林丙濤,蔣昭興,江 黎,趙建華,李文蘊(yùn)
(1. 中國(guó)電子科技集團(tuán)公司第26研究所,重慶 400060;2. 重慶市固態(tài)慣性技術(shù)企業(yè)工程技術(shù)研究中心,重慶 401332;3. 重慶市固態(tài)慣性技術(shù)工程實(shí)驗(yàn)室,重慶 401332)
Abstract: In order to decrease the nonlinearity of closed-loop micro-silicon accelerometer, its main error source is analyzed, and the corresponding compensation method is presented. First, the nonlinear problem caused by the proof-mass position’s deviation from the rest position in closed-loop mode is analyzed. Then the nonlinearity optimization is analyzed based on the feedback control theory. Finally, an engineering debugging method is demonstrated to compensate the nonlinearity of the accelerometer. The centrifuge experiment results show that the nonlinearity of the accelerometer can be decreased at least by one order of magnitude after the debugging, which verify the effectiveness of the error source analysis and the nonlinearity compensation method. This method can also be applied to all the accelerometers with the same manufacturing batch.
Key words: accelerometers; closed-loop mode; feedback control; nonlinearity compensation
一種高靈敏度石英微機(jī)械陀螺敏感器件
林丙濤1,2,3,蔣昭興1,2,3,江 黎1,2,3,趙建華1,2,3,李文蘊(yùn)1,2,3
(1. 中國(guó)電子科技集團(tuán)公司第26研究所,重慶 400060;2. 重慶市固態(tài)慣性技術(shù)企業(yè)工程技術(shù)研究中心,重慶 401332;3. 重慶市固態(tài)慣性技術(shù)工程實(shí)驗(yàn)室,重慶 401332)
針對(duì)石英晶體各向異性的特點(diǎn),設(shè)計(jì)了一種驅(qū)動(dòng)梁為雙“W”截面形狀的石英音叉微機(jī)械陀螺,通過(guò)在驅(qū)動(dòng)梁表面凹槽兩端設(shè)置深凹槽,有效提高了凹槽側(cè)壁的陡直性,進(jìn)而提高了驅(qū)動(dòng)梁內(nèi)部電場(chǎng)的激勵(lì)效率和陀螺靈敏度。采用有限元仿真的方法,分析了不同截面形狀的驅(qū)動(dòng)梁壓電激勵(lì)力的相對(duì)大小,優(yōu)化設(shè)計(jì)了陀螺芯片結(jié)構(gòu)參數(shù)。依據(jù)陀螺芯片的結(jié)構(gòu),設(shè)計(jì)了合理的工藝方案并在3英寸石英圓片上制作出了三種驅(qū)動(dòng)梁截面形狀的陀螺器件,測(cè)試結(jié)果表明,相對(duì)于矩形驅(qū)動(dòng)梁截面的陀螺芯片,雙“W”形驅(qū)動(dòng)梁截面的陀螺芯片的靈敏度提高約60%。
微機(jī)械陀螺;凹槽;靈敏度;各向異性刻蝕
隨著導(dǎo)航制導(dǎo)及姿態(tài)控制精度要求的不斷提升,對(duì)高性能微型慣性器件尤其是高性能微型陀螺的需求也越來(lái)越迫切。為應(yīng)對(duì)市場(chǎng)的需求,微型陀螺向著更小型化,更高精度[1-2],更廉價(jià)[3],單片多軸[4-5]的方向發(fā)展。石英晶體材料[6]品質(zhì)因數(shù)高,溫度穩(wěn)定性好,可采用微加工工藝加工,常作為高溫度穩(wěn)定性微型陀螺的基體材料。石英微機(jī)械陀螺是目前國(guó)內(nèi)軍品市場(chǎng)中應(yīng)用較多的一種微機(jī)械陀螺,采用類似于BEI公司陀螺產(chǎn)品的X型芯片結(jié)構(gòu)。但由于該芯片的驅(qū)動(dòng)梁為矩形截面結(jié)構(gòu),電場(chǎng)激勵(lì)效率低,芯片靈敏度進(jìn)一步提升的空間有限。
為提高石英諧振梁內(nèi)部的電場(chǎng)激勵(lì)效率,日本Epson公司[7]設(shè)計(jì)了一種“H”形截面諧振梁結(jié)構(gòu),通過(guò)在諧振梁上下表面分別設(shè)置一個(gè)淺凹槽,提高了諧振梁內(nèi)部的激勵(lì)電場(chǎng)強(qiáng)度和電極激勵(lì)效率。
石英晶體通過(guò)刻蝕工藝進(jìn)行三維微結(jié)構(gòu)的加工,刻蝕工藝主要有干法[8]和濕法[9]兩種方式。濕法刻蝕成本低,石英微機(jī)械陀螺芯片的加工多采用濕法刻蝕工藝。但由于石英晶體存在各向異性[10],“H”形截面驅(qū)動(dòng)梁內(nèi)的凹槽截面為多個(gè)晶面組成的多邊形形狀,而非理想的矩形形狀,導(dǎo)致凹槽側(cè)壁陡直性差,且單個(gè)驅(qū)動(dòng)梁的左右兩端的對(duì)稱性較差,電場(chǎng)強(qiáng)度和靈敏度的提升幅度有限,驅(qū)動(dòng)梁的諧振穩(wěn)定性不高。
針對(duì)于此,在X型芯片結(jié)構(gòu)的基礎(chǔ)上,本文中提出了一種驅(qū)動(dòng)梁為雙“W”形截面形狀的石英音叉陀螺芯片結(jié)構(gòu)。與矩形和“H”形截面的驅(qū)動(dòng)梁相比,在同等激勵(lì)電壓條件下,雙“W” 形截面驅(qū)動(dòng)梁通過(guò)在凹槽左右兩端制作深凹槽,有效增加了凹槽兩端的刻蝕時(shí)間,進(jìn)而提高了濕法刻蝕后凹槽側(cè)壁的陡直性,激勵(lì)電極產(chǎn)生的有效電場(chǎng)強(qiáng)度明顯增強(qiáng),陀螺芯片的靈敏度得到進(jìn)一步的提高。
石英微機(jī)械陀螺包含敏感器件和信號(hào)處理電路兩部分,其中封裝于敏感器件內(nèi)部的敏感芯片是感測(cè)外部角速度的核心元件,敏感芯片以石英晶體為基體材料,采用單端或雙端音叉結(jié)構(gòu),以雙端音叉結(jié)構(gòu)的石英微機(jī)械陀螺為例,其原理框圖見(jiàn)圖1。通過(guò)在驅(qū)動(dòng)音叉和讀出音叉的表面沉積圖形化電極,利用石英晶體的逆壓電效應(yīng)和壓電效應(yīng)進(jìn)行激勵(lì)和檢測(cè)。驅(qū)動(dòng)音叉被激勵(lì)以其自然頻率左右振動(dòng),當(dāng)陀螺芯片繞其垂直軸旋轉(zhuǎn)時(shí),音叉受到哥氏力的作用產(chǎn)生一個(gè)垂直于音叉平面的振動(dòng),這個(gè)哥氏力運(yùn)動(dòng)傳遞到讀出音叉,使讀出音叉垂直于音叉平面振動(dòng)。讀出音叉振動(dòng)的幅度正比于驅(qū)動(dòng)音叉運(yùn)動(dòng)的速度和外加角速度,通過(guò)制作在該音叉上的電極來(lái)檢測(cè),被檢測(cè)的信號(hào)經(jīng)過(guò)放大、同步檢波和濾波得到一個(gè)正比于輸入角速度的直流電壓輸出。
圖1 雙端石英音叉陀螺工作原理圖Fig.1 Schematic of double-ended quartz tuning fork gyroscope
2.1 結(jié)構(gòu)設(shè)計(jì)
石英音叉陀螺芯片采用雙端音叉結(jié)構(gòu),沿晶體Y方向設(shè)置有一對(duì)驅(qū)動(dòng)梁和一對(duì)檢測(cè)梁,通過(guò)撓性橋等結(jié)構(gòu)與固定塊連接到一起,固定塊為陀螺芯片與外殼的固定連接部位。
雙“W” 形截面驅(qū)動(dòng)梁內(nèi)部的電場(chǎng)分布如圖2(a)所示,梁左右兩端的電場(chǎng)方向相反,在逆壓電效應(yīng)作用下,兩個(gè)驅(qū)動(dòng)梁產(chǎn)生沿寬度方向(X方向)的反向彎曲變形。Y方向有角速度信號(hào)時(shí),Z方向(垂直芯片表面方向)哥氏力帶動(dòng)驅(qū)動(dòng)梁和檢測(cè)梁產(chǎn)生Z方向的檢測(cè)振動(dòng),通過(guò)覆蓋于檢測(cè)梁表面的電極收集壓電效應(yīng)產(chǎn)生的電荷,后經(jīng)外部電路的信號(hào)解算即可得到輸入角速度值。
哥氏力的大小正比于驅(qū)動(dòng)梁端部的線速度,而該線速度又正比于單位電壓條件下的驅(qū)動(dòng)力,提高驅(qū)動(dòng)梁內(nèi)部的電場(chǎng)驅(qū)動(dòng)效率,是提高陀螺芯片靈敏度的有效途徑之一。結(jié)合梁表面凹槽的側(cè)壁陡直度與腐蝕時(shí)間正相關(guān)的特性,將梁截面形狀設(shè)置為雙“W”形,梁理想截面及實(shí)際截面形狀如圖2(a)和2(b)所示。相對(duì)于“H” 形截面的梁結(jié)構(gòu),雙“W”形通過(guò)在凹槽的兩端設(shè)置兩個(gè)深凹槽,有效增加了凹槽兩端側(cè)壁的腐蝕時(shí)間和側(cè)壁陡直度,進(jìn)而提高了電場(chǎng)的激勵(lì)效率和陀螺芯片的靈敏度。
圖2 雙“W”形截面驅(qū)動(dòng)梁Fig.2 Driving tines with double W-shaped cross-sections
2.2 工藝方案
石英音叉陀螺芯片的加工工藝流程如圖3所示,其中,凹槽兩端的深凹槽的刻蝕與驅(qū)動(dòng)梁的刻蝕同步實(shí)現(xiàn),未增加工藝步驟及成本。由于深凹槽的刻蝕與驅(qū)動(dòng)梁刻蝕時(shí)間相同(工序2和3中的刻蝕時(shí)間總和),相對(duì)于“H” 形截面驅(qū)動(dòng)梁的凹槽的刻蝕(工序3中的刻蝕時(shí)間),“W”形凹槽的刻蝕時(shí)間明顯更長(zhǎng),依據(jù)石英晶體濕法刻蝕的特點(diǎn)[9],“W”形凹槽的側(cè)壁陡直性更好。在驅(qū)動(dòng)梁表面電極間施加相同的激勵(lì)電壓時(shí),雙“W”形截面驅(qū)動(dòng)梁內(nèi)部的有效作用電場(chǎng)強(qiáng)度更大,電場(chǎng)激勵(lì)效率更高。
1)經(jīng)過(guò)清洗工序后的干凈石英基片雙面依次沉積 Cr、Au金屬薄膜作為石英濕法刻蝕時(shí)的掩膜及電極材料,采用光刻及濕法金屬腐蝕工藝進(jìn)行圖形化,而后在金屬膜表面旋涂光刻膠并采用第二次光刻工藝對(duì)其進(jìn)行圖形化;
2)采用石英晶體三維深槽濕法刻蝕工藝刻蝕出諧振梁形狀,同時(shí)在每個(gè)驅(qū)動(dòng)梁的上下表面刻蝕出兩個(gè)深凹槽;
3)腐蝕未被光刻膠保護(hù)的 Cr、Au金屬掩膜圖形,并對(duì)驅(qū)動(dòng)梁表面進(jìn)行石英晶體濕法刻蝕得到凹槽中部的淺凹槽;
4)采用濕法去膠及濕法金屬腐蝕工藝依次去除基片表面的光刻膠、Au、Cr金屬薄膜;
5)石英基片雙面濺射Cr/Au金屬薄膜組合,采用噴涂膠和傾斜曝光的方式對(duì)金屬薄膜進(jìn)行圖形化制作。
圖3 芯片加工工藝流程Fig.3 Fabrication process of gyro chip
3.1 壓電激勵(lì)力
石英雙端音叉陀螺的驅(qū)動(dòng)梁結(jié)構(gòu)參數(shù)發(fā)生改變時(shí),如增加凹槽等,為了滿足其模態(tài)特性及零位移線經(jīng)過(guò)固定塊等設(shè)計(jì)要求,需對(duì)梁結(jié)構(gòu)的寬度、長(zhǎng)度等進(jìn)行優(yōu)化調(diào)整,若采用整個(gè)陀螺芯片作為仿真對(duì)象,不便于對(duì)不同截面形狀的驅(qū)動(dòng)梁壓電激勵(lì)力做等效量化對(duì)比。鑒于此,下面以等寬度的驅(qū)動(dòng)梁而非整個(gè)陀螺芯片為仿真對(duì)象,對(duì)矩形、“H”形、雙“W”形截面的驅(qū)動(dòng)梁的電場(chǎng)激勵(lì)效率進(jìn)行對(duì)比分析。
驅(qū)動(dòng)梁表面的凹槽沿梁長(zhǎng)度方向(晶體Y方向)設(shè)置,其側(cè)壁陡直度主要受X方向各晶面刻蝕速度影響,而-X方向的晶面刻蝕速度較快[9],側(cè)壁陡直度較好,+X方向晶面的刻蝕速度較慢,側(cè)壁陡直性較差。+X方向經(jīng)刻蝕后顯現(xiàn)的主要晶面如圖4所示。
為簡(jiǎn)化計(jì)算,假設(shè)-X方向的凹槽側(cè)壁為垂直,仿真采用的+X方向主要晶面的角度及刻蝕速度[9]如表1所示。
仿真采用的凹槽結(jié)構(gòu)參數(shù)如圖5和表2所示,其中,l表示凹槽的長(zhǎng)度。設(shè)定三種形狀截面的驅(qū)動(dòng)梁的長(zhǎng)度l、寬度w0、厚度h0均一致,矩形截面驅(qū)動(dòng)梁表面無(wú)凹槽,“H”形截面驅(qū)動(dòng)梁表面凹槽寬度為(w0-2w1),深度為h1。
總的刻蝕時(shí)間為晶面3剛好被修平,采用有限元分析軟件ANSYS對(duì)三種截面形狀的驅(qū)動(dòng)梁進(jìn)行了仿真,仿真參量包括梁在X方向的剛度及施加相同激勵(lì)電壓時(shí)的變形量,結(jié)果如表3所示。
圖4 +X方向晶面示意圖Fig.4 The crystal planes in +X-direction
圖5 凹槽截面結(jié)構(gòu)參數(shù)Fig.5 Structural parameters of groove cross-section
表1 +X方向晶面角度及刻蝕速度Tab.1 Angular and etch rates of crystal planes in +X-direction
表2 仿真結(jié)構(gòu)參數(shù)Tab.2 Structural parameters of simulation μm
表3 三種不同截面形狀驅(qū)動(dòng)梁仿真結(jié)果對(duì)比Tab.3 Simulation results of driving tines with three different cross-section shapes
矩形、“H”形、雙“W”形截面的驅(qū)動(dòng)梁在相同激勵(lì)電壓下產(chǎn)生的壓電激勵(lì)力為梁剛度與變形量的乘積,其比值為 1∶5.39∶8.52。由仿真結(jié)果可以看出,相較于其它兩種截面驅(qū)動(dòng)梁,雙“W”形截面驅(qū)動(dòng)梁的電場(chǎng)激勵(lì)效率得到有效提升。
由2.1節(jié)的分析可知,提高驅(qū)動(dòng)梁內(nèi)部的電場(chǎng)激勵(lì)效率,即提高單位壓電電壓所產(chǎn)生的壓電激勵(lì)力,是提高陀螺芯片靈敏度的有效途徑之一。采用雙“W”形截面驅(qū)動(dòng)梁的石英雙端音叉陀螺芯片有望獲得更高的靈敏度。
3.2 模態(tài)分析
石英微機(jī)械陀螺為振動(dòng)慣性器件,其模態(tài)分布對(duì)其精度及環(huán)境適應(yīng)性影響較大。石英微機(jī)械陀螺芯片的模態(tài)設(shè)計(jì)主要考慮以下因素:1)一階模態(tài)頻率要高于使用環(huán)境頻率,以獲得較高的抗環(huán)境振動(dòng)干擾能力;2)驅(qū)動(dòng)音叉和讀出音叉的諧振頻率匹配,其頻差的優(yōu)選需綜合靈敏度和工作帶寬性能;3)驅(qū)動(dòng)模態(tài)及讀出模態(tài)與相鄰非工作模態(tài)頻率之間要有明顯的區(qū)隔,以降低工作模態(tài)與相鄰模態(tài)的振動(dòng)耦合,提高工作模態(tài)的穩(wěn)定性。
結(jié)合三維建模及有限元仿真軟件Solidworks對(duì)陀螺芯片的結(jié)構(gòu)參數(shù)進(jìn)行了優(yōu)化,經(jīng)結(jié)構(gòu)優(yōu)化后的芯片前 9階模態(tài)頻率如表4所示:一階模態(tài)頻率3648 Hz,高于2000 Hz的使用環(huán)境頻率;驅(qū)動(dòng)模態(tài)及讀出模態(tài)的頻率依次為10080 Hz和10319 Hz,相鄰模態(tài)的頻率分別為8816 Hz和19172 Hz,頻率區(qū)隔分別為1264 Hz和8853Hz。
表4 陀螺芯片前9階模態(tài)頻率Tab.4 The first nine-order’s modal frequencies of gyro chip
依據(jù)圖3中的工藝流程在3″標(biāo)準(zhǔn)石英晶體圓片上制作出了石英音叉陀螺芯片,分別為矩形、“H”形和雙“W”形截面的驅(qū)動(dòng)梁結(jié)構(gòu)。為了獲得高穩(wěn)定性的芯片結(jié)構(gòu),對(duì)芯片的部分參數(shù)進(jìn)行了優(yōu)化以使得檢測(cè)模態(tài)下的零位移線通過(guò)固定塊的中心。
分別將上述制作的三種結(jié)構(gòu)陀螺芯片粘接到金屬外殼上,氣密封帽后在阻抗分析儀上測(cè)試其驅(qū)動(dòng)模態(tài)的導(dǎo)納、Q值;而后將封帽后的陀螺敏感器件與驅(qū)動(dòng)檢測(cè)電路組裝聯(lián)調(diào),使得其驅(qū)動(dòng)端的交流電壓幅值一致。在高精度轉(zhuǎn)臺(tái)上測(cè)試其靈敏度,測(cè)試結(jié)果如表5所示。
由測(cè)試結(jié)果可以看出,矩形、“H”形、雙“W”形驅(qū)動(dòng)梁截面的石英音叉陀螺芯片,其驅(qū)動(dòng)模態(tài)的Q值分別約為1700、3100、3000,驅(qū)動(dòng)模態(tài)的導(dǎo)納分別約為1200 ns、3700 ns、4200 ns,靈敏度分別約為20 mV/(°/s)、26 mV/(°/s)和32 mV/(°/s)。相對(duì)于現(xiàn)有的矩形驅(qū)動(dòng)梁截面的石英音叉陀螺芯片,雙“W”形驅(qū)動(dòng)梁截面的石英音叉陀螺芯片的靈敏度提高比例約為60%。
表5 陀螺芯片測(cè)試結(jié)果Tab.5 Measurement results of the three kinds of gyro chips
設(shè)計(jì)了一種驅(qū)動(dòng)梁為雙“W”截面形狀的高靈敏度石英音叉陀螺芯片,仿真對(duì)比分析了其與矩形、“H”形截面的驅(qū)動(dòng)梁的電場(chǎng)激勵(lì)效率,相對(duì)于現(xiàn)有的矩形截面驅(qū)動(dòng)梁其壓電激勵(lì)力同比提高約8.5倍。設(shè)計(jì)了合理的工藝方案,相對(duì)于矩形截面驅(qū)動(dòng)梁結(jié)構(gòu)的石英音叉陀螺芯片其制作工序未增加,依據(jù)該方案制作出了矩形、“H”形和雙“W”形三種驅(qū)動(dòng)梁截面形狀的石英音叉陀螺芯片,相對(duì)于現(xiàn)有的矩形驅(qū)動(dòng)梁截面石英音叉陀螺芯片,其電場(chǎng)激勵(lì)效率得到有效提高,陀螺芯片的靈敏度提高約60%。
(References):
[1] Peng Shao, Mayberry C L, Xin Gao, et al. A polysilicon microhemispherical resonating gyroscope[J]. Journal of Microelectromechanical Systems, 2014, 23(4): 762-764.
[2] Fang J C, Qin J. Advances in atomic gyroscopes:a view from inertial navigation applications[J]. Sensors, 2012, 12(5): 6331-6346.
[3] Shaeffer D K. MEMS inertial sensors: a tutorial overview [J]. IEEE Communications Magazine, 2013, 51(4): 100-109.
[4] 李攀, 劉元正, 王繼良. 冷原子陀螺儀三維磁場(chǎng)系統(tǒng)的容差設(shè)計(jì)[J]. 中國(guó)慣性技術(shù)學(xué)報(bào), 2014, 22(5): 671-676. Li Pan, Liu Yuan-zheng, Wang Ji-liang. Tolerance design for three-dimension magnetic field system[J]. Journal of Chinese Inertial Technology, 2014, 22(5): 671-676.
[5] Choi Gobong, Yong Yook-Kong. A study of the effects of mounting supports, and dissipation on a piezoelectric quartz double-ended tuning fork gyroscope[C]//Procee- dings of the 2012 COMSOL Conference. Boston, USA, 2012.
[6] 秦自楷. 壓電石英晶體[M]. 北京: 國(guó)防工業(yè)出版社, 1980.
[7] Yamada A. Resonator element and oscillator[P]. US 20100219898A1.
[8] Komizo T, Nemoto S, Kojima Y, et al. Evaluation of quartz dry etching profile for the PSM lithography performance[C]//Mask and Lithography Conference, 2006: 1-11.
[9] Rangsten P, Hedlund C, Katardjiev I V, et al. Etch rates of crystallographic planes in Z-cut quartz-experiments and simulation[J]. Journal of Micromechanics and Microengineering, 1998, 8(1): 1-6.
[10] Zhao M, Oigawa H, Wang J, et al. Use of a new anisotropic etching simulator on quartz crystal[C]//16th International Conference on Solid-State Sensors, Actuators and Microsystems. 2011.
Quartz micromachined gyro element with high sensitivity
LIN Bing-tao1,2,3, JIANG Zhao-xing1,2,3, JIANG Li1,2,3, ZHAO Jian-hua1,2,3, LI Wen-yun1,2,3
(1. 26th Institute of China Electronics Technology Group Corporation, Chongqing 400060, China; 2. Solid Inertial Technology Enterprise Engineering Technology Research Center of Chongqing City, Chongqing 401332, China; 3. Solid Inertial Technology Engineering Laboratory of Chongqing City, Chongqing 401332, China)
In view of the anisotropic etching characteristics of quartz crystal, a novel high-sensitivity quartz micromachined gyro with two double W-shaped cross-section driving tines was introduced. The groove side-wall’s gradient, electric field excitation efficiency and gyro sensitivity were improved by setting two deep grooves on both sides of driving tines. The piezoelectric force was computed and the structure parameters were optimized with FEA (Finite Element Analysis) method. Three kinds of gyros were successfully manufactured on a 3-inch quartz crystal wafer by chemical anisotropic etching and metal film deposition. Experiment results show that the sensitivity of the chip with two double W-shaped cross-section driving tines was improved by 60% compared to the chip with rectangle cross-section driving tines.
MEMS gyro; groove; sensitivity; anisotropic etching
Nonlinearity compensation of closed-loop micro-silicon accelerometer
XIAO Peng1,2, LIU Lin1, WANG Xiao-bin2, SUN Jun-jie2, YU Cai-jia2
(1. School of Automation, Northwestern Polytechnical University, Xi’an 710072, China; 2. Flight Automatic Control Research Institute, Xi’an 710065, China)
Abstract: In order to decrease the nonlinearity of closed-loop micro-silicon accelerometer, its main error source is analyzed, and the corresponding compensation method is presented. First, the nonlinear problem caused by the proof-mass position’s deviation from the rest position in closed-loop mode is analyzed. Then the nonlinearity optimization is analyzed based on the feedback control theory. Finally, an engineering debugging method is demonstrated to compensate the nonlinearity of the accelerometer. The centrifuge experiment results show that the nonlinearity of the accelerometer can be decreased at least by one order of magnitude after the debugging, which verify the effectiveness of the error source analysis and the nonlinearity compensation method. This method can also be applied to all the accelerometers with the same manufacturing batch.
Key words: accelerometers; closed-loop mode; feedback control; nonlinearity compensation
TP212
:A
2016-02-26;
:2016-05-26
裝備預(yù)先研究項(xiàng)目(62401080505);重慶市青年科技人才培養(yǎng)計(jì)劃基金項(xiàng)目(cstc2014kjrc-qnrc40003)
林丙濤(1982—),男,博士,高級(jí)工程師,從事MEMS慣性技術(shù)研究。E-mail: 87540491@qq.com
1005-6734(2016)03-0390-04
10.13695/j.cnki.12-1222/o3.2016.03.020