張 磊,李保松,張 文
(河海大學(xué)力學(xué)與材料學(xué)院,南京211100)
?
海洋環(huán)境蒙脫土改性聚苯胺環(huán)氧涂層的防腐蝕性能
張磊,李保松,張文
(河海大學(xué)力學(xué)與材料學(xué)院,南京211100)
摘 要:為提高海洋環(huán)境環(huán)氧(EP)涂層長效防腐蝕性能,選用蒙脫土(Mt)聚苯胺(PANI)復(fù)合物對環(huán)氧涂層進(jìn)行改性,研究其耐蝕性能與機(jī)理。首先采用化學(xué)氧化法制備PANI和四種不同Mt含量的PANI復(fù)合物,然后以EP為成膜物質(zhì),在Q235鋼上制備不同含量PANI-Mt(100∶7)的環(huán)氧復(fù)合涂層,通過紅外光譜(FTIR),X射線衍射(XRD),掃描電鏡(SEM)對PANI、PANI-Mt微觀結(jié)構(gòu)和形貌進(jìn)行研究并利用電化學(xué)方法研究復(fù)合環(huán)氧涂層在3.5%NaCl溶液中的腐蝕性能與機(jī)理。結(jié)果表明:改性環(huán)氧涂層在浸泡0.5 h和360 h時(shí)的阻抗值分別為8.7×106Ω·cm2和6.3×104Ω·cm2,而摻入PANI-Mt(100∶7)后環(huán)氧涂層阻抗值明顯增大,當(dāng)PANI-Mt(100:∶7)摻入量為5%(質(zhì)量分?jǐn)?shù))時(shí),環(huán)氧涂層在浸泡0.5 h和360 h時(shí)的阻抗值最大,分別為2.7×108Ω·cm2和1.1×107Ω·cm2。
關(guān)鍵詞:蒙脫土;聚苯胺;環(huán)氧涂層;阻抗
環(huán)氧涂層以其優(yōu)異的耐蝕性和與金屬良好的結(jié)合力廣泛應(yīng)用于海洋防腐蝕領(lǐng)域[1-4]。隨著國家對海洋工程安全性和服役壽命提出更高的要求,迫切需要開發(fā)防護(hù)性能更好的長效防腐蝕涂層[5-6]。研究發(fā)現(xiàn),環(huán)氧涂層中添加聚苯胺能有效改善其耐蝕性,添加蒙脫土能使涂層獲得微觀層狀結(jié)構(gòu)從而提高其抗海水滲透性能[7-10]。張穎君等研究了聚苯胺/環(huán)氧涂層對AZ91D鎂合金耐蝕性能的影響,結(jié)果表明,本征態(tài)PANI的加入可明顯改善環(huán)氧涂層的耐蝕性[11]。陳興娟等研究了二氧化硅對聚苯胺環(huán)氧復(fù)合涂層耐蝕性的影響,研究表明,二氧化硅能改善聚苯胺結(jié)構(gòu)的致密性,提高涂層抗?jié)B透性[12]。高煥方等人研究了不同含量聚苯胺對環(huán)氧樹脂耐蝕性能的影響,結(jié)果表明,當(dāng)聚苯胺含量在5%(質(zhì)量分?jǐn)?shù),下同)時(shí),環(huán)氧涂層表現(xiàn)出最佳的耐蝕性[13]。
雖然人們對聚苯胺環(huán)氧涂層、蒙脫土環(huán)氧涂層進(jìn)行了大量研究,但關(guān)于蒙脫土改性聚苯胺環(huán)氧涂層的研究鮮有報(bào)道。本工作采用化學(xué)氧化法合成蒙脫土改性聚苯胺,研究其摻入環(huán)氧涂層對Q235鋼耐蝕性的影響,以提高涂層耐蝕性,獲得海洋環(huán)境中性能優(yōu)異的蒙脫土改性聚苯胺長效防護(hù)環(huán)氧涂層。
1.1 試驗(yàn)材料
試驗(yàn)材料有:苯胺(含量≥99.5%)、無水乙醇、過硫酸銨(含量≥98%)、鹽酸、氮甲基吡咯烷酮(NMP)、丙酮、蒙脫土、E-44環(huán)氧樹脂(環(huán)氧值0.41~0.47,鎮(zhèn)江丹寶樹脂有限公司生產(chǎn))、低分子650聚酰胺固化劑、Q235鋼。
1.2 PANI-Mt復(fù)合物的制備
將2 g苯胺溶于50 mL 1 mol/L鹽酸中,4.98 g過硫酸銨溶于20 mL乙醇中,在磁力攪拌下以40~60滴/min加入含苯胺的鹽酸溶液,于0~5℃反應(yīng)1~2 h制得五組試樣;隨后加入蒙脫土,蒙脫土質(zhì)量分?jǐn)?shù)分別為0%,1%,4%,7%,10%,繼續(xù)反應(yīng)2~3 h。隨后將產(chǎn)物依次用去離子水、無水乙醇和NMP洗滌,在40℃真空干燥48 h,得到五組墨綠色Mt改性PANI復(fù)合物,分別命名為PANI、PANI-Mt100:1、PANI-Mt100:4、PANI-Mt100:7、PANI-Mt100:10。
1.3 PANI-Mt涂層和PANI-Mt/環(huán)氧防腐涂層制備
在常溫下,取1 g PANI溶解在40 mL NMP中,充分?jǐn)嚢?~6 h,過濾,將濾液涂覆于經(jīng)預(yù)處理的Q235鋼片,待其完全干燥,制成厚度為(40± 2)μm PANI涂層。重復(fù)上述過程依次制備PANIMt100:1涂層、PANI-Mt100:4涂層、PANI-Mt100:7涂層和PANI-Mt100:10涂層。將環(huán)氧樹脂分別和0%,1%,3%,5%,7%的PANI-Mt復(fù)合物混合,攪拌30 min,加入與環(huán)氧樹脂相同質(zhì)量的低分子聚酰胺固化劑,攪拌均勻,涂于經(jīng)預(yù)處理的Q235鋼片,充分固化,得到PANI-Mt/環(huán)氧防腐蝕涂層。
1.4 PANI-Mt/環(huán)氧涂層性能
紅外光譜測試在IS10傅里葉紅外光譜儀上進(jìn)行,采用X射線衍射儀和JSM-7800F場發(fā)射掃描電鏡表征PANI-Mt復(fù)合物的結(jié)構(gòu)和形貌。
電化學(xué)試驗(yàn)采用三電極體系,研究電極采用1 cm×1 cm帶涂層的Q235鋼試樣,輔助電極為鉑電極,參比電極為飽和甘汞電極(SCE),文中電位若無特指,均相對于SCE。極化曲線掃描速率為5 mV/s,掃描范圍-900~500 mV,電化學(xué)阻抗譜掃描頻率0.01 Hz~100 k Hz,振幅10 m V。
2.1 紅外光譜
由圖1可見,1 551 cm-1處是醌式結(jié)構(gòu)特征峰,1 467 cm-1處是苯式結(jié)構(gòu)特征峰,1 312,1 243 cm-1處吸收峰是芳香胺吸收所致,1 118,825 cm-1處吸收峰分別是由苯環(huán)的面外及面內(nèi)彎曲振動(dòng)吸收峰。試驗(yàn)所測摻雜態(tài)聚苯胺的特征峰位置比文獻(xiàn)[14-15]所述本征態(tài)聚苯胺有一定程度的右偏移,表明試驗(yàn)合成了摻雜態(tài)聚苯胺。
圖1 不同質(zhì)量濃度蒙脫土改性聚苯胺的紅外光譜圖Fig.1 FT-IR spectrums of PANI modified by different contents of Mt
2.2 表面形貌
由圖2可見,PANI呈棒狀結(jié)構(gòu),長度較短,層間較疏松,空隙較多,未見明顯層狀結(jié)構(gòu)。摻入蒙脫土改性后,產(chǎn)物顆粒明顯長大,呈現(xiàn)明顯的層狀結(jié)構(gòu),結(jié)構(gòu)較致密,孔隙度降低,這表明蒙脫土均勻分布于PANI中,形成層狀結(jié)構(gòu)的蒙脫土改性聚苯胺分子。這種層間結(jié)構(gòu)可以封閉或者延長海水滲透的路徑,提高涂層抗海水滲透性,增強(qiáng)其耐蝕性[16]。
2.3 X射線衍射
由圖3可見,蒙脫土摻入量較低時(shí),PANI-Mt衍射圖和PANI更為接近,PANI和PANI-Mt特征峰主要集中在2θ=20°~25°,這表明PANI具有非晶態(tài)結(jié)構(gòu),從整體而言,特征峰主要集中在6°、15°、20°和25°附近,這說明合成的聚苯胺分子是周期性分布的高分子鏈[17-18]。
2.4 電化學(xué)阻抗
由圖4可見,PANI-Mt涂層阻抗隨蒙脫土含量的增加逐漸升高,在蒙脫土加量為7%時(shí),涂層阻抗最大;蒙脫土含量繼續(xù)增加,阻抗值降低,說明當(dāng)蒙脫土加量為7%時(shí),涂層表現(xiàn)出最好的防腐蝕性能。由此可知,在PANI中摻入7%蒙脫土?xí)r,能有效提高PANI涂層的耐蝕性。
圖2 蒙脫土改性聚苯胺的表面形貌Fig.2 Surface morphology of PANI modified by Mt
圖3 蒙脫土改性聚苯胺的X射線衍射圖譜Fig.3 XRD patterns for PANI modified by Mt
圖4 3.5%NaCl溶液中蒙脫土改性聚苯胺涂層的Bode圖Fig.4 Bode plots of PANI coatings modified by Mt in 3.5%NaCl solution
出現(xiàn)這種現(xiàn)象的原因與蒙脫土在聚苯胺中的分布有關(guān)。當(dāng)蒙脫土含量過低時(shí),蒙脫土在聚苯胺中分布不均勻,層狀結(jié)構(gòu)少,聚苯胺涂層抗氯離子和水分子滲透性差;當(dāng)蒙脫土含量過高時(shí),蒙脫土容易在聚苯胺中團(tuán)聚,表面粗化,降低聚苯胺涂層抗?jié)B性;當(dāng)蒙脫土適量時(shí),蒙脫土在聚苯胺中分布均勻,層狀結(jié)構(gòu)分布均勻,有效降低涂層內(nèi)部連通孔隙,從而提高聚苯胺涂層的耐蝕性。
將合成的PANI-Mt100:7分別以0%,1%,3%,5%,7%的摻入量加入環(huán)氧樹脂(分別記作A、B、C、D、E涂層),制成PANI-Mt100:7/環(huán)氧復(fù)合涂料。利用電化學(xué)阻抗譜研究環(huán)氧涂層和四種不同PANIMt100:7含量的環(huán)氧涂層的相關(guān)電化學(xué)性能。圖5所示為環(huán)氧涂層和四種不同PANI-Mt100:7含量的環(huán)氧涂層分別浸泡在3.5%NaCl溶液中0.5,72,168,360,600 h的Bode圖,相關(guān)電化學(xué)參數(shù)擬合結(jié)果見表1。
從表1可見,隨浸泡時(shí)間增加,涂層阻抗值降低,說明涂層耐蝕性隨浸泡時(shí)間增加而減弱弱,這表明水分子和氯離子已滲入涂層,與層下金屬發(fā)生腐蝕反應(yīng)。PANI-Mt100:7的加入使環(huán)氧涂層的阻抗值明顯提高,這表明環(huán)氧涂層中加入PANI-Mt100:7可有效改善涂層耐蝕性。這是因?yàn)镻ANI與基體之間產(chǎn)生一層致密的鈍化膜,提高涂層阻抗值。經(jīng)過600 h浸泡,純環(huán)氧涂層和加入1%PANI-Mt100:7環(huán)氧涂層低頻阻抗值低于106Ω·cm2,表明涂層對基體已失去保護(hù)作用。涂層在不同浸泡時(shí)間下的阻抗值表明加入5%PANI-Mt100:7的環(huán)氧涂層具有最佳的防腐性能,其次是PANI-Mt100:7加量為3%的環(huán)氧涂層,PANI-Mt100:7加量為7%的環(huán)氧涂層在后期阻抗值會有一定程度增加,純環(huán)氧涂層和PANIMt100:7摻入量為1%的環(huán)氧涂層會隨浸泡時(shí)間增加而失去防護(hù)作用。產(chǎn)生這樣現(xiàn)象的原因與PANIMt100:7復(fù)合物在環(huán)氧涂層中的分布有關(guān),當(dāng)PANIMt100:7復(fù)合物含量比較低時(shí),PANI-Mt100:7復(fù)合物在涂層中分布稀疏,難以對涂層耐蝕性產(chǎn)生較大作用;當(dāng)PANI-Mt100:7復(fù)合物含量繼續(xù)增加,涂層中PANI-Mt100:7復(fù)合物分布均勻,可有效發(fā)揮其對金屬的鈍化作用,從而提高金屬的耐蝕性;當(dāng)PANI-Mt100:7復(fù)合物含量進(jìn)一步增加,PANI-Mt100:7復(fù)合物在涂層中易團(tuán)聚,導(dǎo)致分散性降低,致使涂層表面細(xì)孔增多,不利于提高涂層的耐蝕性[19]。
圖5 3.5%NaCl溶液中不同浸泡時(shí)間PANI-Mt100:7環(huán)氧復(fù)合涂層的Bode圖Fig.5 Bode plots of EP coatings with PANI-Mt100:7after immersion in 3.5%NaCl solution for different times
表1 3.5%NaCl溶液中不同PANI-Mt100:7含量環(huán)氧涂層在不同浸泡時(shí)間下的阻抗值Tab.1 The impedance values of EP coatings with different contents of PANI-Mt100:7after immersion in 3.5%NaCl solution
2.5 塔菲爾極化曲線分析
圖6 3.5%NaCl溶液中浸泡600 h后幾種PANI-Mt100:7環(huán)氧復(fù)合涂層的極化曲線Fig.6 Polarization curves of several EP coatings with PANI-Mt100:7after 600 h immersion in 3.5%NaCl solution
由圖6和表2可見,純環(huán)氧涂層的腐蝕電位最低(0.81 V),加入PANI-Mt100:7,環(huán)氧涂層腐蝕電位升高,當(dāng)PANI-Mt100:7摻入量為5%時(shí),腐蝕電位最高。腐蝕電位越高,金屬腐蝕越難發(fā)生,可見加入蒙脫土改性聚苯胺提高了環(huán)氧涂層的耐蝕性。腐蝕電流密度也有明顯變化,環(huán)氧涂層的腐蝕電流密度最大,摻入PANI-Mt100:7后,環(huán)氧涂層的電流密度開始降低,當(dāng)摻入量為5%時(shí),環(huán)氧涂層電流密度最小。這表明在環(huán)氧涂層中摻入5%PANI-Mt100:7能有效降低金屬表層的腐蝕速率。此外,環(huán)氧涂層中摻入5%PANI-Mt100:7時(shí)極化電阻最大,涂層耐蝕性能最佳。
表2 3.5%NaCl溶液中浸泡600 h PANI-Mt100:7環(huán)氧復(fù)合涂層的極化曲線擬合值Tab.2 Fitting results of polarization curves of EP coatings with PANI-Mt100:7after immersion in 3.5%NaCl solution for 600 h
(1)紅外光譜測試結(jié)果表明合成產(chǎn)物是摻雜態(tài)聚苯胺;SEM結(jié)果表明PANI為短棒結(jié)構(gòu),PANIMt為層狀結(jié)構(gòu);X射線衍射分析表明PANI-Mt具有非晶態(tài)結(jié)構(gòu),并且存在周期性分布的高分子鏈團(tuán)。
(2)電化學(xué)研究表明,在PANI中摻入蒙脫土能改善PANI的耐蝕性,并且當(dāng)蒙脫土摻入量為7%時(shí),PANI耐蝕性能最好;PANI-Mt能有效改善環(huán)氧樹脂的耐蝕性,當(dāng)PANI-Mt摻入量為5%時(shí),涂層耐蝕性最佳。
參考文獻(xiàn):
[1]CHANG K C,LAI M C,PENG C W,et al.Comparative studies on the corrosion protection effect of DBSA-doped polyaniline prepared from in situ emusion polymerzation in the presence of hydrophilic Na+-MMT and organophilic organo-MMT clay platelets[J].Electrochimica Acta,2006,51(26):5645-5653.
[2]OLAD A,NASERI B.Preparation,characterization and anticorrosive properties of a novel polyaniline/clinoptilolite nanocomposite[J].Progress in Organic Coatings,2010,67(3):233-238.
[3]BHADRA S,KHASTGIR D,NIKHIL K S,et al.Progress in preparation,processing and applications of polyaniline[J].Progress in Polymer Science,2009,34 (8):783-810.
[4]GE C Y,YANG X G,HOU B R.Synthesis of polyaniline nanofiber and anticorrosion property of polyanilineepoxy composite coating for Q235 steel[J].Journal of Coatings Technology and Research,2011,9(1):59-69.
[5]LIU C X,ZHOU Y Y,LI S,et al.Preparation and characterization of polyaniline/MMT conductive composites[J].Polymers for Advanced Technologies,2008,19(12):1693-1697.
[6]LU J,ZHAO X P.Electrorheological properties of a polyaniline-montmorillonite clay nanocomposite suspension[J].Journal of Materials Chemistry,2002,12 (9):2603-2605.
[7]KIM B H,JUNG J H,KIM J W,et al.Physical characterization of polyaniline Na+montmorillonite nanocomposite intercalated by emulsion polymerization[J].Synthetic Metals,2001,117(1/3):115-118.
[8]侯文鵬,葛子義,趙文元.高氯酸摻雜聚苯胺/環(huán)氧涂層對Q235碳鋼防腐蝕性能的影響[J].腐蝕科學(xué)與防護(hù)技術(shù),2013,25(2):121-126.
[9]SOUNDARARAJAH Q Y,KARUNARATNE B S B,RAJAPAKSE R M G.Montmorillonite polyaniline nanocomposites:preparation,characterization and investigation of mechanical properties[J].Materials Chemistry and Physics,2009,113(2/3):850-855.
[10]AKBARINEZHAD E,EBRAHIMI M,SHARIF F,et al.Synthesis and evaluating corrosion protection effects of emeraldine base PAni/clay nanocomposite as a barrier pigment in zinc-rich ethyl silicate primer[J].Progress in Organic Coatings,2011,70(1):39-44.
[11]張穎君,馮濤,紹亞微,等.聚苯胺/環(huán)氧涂層對AZ91D鎂合金耐蝕性能的影響[J].中國腐蝕與防護(hù)學(xué)報(bào),2010,30(4):283-294.
[12]陳興娟,沈科金.鎂鋰合金表面含聚苯胺復(fù)合涂層的防腐性能研究[J].腐蝕科學(xué)與防護(hù)技術(shù),2009,21 (4):384-387.
[13]高煥方,張勝濤,劉通,等.聚苯胺對環(huán)氧涂層耐蝕性能的影響[J].腐蝕與防護(hù),2009,30(4):267-269.
[14]MACDIARMID A G,MU S L,SOMASIRI N L D.Electrochemical characteristics of polyaniline cathodes anodes in a aqueous electrolytes[J].Molecular Crystals and Liquid Crystals,1985,121(5):187-190.
[15]劉艷花,肖利,方正,等.高氯酸摻雜聚苯胺的合成及其電化學(xué)性能[J].湖南師范大學(xué)自然科學(xué)學(xué)報(bào),2011,34(2):61-63.
[16]XING CJ,ZHANG Z M.Anti-corrosion performance of nanostructured poly(aniline-co-metanilic acid)on carbon steel[J].Progress in Organic Coatings,2013,77:354-360.
[17]KINLEN P J,SILVERMAN D C,JEFFREYS C R.Corrosion protection using polyaniline coating formulations[J].Synthetic Metals,1997,101(1/3):1327-1332.
[18]PIROMRUEN P,KONGPARAKUL S,PRASASSARAKICH P.Synthesis of polyaniline/montmorillonite nanocomposites with an enhanced anticorrosive performance[J].Progress in Organic Coatings,2014,77(3):691-700.
[19]RADHAKRISHNAN S,SONAWANE N,SIJU C R.Epoxy powder coatings containing polyaniline for enhanced corrosion protection[J].Progress in Organic Coatings,2009,64(4):383-386.
Anticorrosion Performance of Epoxy Coating Containing Polyaniline Modified by Montmorillonite in Marine Environment
ZHANG Lei,LI Bao-song,ZHANG Wen
(College of Mechanics and Materials,Hohai University,Nanjing 211100,China)
Abstract:In order to improve the long-term anticorrosion performance of epoxy(EP)coating in marine environment,montmorillonite(Mt)and polyaniline(PANI)compounds were applied to modify epoxy resin coatings (EP),and the corrosion properties and mechanism of the compounds were studied.PANI and 4 kinds of PANI conpounds with different contents of Mt were prepared by chemical oxidation method.Composite coatings of EP with different contents of PANI-Mt(100):7were coated on Q235 steel substrate.Microstructure and morphology of PANIand PANI-Mt products were characterized by fourier transform infrared spectroscopy(FTIR),X-ray diffraction analysis (XRD)and scanning electron microscopy(SEM)respectively.The corrosion performance of Q235 steel with different composite EP coatings in 3.5%sodium chloride(NaCl)solution was studied by electrochemical methods.The results indicated that the impedance values of the modifield EP coating after immersion for 0.5 h and 360 h were 8.7×106Ω ·cm2and 6.3×104Ω·cm2respectively.The impedance values of the modifield EP after immersion for 0.5 h and 360 h increased obviously after adding PANI-Mt(100:7),which reached the maximal value of 2.7×108Ω·cm2and 1.1× 107Ω·cm2,as the content of PANI-Mt(100):7was 5%.
Key words:montmorillonite;polyaniline;epoxy coating;impedance
通信作者:李保松(1979-),副教授,博士,從事高性能防腐蝕涂層和表面處理研究,021-83786751,lbs79@126.com
基金項(xiàng)目:國家自然科學(xué)基金(51301061)
收稿日期:2015-09-06
DOI:10.11973/fsyfh-201603007
中圖分類號:TG174.46
文獻(xiàn)標(biāo)志碼:A
文章編號:1005-748X(2016)03-0215-05