李祥龍,王建國(guó),張智宇,黃永輝
(1.昆明理工大學(xué)國(guó)土資源工程學(xué)院,云南 昆明 650093;2.云南農(nóng)業(yè)大學(xué)建筑工程學(xué)院,云南 昆明 650201;3.昆明理工大學(xué)電力工程學(xué)院,云南 昆明 650500)
應(yīng)變率及節(jié)理傾角對(duì)巖石模擬材料動(dòng)力特性的影響*
李祥龍1,王建國(guó)2,張智宇1,黃永輝3
(1.昆明理工大學(xué)國(guó)土資源工程學(xué)院,云南 昆明 650093;2.云南農(nóng)業(yè)大學(xué)建筑工程學(xué)院,云南 昆明 650201;3.昆明理工大學(xué)電力工程學(xué)院,云南 昆明 650500)
采用相似材料模擬實(shí)驗(yàn)方法并借助SHPB(split Hopkinson pressure bar)實(shí)驗(yàn)系統(tǒng),探究應(yīng)變率及節(jié)理傾角對(duì)節(jié)理巖石動(dòng)態(tài)力學(xué)性狀的影響,包括應(yīng)力應(yīng)變曲線特征、破壞模式、能量傳遞及耗散規(guī)律。該實(shí)驗(yàn)結(jié)果表明:應(yīng)變率升高,動(dòng)態(tài)彈性模量增大,試件破碎塊度變小,完整試件裂紋缺陷沿著平行于壓應(yīng)力方向擴(kuò)展;節(jié)理角度越大,峰值強(qiáng)度越低,但當(dāng)應(yīng)變率升高到一定程度,節(jié)理角度對(duì)巖石破壞形態(tài)的影響不再明顯;不同試件的入射能、反射能、透射能和耗散能均隨應(yīng)變率升高呈非線性增加,含傾斜角度節(jié)理試件的能量耗散率隨應(yīng)變率的變化幅度明顯大于完整試件。
固體力學(xué);動(dòng)力響應(yīng);SHPB;節(jié)理巖石;節(jié)理傾角;應(yīng)變率;耗散能
應(yīng)變率對(duì)巖石等材料動(dòng)態(tài)力學(xué)性質(zhì)的顯著影響,一直是研究的熱點(diǎn)。洪亮等[1]通過(guò)實(shí)驗(yàn)發(fā)現(xiàn)巖石動(dòng)態(tài)強(qiáng)度的應(yīng)變率依懶性具有很強(qiáng)的尺寸效應(yīng),與靜載條件相反;劉軍忠等[2]、劉傳雄等[3]、劉石等[4]、宮鳳強(qiáng)等[5-6]、劉曉輝等[7]分別利用SHPB實(shí)驗(yàn)研究了角閃巖、混凝土材料、絹云母石英片巖、砂巖、煤巖在不同應(yīng)變率條件下的動(dòng)態(tài)力學(xué)性能及破壞機(jī)理,并探討了實(shí)驗(yàn)材料的本構(gòu)關(guān)系;許金余等[8]、劉軍忠等[9]還在改進(jìn)的SHPB裝置上研究了循環(huán)沖擊作用下,主動(dòng)圍壓對(duì)巖石動(dòng)力學(xué)特性的影響。而在礦山開(kāi)采、巷道掘進(jìn)、邊坡治理或硐室開(kāi)挖等工程中,節(jié)理巖石的動(dòng)力災(zāi)害問(wèn)題是關(guān)注的重點(diǎn)。劉紅巖等先將最新的數(shù)值流行方法運(yùn)用到節(jié)理巖石的建模及沖擊荷載下的節(jié)理裂紋擴(kuò)展分析中[10],隨后又采用相似材料模型實(shí)驗(yàn)并借助SHPB裝置分析了節(jié)理特征(包括節(jié)理角度)對(duì)巖石動(dòng)態(tài)強(qiáng)度及破壞模式的影響[11],但并未考慮動(dòng)載條件下的能量傳遞特征及耗散規(guī)律。本文中,擬在劉紅巖等[11]實(shí)驗(yàn)的基礎(chǔ)上,通過(guò)進(jìn)一步的SHPB沖擊實(shí)驗(yàn),探究應(yīng)變率對(duì)不同傾角節(jié)理巖石動(dòng)態(tài)力學(xué)性狀的影響規(guī)律。
為了考察應(yīng)變率對(duì)不同傾角節(jié)理巖石動(dòng)力學(xué)性狀的影響,這里以完整試件和15°、30°貫通節(jié)理試件為例。巖石試件用水泥、砂子、水按照1∶2∶0.5的質(zhì)量配比制作,其中水泥采用PO 42.5普通硅酸鹽水泥,砂子采用粒徑不大于0.63 mm的普通河砂,攪拌均勻后注模,振動(dòng)排出氣孔,凝固硬化24 h后脫模,在標(biāo)準(zhǔn)養(yǎng)護(hù)室養(yǎng)護(hù)28 d,得到水泥砂漿樣品。本實(shí)驗(yàn)中的貫通節(jié)理均用可以調(diào)整切割角度的型材切割機(jī)切割形成,用環(huán)氧樹(shù)脂將不同部分按設(shè)計(jì)要求有機(jī)粘接。沖擊實(shí)驗(yàn)在SHPB實(shí)驗(yàn)裝置上完成[12],子彈尺寸為?50 mm×800 mm,輸入桿和輸出桿尺寸均為?50 mm×2 500 mm,通過(guò)改變實(shí)驗(yàn)裝置的驅(qū)動(dòng)氣壓實(shí)現(xiàn)不同的加載速度,應(yīng)變率的計(jì)算應(yīng)用三波法公式[13]。
本次實(shí)驗(yàn)各試件的基本幾何參數(shù)及其撞擊速度如表1所示,表中N為試件編號(hào),p為加載氣壓,v為撞擊速度,D為試件直徑,l為試件長(zhǎng)度,β為節(jié)理角度,n為節(jié)理數(shù)。下文將從應(yīng)力應(yīng)變關(guān)系曲線、斷裂破壞模式和破碎吸收能3方面分析應(yīng)變率對(duì)不同角度節(jié)理巖石動(dòng)力學(xué)特性的影響,并和完整巖石試件的實(shí)驗(yàn)結(jié)果進(jìn)行對(duì)比。
圖1 不同應(yīng)變率下完整試件的動(dòng)態(tài)應(yīng)力應(yīng)變曲線Fig.1 Dynamic stress-strain curves of intact specimens at different strain rates
2.1 完整試件的動(dòng)態(tài)本構(gòu)關(guān)系及破壞形態(tài)
圖2 不同應(yīng)變率下完整試件的破壞形態(tài)Fig.2 Failure patterns of intact specimens at different strain rates
2.2 15°節(jié)理試件的動(dòng)態(tài)本構(gòu)關(guān)系及破壞形態(tài)
圖3 不同應(yīng)變率下15°節(jié)理試件的動(dòng)態(tài)應(yīng)力應(yīng)變曲線Fig.3 Dynamic stress-strain curves of 15° jointedspecimens at different strain rates
由圖3可以看出,不同應(yīng)變率下15°節(jié)理巖石試件動(dòng)態(tài)應(yīng)力應(yīng)變曲線初始段與完整試件相同,說(shuō)明其動(dòng)態(tài)彈性模量也表現(xiàn)出明顯的應(yīng)變率相關(guān)性。從材料的微結(jié)構(gòu)特征來(lái)看,在壓應(yīng)力作用的初始階段,節(jié)理巖石仍以彈性受壓為主,使得應(yīng)力應(yīng)變曲線起初近似于直線逐漸上升,但是彈性受壓階段結(jié)束后,應(yīng)力應(yīng)變曲線開(kāi)始變得平緩,整體呈水平趨勢(shì)。與完整試件的應(yīng)力應(yīng)變曲線相比,15°節(jié)理試件在同等應(yīng)變率條件下的應(yīng)力峰值均明顯低于完整試件,且彈性段之后的應(yīng)力應(yīng)變曲線波動(dòng)更頻繁。這說(shuō)明除試件內(nèi)部的局部破壞和應(yīng)力不均勻影響外,巖石徑向貫通節(jié)理的存在使得巖石在不同應(yīng)變率下的峰值應(yīng)力均顯著降低,且變形過(guò)程中應(yīng)力波動(dòng)更頻繁。這是由于傾斜節(jié)理使得巖石受壓過(guò)程中沿節(jié)理面出現(xiàn)了一部分剪切作用所致。同樣,節(jié)理巖石應(yīng)力峰值點(diǎn)后應(yīng)力應(yīng)變曲線的下降形式與應(yīng)變率和試件的破壞程度關(guān)系緊密。
2.3 30°節(jié)理試件的動(dòng)態(tài)本構(gòu)關(guān)系及破壞形態(tài)
由圖 5可以看出,不同應(yīng)變率下30°節(jié)理巖石動(dòng)態(tài)應(yīng)力應(yīng)變曲線初始段斜率是不同的:應(yīng)變率由30.12 s-1升高到42.34 s-1,動(dòng)態(tài)彈性模量逐漸增大,當(dāng)應(yīng)變率升高到50.85 s-1時(shí),反而變小。在同等加載應(yīng)變率條件下,與15°節(jié)理試件的應(yīng)力應(yīng)變曲線相比,30°節(jié)理試件的應(yīng)力峰值又明顯低于15°節(jié)理試件,彈性段之后的應(yīng)力應(yīng)變曲線波動(dòng)更頻繁,再次說(shuō)明巖石徑向貫通節(jié)理的存在影響峰值應(yīng)力的大小。在一定的應(yīng)變率范圍內(nèi),相同應(yīng)變率條件下,節(jié)理傾角增大,巖石的峰值應(yīng)力降低,這是由于較大的節(jié)理傾斜角使得巖石受壓過(guò)程中沿節(jié)理面出現(xiàn)了剪切滑移破壞所致。
圖6 不同應(yīng)變率下30°節(jié)理試件的破壞形態(tài)Fig.6 Failure patterns of 30° jointed specimens at different strain rates
2.4 破壞能量
巖石破碎吸收能也是衡量不同結(jié)構(gòu)巖石破壞難易程度的一個(gè)關(guān)鍵因素[14-16],在Hopkinson壓桿實(shí)驗(yàn)技術(shù)中,應(yīng)力波所攜帶的能量和試樣能耗的計(jì)算參考文獻(xiàn)[7,17],計(jì)算結(jié)果見(jiàn)表 2,并對(duì)表中數(shù)據(jù)進(jìn)行圖解分析,表中Ei為入射能,Er為反射能,Et為透射能,Ed為耗散能,Ed/Ei為能量耗散率 。
表2 SHPB動(dòng)態(tài)沖擊下不同試件的能量分布Table 2 Energy distribution of different specimens subjected to SHPB dynamic impact
圖7~9分別給出了完整試件、15°節(jié)理試件、30°節(jié)理試件的入射能、反射能、透射能和耗散能隨應(yīng)變率的變化關(guān)系曲線??梢钥闯觯?種能量隨應(yīng)變率的升高均呈非線性增長(zhǎng)。然而,不同類型試件的增長(zhǎng)率是不同的,隨著應(yīng)變率的升高,完整試件除反射能近似直線增加外,其余各能量的增長(zhǎng)率逐漸減??;15°節(jié)理試件各能量的增長(zhǎng)率則逐漸提高;而30°節(jié)理試件的反射能增長(zhǎng)率逐漸增大,其余能量的增長(zhǎng)率則逐漸減小。說(shuō)明巖石節(jié)理(該實(shí)驗(yàn)條件下貫通但無(wú)充填的節(jié)理)及其節(jié)理角度(一定角度變化范圍內(nèi))雖然對(duì)動(dòng)荷載作用下巖石的能量傳遞有顯著影響,但并未改變各能量的變化趨勢(shì)。
值得注意的是,盡管各試件在動(dòng)態(tài)沖擊下的耗散率隨著應(yīng)變率的升高而升高,但是入射能也是同時(shí)增加的,因此對(duì)SHPB動(dòng)態(tài)沖擊條件下試件能量耗散的大小利用能量耗散率[18]來(lái)表征更恰當(dāng)。不同類型試件的能量耗散率隨應(yīng)變率的變化情況見(jiàn)圖10。可以看出,完整試件耗散率隨應(yīng)變率的增加幅度較小,15°和30°節(jié)理試件增幅較大,但變化過(guò)程均有波動(dòng),這一方面受巖石節(jié)理的影響,包括不同的節(jié)理傾角,另一方面,試件本身的離散性也會(huì)導(dǎo)致能量在不同試件中的傳播存在差異,有待進(jìn)一步研究。
圖7 完整試件能量隨應(yīng)變率的變化曲線Fig.7 Energy-strain rate curves of intact specimens
圖8 15°節(jié)理試件能量隨應(yīng)變率的變化曲線Fig.8 Energy-strain rate curves of 15° jointed specimens
圖9 30°節(jié)理試件能量隨應(yīng)變率的變化曲線Fig.9 Energy-strain rate curves of 30° jointed specimens
圖10 能量耗散率與應(yīng)變率的關(guān)系曲線Fig.10 Energy dissipation rate varying with strain rate
(1)完整巖石和不同傾角節(jié)理巖石的動(dòng)態(tài)彈性模量及破壞形態(tài)都有很強(qiáng)的應(yīng)變率相關(guān)性。應(yīng)變率升高,動(dòng)態(tài)彈性模量增大,試件破碎塊度變小,裂紋均沿著平行于壓應(yīng)力方向擴(kuò)展。
(2)節(jié)理傾斜角度影響試件的動(dòng)態(tài)峰值強(qiáng)度和破壞形態(tài),在本實(shí)驗(yàn)條件內(nèi),節(jié)理角度越大,峰值強(qiáng)度越低,但當(dāng)應(yīng)變率升高到一定程度,節(jié)理角度對(duì)巖石破壞形態(tài)的影響不再明顯。
(3)不同試件的入射能、反射能、透射能和耗散能隨應(yīng)變率升高呈非線性增加,含傾斜角度節(jié)理試件的能量耗散率隨應(yīng)變率的變化幅度明顯大于完整試件,其隨節(jié)理角度的變化關(guān)系有待進(jìn)一步研究。
[1] 洪亮,李夕兵,馬春德,等.巖石動(dòng)態(tài)強(qiáng)度及其應(yīng)變率靈敏性的尺寸效應(yīng)研究[J].巖石力學(xué)與工程學(xué)報(bào),2008,27(3):526-533. Hong Liang, Li Xibing, Ma Chunde, et al. Study on size effect of rock dynamic strength and strain rate sensitivity[J]. Chinese Journal of Rock Mechanics and Engineering, 2008,27(3):526-533.
[2] 劉軍忠,許金余,呂曉聰,等.沖擊壓縮荷載下角閃巖的動(dòng)態(tài)力學(xué)性能試驗(yàn)研究[J].巖石力學(xué)與工程學(xué)報(bào),2009,28(10):2113-2120. Liu Junzhong, Xu Jinyu, Lü Xiaocong, et al. Experimental study on dynamic mechanical properties of amphibolites under impact compressive loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2009,28(10):2113-2120.
[3] 劉傳雄,李玉龍,吳子燕,等.混凝土材料的動(dòng)態(tài)壓縮破壞機(jī)理及本構(gòu)關(guān)系[J].振動(dòng)與沖擊,2011,30(5):1-5. Liu Chuanxiong, Li Yulong, Wu Ziyan, et al. Failure mechanism and constitutive model of a concrete material under dynamic compressive loads[J]. Journal of Vibration and Shock, 2011,30(5):1-5.
[4] 劉石,許金余,劉軍忠,等.絹云母石英片巖和砂巖的SHPB試驗(yàn)研究[J].巖石力學(xué)與工程學(xué)報(bào),2011,30(9):1864-1871. Liu Shi, Xu Jinyu, Liu Junzhong, et al. SHPB experimental study of sericite-quartz schist and sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2011,30(9):1864-1871.
[5] 宮鳳強(qiáng),陸道輝,李夕兵,等.不同應(yīng)變率下砂巖動(dòng)態(tài)強(qiáng)度準(zhǔn)則的試驗(yàn)研究[J].巖土力學(xué),2013,34(9):2433-2441. Gong Fengqiang, Lu Daohui, Li Xibing, et al. Experimental research of sandstone dynamic strength criterion under different strain rates[J]. Rock and Soil Mechanics, 2013,34(9):2433-2441.
[6] 宮鳳強(qiáng),李夕兵,劉希靈.三軸SHPB加載下砂巖力學(xué)特性及破壞模式試驗(yàn)研究[J].振動(dòng)與沖擊,2012,31(8):29-32. Gong Fengqiang, Li Xibing, Liu Xiling. Tests for sandstone mechnical properties and failure model under triaxial SHPB loading[J]. Journal of Vibration and Shock, 2012,31(8):29-32.
[7] 劉曉輝,張茹,劉建鋒.不同應(yīng)變率下煤巖沖擊動(dòng)力試驗(yàn)研究[J].煤炭學(xué)報(bào),2012,37(9):1528-1534. Liu Xiaohui, Zhang Ru, Liu Jianfeng. Dynamic test study of coal rock under different strain rates[J]. Journal of China Coal Society, 2012,37(9):1528-1534.
[8] 許金余,呂曉聰,張軍,等.循環(huán)沖擊作用下圍壓對(duì)斜長(zhǎng)角閃巖動(dòng)態(tài)特性的影響研究[J].振動(dòng)與沖擊,2010,29(8):60-63,72. Xu Jinyu, Lü Xiaocong, Zhang Jun, et al. Research on dynamic mechanical performance of amphibolite under cyclical impact loadings at different confining pressures[J]. Journal of Vibration and Shock, 2010,29(8):60-63,72.
[9] 劉軍忠,許金余,呂曉聰,等.主動(dòng)圍壓下巖石的沖擊力學(xué)性能試驗(yàn)研究[J].振動(dòng)與沖擊,2011,30(6):120-126. Liu Junzhong, Xu Jinyu, Lü Xiaocong, et al. Experimental study on rock’s mechanical capabilities under impact loading with confining pressure[J]. Journal of Vibration and Shock, 2011,30(6):120-126.
[10] 劉紅巖,王貴和.節(jié)理巖體沖擊破壞的數(shù)值流形方法模擬[J].巖土力學(xué),2009,30(11):3523-3527. Liu Hongyan, Wang Guihe. Simulation of impact failure of jointed rock mass by numerical manifold method[J]. Rock and Soil Mechanics, 2009,30(11):3523-3527.
[11] 劉紅巖,鄧正定,王新生,等.節(jié)理巖體動(dòng)態(tài)破壞的SHPB相似材料試驗(yàn)研究[J].巖土力學(xué),2014,37(3):659-665. Liu Hongyan, Deng Zhengding, Wang Xinsheng, et al. Similar material test study of dynamic failure of jointed rock mass with SHPB[J]. Rock and Soil Mechanics, 2014,37(3):659-665.
[12] 高全臣,陸華,王東,等.多孔隙流固耦合砂巖的沖擊損傷效應(yīng)[J].爆炸與沖擊,2012,32(6):629-634. Gao Quanchen, Lu Hua, Wang Dong, et al. Impact damage effect of porous sandstone coupling with fluid[J]. Explosion and Shock Waves, 2012,32(6):629-634.
[13] Wang T T, Shang B. Three-wave mutual-checking method for data processing of SHPB experiments of concrete[J]. Journal of Mechanics, 2014,30(5):5-10.
[14] 陳騰飛,許金余,劉石,等.巖石在沖擊壓縮破壞過(guò)程中的能量演化分析[J].地下空間與工程學(xué)報(bào),2013,9(s1):1477-1482. Chen Tengfei, Xu Jinyu, Liu Shi, et al. Research on rock energy evolution in the process of impact compression failure[J]. Chinese Journal of Underground Space and Engineering, 2013,9(s1):1477-1482.
[15] 金解放,李夕兵,殷志強(qiáng),等.軸壓和圍壓對(duì)循環(huán)沖擊下砂巖能量耗散的影響[J].巖土力學(xué),2013,34(11):3096-3102,3109. Lin Jiefang, Li Xibing, Yin Zhiqiang, et al. Effects of axial compression and confining pressure on energy dissipation of sandstone under cyclic impact loads[J]. Rock and Soil Mechanics, 201,34(11):3096-3102,3109.
[16] 劉婷婷,李建春,李海波,等.應(yīng)力波通過(guò)非線性平行節(jié)理的能量分析[J].巖石力學(xué)與工程學(xué)報(bào),2013,32(8):1610-1617. Liu Tingting, Li Jianchun, Li Haibo, et al. Energy analysis of stress wave propagation across parallel nonlinear joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2013,32(8):1610-1617.
[17] 黎立云,徐志強(qiáng),謝和平,等.不同沖擊速度下巖石破壞能量規(guī)律的實(shí)驗(yàn)研究[J].煤炭學(xué)報(bào),2011,36(12):2007-2011. Li Liyun, Xu Zhiqiang, Xie Heping, et al. Failure experimental study on energy laws of rock under differential dynamic impact velocities[J]. Journal of China Coal Society, 2011,36(12):2007-2011.
[18] 鞠楊,李業(yè)學(xué),謝和平,等.節(jié)理巖石的應(yīng)力波動(dòng)與能量耗散[J].巖石力學(xué)與工程學(xué)報(bào),2006,25(12):2426-2434. Ju Yang, Li Yexue, Xie Heping, et al. Stress wave propagation and energy dissipation in jointed rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2006,25(12):2426-2434.
(責(zé)任編輯 張凌云)
Experimental study for effects of strain rates and joint angles on dynamic responses of simulated rock materials
Li Xianglong1, Wang Jianguo2, Zhang Zhiyu1, Huang Yonghui3
(1.FacultyofLandResourcesEngineering,KunmingUniversityofScienceandTechnology,Kunming650093,Yunnan,China;2.CollegeofCivilandArchitecturalEngineering,YunnanAgriculturalUniversity,Kunming650201,Yunnan,China;3.FacultyofElectricPowerEngineering,KunmingUniversityofScienceandTechnology,Kunming650500,Yunnan,China)
By using a split Hopkinson pressure bar (SHPB) technique, impact experiments were carried out on the jointed rock specimens simulated by cement-based mortar specimens. The dynamic responses of the simulated jointed rock material with different joint angles at different strain rates were analyzed including stress-strain curve characteristics, failure modes, energy transmission and dissipation. The experimental results show that, with the increase of strain rate, the dynamic elastic moduli increase, and the specimens become more fragile. The peak intensity decreases with the increase of the joint angles whereas when the strain rate increases to a certain extent, the influence of the joint angles on the rock damage formation is no longer obvious. The incident energy, the reflective energy, the transmission energy, and the dissipation energy of the different specimens nonlinearly increase with the increase of the strain rate. The energy dissipation rates of the specimens with inclination joint angles are higher than those of the intact specimens with the increase of the strain rate.
solid mechanics; dynamic response; SHPB; jointed rock; joint angle; strain rate; dissipation energy
10.11883/1001-1455(2016)04-0483-08
2015-06-09;
2015-08-13
國(guó)家自然科學(xué)基金項(xiàng)目(51304087);云南省基金項(xiàng)目(KKSY201404056); 爆炸科學(xué)與技術(shù)國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)發(fā)基金項(xiàng)目(KFJJ15-14M)
李祥龍(1981— ),男,博士,副教授,lxl00014002@163.com。
O347.3國(guó)標(biāo)學(xué)科代碼:13015
A