性,可加入離子對(duì)試劑,但增加了釋放到受體的難度,也會(huì)影響萃取效率。有機(jī)溶劑的萃取效率嚴(yán)格依賴膜上施加的電勢(shì)[52],因此,針對(duì)不同種類目標(biāo)化合物,應(yīng)對(duì)有機(jī)溶劑和電勢(shì)差進(jìn)行綜合考慮,以獲得最佳萃取效果。其它參數(shù)還包括對(duì)流速度、給體與受體間的離子平衡、溫度等[53]??傮w上,EME在HF-LPME基礎(chǔ)上引入了另一種推動(dòng)力,顯著降低了的萃取時(shí)間,可迅速、準(zhǔn)確地分離和富集離子化目標(biāo)化合物;可直接從未處理的生物體液(血漿、全血、尿液和乳汁等)中萃取目標(biāo)化合物[54-55],避免了煩瑣的化學(xué)處理過程;同時(shí),可用一個(gè)簡(jiǎn)單的9 V電池作為單一電源供應(yīng)[56],使現(xiàn)場(chǎng)樣品前處理成為可能。EME除了可與毛細(xì)管電泳和離子色譜聯(lián)用外[57],也可方便地與高效液相色譜聯(lián)用,檢測(cè)復(fù)雜樣品中的多種成分[58]。
2.4微孔膜液液萃?。╩icroporous membrane liquidliquid extraction,MMLLE)
微孔膜液液萃取利用傳統(tǒng)的液-液萃取原理,它是包含一個(gè)水相(水性給體)和一個(gè)有機(jī)相(含有機(jī)溶劑的受體)的兩相流動(dòng)萃取系統(tǒng):有機(jī)溶劑滲入疏水性、惰性高分子膜(通常為聚四氟乙烯扁平膜或聚丙烯構(gòu)成的中空纖維)的微孔中與水性給體中的目標(biāo)化合物接觸,進(jìn)而將其富集于含有機(jī)溶劑的受體中。如果將惰性高分子膜視為兩個(gè)水相間的有機(jī)相,該系統(tǒng)在化學(xué)理論上相當(dāng)于支載液體膜萃??;反之,支載液體膜萃取也可視為含有一個(gè)有機(jī)相的微孔膜液液萃取。由此可見,惰性高分子膜的材質(zhì)、厚度、孔徑(一般為0.2 μm~0.4 μm)和孔的分布是微孔膜液液萃取的重要影響因素;此外,給體的pH、有機(jī)溶劑的分配系數(shù)和受體流速等也可影響萃取效率。在與正相液相色譜聯(lián)用時(shí),可將目標(biāo)化合物萃取入體積較小、分配系數(shù)較大的靜止有機(jī)溶劑液;或?qū)⑤腿『蟮哪繕?biāo)化合物低速連續(xù)轉(zhuǎn)入色譜的預(yù)柱,以改善富集效果。微孔膜液-液萃取聯(lián)用高效液相色譜,可以檢測(cè)環(huán)境水中含量在10-9水平以下的可離子化、非極性化合物(甲基硫菌靈及其代謝物[59])。
2.5連續(xù)流動(dòng)膜萃取(continuous-flow liquid membrane extraction CFLME)
Liu等[60]等利用流動(dòng)液-液萃取和支載液體膜萃取化學(xué)原理,設(shè)計(jì)了連續(xù)流動(dòng)液膜萃取裝置。由于擴(kuò)大了有機(jī)溶劑選擇的使用范圍,液膜可在系統(tǒng)中長(zhǎng)期穩(wěn)定、連續(xù)流動(dòng),可顯著提高極性化合物的萃取效率,從而較好地彌補(bǔ)了支載液體膜萃取的弱點(diǎn)。具有高選擇性、低成本、易與各種分析儀器聯(lián)用的優(yōu)點(diǎn)。該裝置主要由恒流泵、混合圈、微量柱塞泵或注射泵、聚四氟乙烯萃取盤管和支載液體膜萃取單元等組成。樣品在該裝置中不斷流動(dòng),完成整個(gè)萃取過程。CFLME的影響因素同SLME相似,主要是微孔膜材料、有機(jī)溶劑性質(zhì)、給體與受體的pH等。Liu等通過對(duì)5種磺酰脲類除草劑及雙酚A連續(xù)流動(dòng)萃取的研究,認(rèn)為萃取圈的內(nèi)徑和長(zhǎng)度、樣品流速、試劑及有機(jī)溶劑的流速對(duì)萃取也有重要的影響。CFLME可方便地與HPLC的在線聯(lián)用,將富集的目標(biāo)化合物接入液相色譜的預(yù)柱或液相色譜進(jìn)樣閥的樣品環(huán)中進(jìn)行分析,可用于磺酰脲類除草劑和氯酚檢測(cè)。
與其它樣品前處理技術(shù)的發(fā)展趨勢(shì)相同,膜分離技術(shù)的研究熱點(diǎn)主要有兩個(gè)方向:一方面是已有成熟方法的自動(dòng)化、商品化、標(biāo)準(zhǔn)化,以滿足簡(jiǎn)便、快捷、穩(wěn)定和價(jià)格低廉的要求;另一個(gè)方面是繼續(xù)推進(jìn)新原理、新技術(shù)的開發(fā)與整合,以滿足復(fù)雜樣品處理、痕量分析等特殊要求。例如,利用微滴液相微萃?。╠ropletmembrane-droplet liquid-phase microextraction)和微芯片原理,已經(jīng)實(shí)現(xiàn)了實(shí)驗(yàn)室條件下的生物體液樣品的分離,初步評(píng)估了人尿中酸堿藥物成分,顯示出膜分離技術(shù)在樣品制備中的巨大應(yīng)用前景。
參考文獻(xiàn):
[1] Keith LH, Walker MM. Handbook of Air Toxics: Sampling,Analysis and Properties[M]. CRC Lewis Publisher, 1995:469-484
[2]王華,劉艷飛,等.膜分離技術(shù)的研究進(jìn)展及應(yīng)用展望[J].應(yīng)用化工,2013,42(3):532-534
[3] Pawliszyn Janusz. New directions in sample preparation for analysis of organic compounds[J]. Trends in Analytical Chemistry, 1995, 14 (3): 113-122
[4] NC van de Merbel. Membrane-based sample preparation coupled on-line to chromatography or electrophoresis[J]. Journal of Chromatography A, 1999, 856: 55-82
[5] Dong Bing zhi, Chu Huaqiang, Wang Lin, The removal of bisphenol A by hollow fiber microfiltration membrane[J]. Desalination, 2010, 250(2):693-697
[6] Li Xianfeng, Monsuur Fred, Denoulet Bart, et al. Evaporative Light Scattering Detector: Toward a General Molecular Weight Cutoff Characterization of Nanofiltration Membranes[J]. Anal. Chem, 2009, 81 (5): 1801-1809
[7] NC Merbel, JM Teule, H Lingeman,et al. Dialysis as an on-line sample-pretreatment technique for column liquid chromatography: Influence of experimental variables upon the determination of benzodiazepines in human plasma[J]. Journal of Pharmaceutical and Biomedical Analysis, 1992, 10(2/3): 225-233
[8] Liu Xiao, Han Zhi-Ping, Wang Yu-Ling, et al. Analysis of the interactions of multicomponents in Cornusofficinalis Sieb.et Zucc.with human serum albumin using on-line dialysis coupled with HPLC[J]. Journal of Chromatography B, 2011, 879(9/10): 599-604
[9] Alexander Weng, Kristina Jenett-Siems,Peter Schmieder, et al. A convenient method for saponin isolation in tumour therapy[J]. Journal of Chromatography B, 2010, 878(7/8):713-718
[10] Kritsunankul Orawan, Jakmunee Jaroon. Simultaneous determination of some food additives in soft drinks and other liquid foods by flow injection on-line dialysis coupled to high performance liquid chromatography[J]. Talanta, 2011, 84(5): 1342-1349
[11] CHAO Yu-Ying, WEI Yu-Tzu, LEE Cheuch-Ting,et al. Membrane Sampling with Microdialysis Coupled to HPLC/UV for On-line Simultaneous Determination of Melamine and Cyanuric Acid in Nondairy Coffee Creamer[J]. Analytical Sciences , 2011, 27 (10) :1025-1030
[12] Schneider Marilyn J. Multiresidue Analysis of Fluoroquinolone Antibiotics in Chicken Tissue Using Automated Microdialysis–Liquid Chromatography[J]. Journal of Chromatographic Science, 2001, 39 (8) : 351-356
[13] Chu Yang, Wang Xiangyang, Guo Jiahua,et al. Pharmacokinetic study of unbound forsythiaside in rat blood and bile by microdialysis coupled with HPLC method[J].European Journal of Drug Metabolism and Pharmacokinetics, 2012, 37(3): 173-177
[14] Li Lin, Caiyong Song, Liyun Xie, et al. Electrochemical determination of xanthine and hypoxanthine in rat striatum with an acetylene black -dihexadecyl hydrogen phosphate composite film modified electrode by HPLC coupled with in vivo microdialysis[J].Microchimica Acta, 2010, 170(1/2): 47-52
[15] Weiss David J, LunteCraig E,LunteSusan M, In vivo microdialysis as a tool for monitoring pharmacokinetics[J]. TrAC Trends in Analytical Chemistry, 2000, 19(10): 606-616
[16] Chen Shing-Jung, Cheng Fu-Chou, Jen Jen-Fon.On-line microdialysis coupled solid-phase extraction to decrease matrix interference in the HPLC analysis of urinary ketamine and its metabolite[J]. Journal of Separation Science, 2010, 33(13): 2010-2016
[17] Guo Jianming, Shang Er-xin, Duan Jin-ao, et al. Determination of ligustilide in the brains of freely moving rats using microdialysis coupled with ultra performance liquid chromatography/mass spectrometry[J]. Fitoterapia, 2011, 82(3): 441-445
[18]王麗靜,楊鵬波,吳霞,等.乳酸發(fā)酵液電滲析過程中氨基酸的遷移現(xiàn)象[J].過程工程學(xué)報(bào), 2010, 10(3):451-456
[19] Debets A JJ, Kok W Th, Hupe K-P, et al. Electrodialytic sample treatment coupled on-line with high-performance liquid chromatography[J]. Chromatographia, 1990, 30(7/8): 361-366
[20] Debets AJJ, Hupe K-P, Electrodialytic sample treatment coupled on-line with column liquid chromatography for the determination of basic and acidic compounds in environmental samples[J]. Journal of Chromatography A, 1992, 600(2):163-173
[21] Matthieu G M, Gruenewegen, Nico C, et al. Automated Determination of Weakly Acidic and Basic Pollutants in Surface Water by Online Electrodialysis Sample[J]. Treatment and Column Liquid Chromatography, 1994, 11(9): 1753-1758
[22] Audunsson Gudjon. Aqueous/aqueous extraction by means of a liquid membrane for sample cleanup and preconcentration of amines in a flow system[J].Anal Chem, 1986, 58(13): 2714-2723
[23] Jan魡keJ觟nsson, Lennart Mathiasson. Liquid membrane extraction in analytical sample preparation: I Principles[J]. TrAC Trends in Analytical Chemistry, 1999, 18(5): 318-325
[24] María Ramos Payán, Miguel魣ngel Bello López, Rut FernándezTorres, et al. Electromembrane extraction (EME) and HPLC determination of non-steroidal anti-inflammatory drugs (NSAIDs) in wastewater samples[J].Talanta, 2011, 85 (1): 394-399
[25] G觟ran Nilvé, Magnus Knutsson, Jan魡keJ觟nsson. Liquid chromatographic determination of sulfonylurea herbicides in natural waters after automated sample pretreatment using supported liquid membranes[J]. Journal of Chromatography A, 1994, 688(1/2):75-82
[26] J觟nsson J魡, Mathiasson L, Membrane extraction in analytical chemistry[J]. Journal of separation science, 2001, 24(7): 495-507
[27] Knutsson M,Mathiasson L,J觟nsson J魡,et al. Supported liquid membrane work -up in combination with liquid chromatography and electrochemical detection for the determination of chlorinated phenols in natural water samples[J]. Chromatographia, 1996, 42 (3/4): 165-170
[28] Berhanu T, Liu JF, Romero R, et al. Determination of trace levels of dinitrophenolic compounds in environmental water samples using hollow fiber supported liquid membrane extraction and high performance liquid chromatography[J]. J Chromatogr A, 2006, 1103(1):1-8
[29] Anna Poliwoda, Ma覥gorzataKrzyz觶ak,Piotr P,et al. Supported liquid membrane extraction with single hollow fiber for the analysis of fluoroquinolones from environmental surface water samples[J]. Journal of Chromatography A , 2010,1217(22): 3590-3597
[30] Jin-Feng Peng, Jing-Fu Liu, Xia-Lin Hu, et al. Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography[J]. Journal of Chromatography A,2007,1139(2): 165-170
[31] Jing-bo Chao, Jing-fu Liu, Mei-juanWen, et al. Determination of sulfonylurea herbicides by continuous-flow liquid membrane extraction on-line coupled with high-performance liquid chromatography[J]. Journal of Chromatography A, 2002, 955(2): 183-189
[32] Hu Xia-lin, Huang Yuan-jian, Tao Yong, et al. Hollow fiber membrane supported thin liquid film extraction for determination of trace phenoxy acid herbicides and phenols in environmental water samples[J]. Microchimica Acta , 2010, 168(1/2) : 23-29
[33] FaizUllah Shah, ThaerBarri, Jan魡keJ觟nsson, et al. Determination of heterocyclic aromatic amines in human urine by using hollow-fibre supported liquid membrane extraction and liquid chromatographyultraviolet detection system[J]. Journal of Chromatography B, 2008, 870 (2):203-208
[34] Pedersen-Bjergaard S, Rasmussen KE. Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis[J]. Anal Chem, 1999, 71(14):2650-2656
[35] Ling yan, Chuan hong, HianKee Lee. Liquid-Phase Microextraction of Phenolic Compounds Combined with On-Line Preconcentration by Field-Amplified Sample Injection at Low pH in MicellarElectrokinetic Chromatography[J]. Analytical chemistry, 2001, 73(23): 5655-5660
[36] LS de Jager, ARJ Andrews, Preliminary studies of a fast screening method for cocaine and cocaine metabolites in urine using hollow fibre membrane solvent microextraction (HFMSME) [J]. Analyst, 2001(126):1298-1303
[37] Jing-bo Chao, Jing-fu Liu, Mei-juan Wen. Determination of sulfonylurea herbicides by continuous-flow liquid membrane extraction on-line coupled with high-performance liquid chromatography [J].Journal of Chromatography A, 2002,955(2): 183-189
[38] Rasmussen KE, Pederson-Bjergaard S, Krogh M, et al. Development of a simple in-vial liquid-phase microextractionde vice for drug analysis compatible with capillary GC, CE and HPLC[J].Chromatogr, 2000, 873(1):3
[39] Francisco Barahona, Astrid Gjelstad, Stig Pedersen-Bjergaard, Hollow fiber-liquid-phase microextraction of fungicides from orange juices[J].Journal of Chromatography A, 2010, 1217(13):1989-1994
[40] Tatjana Trti-Petrovic , Jelena Dordevic , NikolinaDujakovic , et,al. Determination of selected pesticides in environmental water by employing liquid-phase microextraction and liquid chromatographytandem mass spectrometry[J]. Anal Bioanal Chem, 2010, 397(6): 2233-2243
[41] P Plaza Bola觡os, R Romero-González, A GarridoFrenich, Application of hollow fibre liquid phase microextraction for the multiresidue determination of pesticides in alcoholic beverages by ultra -highpressure liquid chromatography coupled to tandem mass spectrometry[J]. Journal of Chromatography A, 2008,1208(1/2):16-24
[42] Gizelle Cristina Bedendo, Isabel Cristina Sales Fontes Jardim, Eduardo Carasek et al. A simple hollow fiber renewal liquid membrane extraction method for analysis of sulfonamides in honey samples with determination by liquid chromatography–tandem mass spectrometry[J]. Journal of Chromatography A, 2010, 1217(42): 6449-6454
[43] Ezoddin M, J觟nsson J魡, Kyani A. Equilibrium sampling through membrane based on a hollow fiber for determination of naproxen and diclofenac in sludge slurry using Taguchi orthogonal array experimental design[J].Desalination and Water Treatment, 2013(1): 1-9
[44] Ezoddin M, J觟nsson J魡, Kyani A, et al. Equilibrium sampling through membrane based on a hollow fiber for determination of naproxen and diclofenac in sludge slurry using Taguchi orthogonal array experimental design[J]. Desalination and Water Treatment, 2013(1): 1-9
[45] Astrid Gjelstad, TorillMarita Andersen, Knut Einar Rasmussen, et al. Microextraction across supported liquid membranes forced by pH gradientsandelectricalfields[J]. Journalof Chromatography A, 2007, 1157(1/2):38-45
[46] Jing-Fu Liu, Jing-Bo Chao, Gui-Bin Jiang. Continuous flow liquid membrane extraction: a novel automatic trace-enrichment technique based on continuous flow liquid–liquid extraction combined with supported liquid membrane[J]. Analytica Chimica Acta, 2002, 455 (1):93-101
[47] Astrid Gjelstad, Knut Einar Rasmussen, Stig Pedersen-Bjergaard, Electrokinetic migration across artificial liquid membranes:Tuning the membrane chemistry to different types of drug substances[J]. Journal of Chromatography A, 2006, 1124(1/2):29-34
[48] Astrid Gjelstad, Knut Einar Rasmussen,Stig Pedersen -Bjergaard Electromembrane extraction of basic drugs from untreated human plasma and whole blood under physiological pH conditions[J].Analytical and Bioanalytical Chemistry,2009, 393(3):921-928
[49] Inger Johanne, stegaard Kjelsen, Astrid Gjelstad, et al. Low-voltage electromembrane extraction of basic drugs from biological samples [J].Journal of Chromatography A, 2008 ,1180(1/2):1-9
[50] Torunn M. Middelthon-Bruer, Astrid Gjelstad, Knut E. Rasmussen, et al. Parameters affecting electro membrane extraction of basic drugs[J]. Journal of Separation Science,2008,31(4):753-759
[51] MarteBalchen, Astrid Gjelstad, Knut EinarRasmussen, et al. Electrokinetic migration of acidic drugs across a supported liquid membrane[J].Journal of Chromatography A,2007,1152(1/2): 220-225
[52] Sandahl M, Mathiasson L, J觟nsson J A. Determination of thiophanate-methyl and its metabolites at trace level in spiked natural water using the supported iquid membrane extraction and the microporous membrane liquid-liquid extraction techniques combined on-line with high-performance liquid chromatography[J]. Journal of Chromatography A, 2000, 893 (1) : 123-131
[53] Shahram Seidia, Yadollah Yaminia, Akbar Heydaria, et al. Determination of the baine in water samples, biological fluids, poppy capsule, and narcotic drugs, using electromembrane extraction followed by high-performance liquid chromatography analysis[J]. Analytica Chimica Acta, 2011, 701(2):181-188
[54] MarteBalchen, Léon Reubsaet, Stig Pedersen -Bjergaard, Electromembrane extraction of peptides[J]. Journal of Chromatography A, 2008, 1194(2):143-149
[55] ChanbashaBasheer, ShuHui Tan, HianKee Lee, Extraction of lead ions by electromembrane isolation[J]. Journal of Chromatography A, 2008, 1213 (1):14-18
[56] JingyiLeea, FaezehKhalilianb, HabibBagherib, et al. Optimization of some experimental parameters in the electro membrane extraction of chlorophenols from seawater[J]. Journal of Chromatography A, 2009, 1216(45):7687-7693
[57] Lars Erik EngEibaka, Astrid Gjelstada, Knut EinarRasmussena, et al. Exhaustive electromembrane extraction of some basic drugs from human plasma followed by liquid chromatography–mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis, 2012, 57: 33-38
[58] LenkaStrieglerová, PavelKubáň, PetrBo?ek et al. Electromembrane extraction of amino acids from body fluids followed by capillary electrophoresis with capacitively coupled contactless conductivity detection[J]. Journal of Chromatography A, 2011, 1218(37):6248-6255
[59] María D. Ramos Payán, Bin Lib, et al. Nano-electromembrane extraction[J]. Analytica Chimica Acta, 2013, 785: 60-66
[60] Jing-fu Liu, Jing-bo Chao, Gui-bin Jiang, et al. Trace analysis of sulfonylurea herbicides in water by on-line continuous flow liquid membrane extraction-C18 precolumn liquid chromatography with ultraviolet absorbance detection[J]. Journal of Chromatography A, 2003, 995(1/2): 21-28
The Application of Membrane Separation Technology in Chromatographic Analysis
LIANG Jun-ni1,ZHAO Yu-ling1,LI Chun-xi2,YANG Li-jun2,*
(1. Yantai Entry-exit Inspection and Quarantine Bureau,Yantai 264000,Shandong,China;2. Weihai Entryexit Inspection and Quarantine Bureau,Weihai 264200,Shandong,China)
Abstract:The development and application of membrane separation technology in chromatographic analysis were summarized in the review,the development trend and prospects of membrane separation technology in the future was prospected.
Key words:membrane separation technology;chromatographic analysis;application
收稿日期:2014-07-21
DOI:10.3969/j.issn.1005-6521.2016.01.048
*通信作者:楊麗君,碩士,高級(jí)工程師,研究方向:食品檢測(cè)。
作者簡(jiǎn)介:梁君妮(1982—),女(漢),工程師,碩士,研究方向:食品檢測(cè)。
基金項(xiàng)目:國(guó)家科技支撐計(jì)劃(2012BAK08B01);質(zhì)檢公益性行業(yè)科研專項(xiàng)(201310143);國(guó)家質(zhì)檢總局科技計(jì)劃項(xiàng)目(2013IK178)