張 婷, 徐 杰, 周慶新, 李學(xué)敏, 楊 澍, 薛長湖
(中國海洋大學(xué)食品科學(xué)與工程學(xué)院,山東 青島 266003)
?
蝦青素琥珀酸二酯的制備工藝及其結(jié)構(gòu)表征*
張婷, 徐杰, 周慶新, 李學(xué)敏, 楊澍, 薛長湖**
(中國海洋大學(xué)食品科學(xué)與工程學(xué)院,山東 青島 266003)
摘要:蝦青素具有極強的抗氧化、抗癌變和增強免疫力等功能,但由于蝦青素水溶解性(分散性)的限制致使其生物利用度和應(yīng)用范圍有很大的局限性。本文以丁二酸酐和合成蝦青素為原料(摩爾比為10∶1),以三乙胺為催化劑(與合成蝦青素的摩爾比為3∶1),合成蝦青素琥珀酸二酯;經(jīng)硅膠柱層析,用氯仿-甲醇(90∶10,v/v)混合液進行洗脫純化;用高效液相色譜對合成的蝦青素琥珀酸二酯進行分析,測得其純度達95%;經(jīng)紫外光譜掃描,測得其最大吸收波長為487 nm,與蝦青素的最大吸收波長接近。薄層色譜結(jié)果顯示,蝦青素琥珀酸二酯的極性增大,LC-(APCI)MS/MS分析得到其分子量為796.5,從其裂解碎片中可得到蝦青素的碎片離子m/z 561.5和m/z 579.5。通過1H NMR和DEPTQ譜進行驗證,合成產(chǎn)物為蝦青素琥珀酸二酯。
關(guān)鍵詞:蝦青素琥珀酸二酯;制備工藝;結(jié)構(gòu);液相色譜-串聯(lián)質(zhì)譜;核磁共振波譜
引用格式:張婷,徐杰,周慶新,等. 蝦青素琥珀酸二酯的制備工藝及其結(jié)構(gòu)表征[J].中國海洋大學(xué)學(xué)報(自然科學(xué)版), 2016,46(4):50-55.
ZHANG Ting, XU Jie, ZHOU Qin-Xin, et al. Preparation technology of astaxanthin succinate diester and its structure characterization[J].Periodical of Ocean University of China, 2016, 46(4): 50-55.
蝦青素(3,3’-二羥基-4,4’-二酮基-β,β’-胡蘿卜素)是萜烯類不飽和化合物[1],是類胡蘿卜素的一種,其結(jié)構(gòu)如圖1所示。研究發(fā)現(xiàn)蝦青素具有很強的抗氧化活性[2-3],蝦青素在清除氧自由基方面的作用是β-胡蘿卜素的10多倍,VE的100多倍[4],除此之外,蝦青素還具有著色[5]、光保護[6]、抗炎[7]、抗癌癥[8]、增強機體免疫力[9]等多種生物學(xué)功能。蝦青素易溶于氯仿、二氯甲烷、丙酮、二硫化
碳等弱極性的有機溶劑[10],不溶于水[11]。水溶性方面的限制使其在動物體內(nèi)無法正常運輸,降低了蝦青素在動物體內(nèi)的吸收和利用率,也降低了其生物學(xué)功能[12]。為提高蝦青素的水溶性及其在水中的分散程度,目前研究者們也正在通過微乳化[13-14]、載體結(jié)合[15]、微囊化[16-17]等方法來實現(xiàn)這一目的,如HBI公司在二氯甲烷體系中,以蝦青素和琥珀酸酐為原料,DMAP為催化劑經(jīng)過15 h反應(yīng)后合成的蝦青素二琥珀酸二鈉鹽(Cardax)[18-19],經(jīng)測定Cardax的水溶性達到了8.64mg/mL[20],研究表明,這種衍生物在心臟保護和心肌拯救方面的作用也顯著優(yōu)于蝦青素單體[21]。
圖1 蝦青素結(jié)構(gòu)
本文采用不同于HBI公司的一種新方法合成蝦青素琥珀酸二酯,其意義在于通過暴露極性端羧基使蝦青素的極性增大,這樣會更加有利于蝦青素與糖、氨基酸、無機鹽等其他物質(zhì)結(jié)合,從而增大蝦青素的水溶性,提高其生物利用度。
1實驗部分
1.1 實驗原料及試劑
合成蝦青素(含量10%)購于浙江巴士曼生物科技有限公司。
乙腈(色譜純,德國Merck公司);甲醇、二氧六烷、三乙胺、丁二酸酐、正己烷(分析純,天津博迪化工有限公司);丙酮、二甲基亞砜(DMSO)、三氯甲烷(分析純,國藥集團化學(xué)試劑有限公司);氘代氯仿(CDCl3,青島騰龍微波科技有限公司);SGF254薄層色譜TLC預(yù)制硅膠板(煙臺市化學(xué)工業(yè)研究所);0.22μm有機濾膜(美國Agela公司);硅膠(200~300目,青島海洋化工廠)。
1.2 儀器和設(shè)備
1100系列高效液相色譜儀,配二極管陣列檢測器(DAD)(美國Agilent公司),G6410B三重四極桿質(zhì)譜儀,配大氣壓化學(xué)電離源(APCI)(美國Agilent公司);紫外-可見分光光度計(日本島津公司);核磁共振波譜儀(德國Bruker公司);Milli-Q Elix-5超純水系統(tǒng)(美國Millipore公司);DF-101S磁力攪拌器(上海羌強設(shè)備有限公司);硅膠柱(規(guī)格φ22 mm × 1100 mm,北京慧德易科技有限責(zé)任公司)。
1.3 實驗方法
1.3.1 蝦青素琥珀酸二酯的合成將合成蝦青素原料用二氧六烷溶解,以丁二酸酐和合成蝦青素為原料(摩爾比為10∶1),以三乙胺為催化劑(與合成蝦青素的摩爾比為3∶1),充入氮氣密封使其隔絕氧氣。在50℃下攪拌15 h,反應(yīng)結(jié)束后冷卻至室溫,加入0.1% HCl溶液將生成的蝦青素琥珀酸二酯沉淀出來,凍干后即所得產(chǎn)物。
1.3.2 蝦青素琥珀酸二酯的純化取60g硅膠(200~300目),105℃高溫活化3h后用氯仿勻漿后濕法裝柱,將填料充分沉降,用一定量洗脫液勻速淋洗直至柱平衡。再用少量的氯仿溶解3g樣品后上樣,用氯仿-甲醇100∶0、97∶3、90∶10、0∶100的比例依次淋洗。
1.3.3 薄層色譜分析采用氯仿:甲醇:水(80∶15∶1,v/v/v)和正己烷:丙酮(4∶1,v/v)2種展開劑,通過薄層色譜初步分析生成的蝦青素衍生物。
1.3.4 紫外光譜掃描將蝦青素琥珀酸二酯和合成蝦青素原料各稱取10~15mg,用DMSO溶解后稀釋到適合濃度(吸光度值范圍在0.2~0.8之間)進行光譜掃描,掃描波長范圍200~800nm。
1.3.5 LC(APCI)MS/MS分析
色譜條件流動相乙腈(A):水(B),溶劑梯度[22]:0~6min:40%A,60%B;7~9min:A(40%~98%),B(2%~60%);10~30min:A(98%),B(2%);30~35min:A(98%~40%),B(2%~60%);色譜柱:Agilent Zorbax XDB C18(150mm × 4.6mm, 5μm),流速1mL/min;檢測器:二極管陣列檢測器(DAD),檢測波長486nm;柱溫35℃。樣品用甲醇溶解。通過液相色譜峰面積百分比計算蝦青素琥珀酸二酯的純度。
質(zhì)譜條件大氣壓化學(xué)電離源(APCI),正離子掃描模式;干燥氣溫度350℃,干燥氣流速5L/min,蒸發(fā)室溫度400℃,霧化氣壓力40psi,毛細管電壓4500V,流速1mL/min;一級質(zhì)譜采集范圍m/z100~1200,子離子掃描采集范圍m/z100~1000。
1.3.6 核磁共振波譜分析通過硅膠柱純化得到的產(chǎn)物樣品進行核磁共振分析以進一步證明其結(jié)構(gòu),溶劑采用CDCl3,溫度:室溫。1H NMR條件:掃描頻率(SF):600 MHz,譜寬(TD):32768,掃描次數(shù)(NS):32;DEPTQ條件:掃描頻率(SF):150MHz,譜寬(TD):65536,掃描次數(shù)(NS):28。
2結(jié)果與討論
2.1 薄層色譜分析結(jié)果
表1為10%蝦青素原料(A)和蝦青素合成反應(yīng)產(chǎn)物(B)分別在正己烷:丙酮展開劑和氯仿:甲醇:水展開劑中對應(yīng)點的Rf值。其中在正己烷:丙酮展開劑中B的Rf值為0.02,靠近原點,極性增大的原因可能是蝦青素的母體結(jié)構(gòu)連接酸酐后暴露出羧基端。在氯仿-甲醇-水的展開劑中B分離出清晰的4個點。
表1 薄層色譜分析結(jié)果
2.2 蝦青素琥珀酸二酯的純化結(jié)果
為驗證蝦青素琥珀酸二酯的結(jié)構(gòu),進一步對反應(yīng)后的產(chǎn)物采用硅膠柱進行純化,以除去其中未反應(yīng)的蝦青素和大極性的雜質(zhì),氯仿-甲醇硅膠柱的具體洗脫條件和結(jié)果如表2所示。
表2 洗脫條件
2.3 蝦青素琥珀酸二酯的光譜掃描結(jié)果
蝦青素和蝦青素琥珀酸二酯的光譜掃描結(jié)果如圖2所示,蝦青素的最大吸收波長483 nm,蝦青素琥珀酸二酯的最大吸收波長487 nm??赡苡捎谖r青素琥珀酸二酯多了2個羧酸形成4個酯鍵致使其最大吸收波長發(fā)生紅移[23],向長波方向移動,但是其最大吸收波長與蝦青素相差并不大。
圖2 蝦青素和蝦青素琥珀酸二酯的UV-Vis掃描圖
2.4 LC(APCI)MS/MS檢測蝦青素琥珀酸二酯
圖3為10%蝦青素原料、反應(yīng)后產(chǎn)物和純化后的蝦青素琥珀酸二酯的高效液相色譜圖,合成蝦青素的保留時間是15~18 min,蝦青素琥珀酸酯的保留時間是11~14 min,說明反應(yīng)后產(chǎn)物的極性增大。由峰面積所占的比例得到純化后蝦青素琥珀酸二酯的純度達95%。
圖3 蝦青素和蝦青素琥珀酸二酯的高效液相色譜圖
為驗證生成的蝦青素衍生物的結(jié)構(gòu),本文通過LC-(APCI)MS的一級質(zhì)譜圖和二級質(zhì)譜圖具體解析衍生物的結(jié)構(gòu),在文獻[24]的研究中曾采用LC-(ESI)MS驗證蝦青素琥珀酸二酯的分子量為796.5,但是ESI源由于能量原因不能裂解中等極性的蝦青素,所以本實驗中采用高能量的APCI源。純化后的蝦青素琥珀酸二酯一級質(zhì)譜顯示m/z797.6為蝦青素琥珀酸二酯質(zhì)子化的準(zhǔn)分子離子峰[M+H]+;m/z779.5為[M+H-H2O]+,即蝦青素琥珀酸二酯失去一分子水所產(chǎn)生的碎片離子峰。
圖4為蝦青素琥珀酸二酯的二級質(zhì)譜圖及裂解規(guī)律,分析得到蝦青素琥珀酸二酯的裂解規(guī)律是以失去琥珀酸或是失水為主要特征,其中m/z697.5為[M+H-C4H4O3]+,是蝦青素琥珀酸二酯失去一側(cè)的琥珀酸產(chǎn)生的碎片離子峰;m/z579.5和m/z561.7為蝦青素骨架的特征離子碎片??梢耘卸ㄎr青素的主要結(jié)構(gòu)沒有在反應(yīng)中被破環(huán)。
圖4 蝦青素琥珀酸二酯的二級質(zhì)譜圖及主要碎片裂解途徑
2.5 核磁共振鑒定蝦青素琥珀酸二酯的結(jié)構(gòu)
采用1H NMR和DEPTQ譜鑒定蝦青素琥珀酸二酯的結(jié)構(gòu)。蝦青素琥珀酸二酯的1H NMR (CDCl3) 化學(xué)位移和積分結(jié)果如表3和圖5所示。再通過DEPTQ譜驗證目標(biāo)產(chǎn)物的碳架結(jié)構(gòu),如圖6所示,DEPTQ(CDCl3) 化學(xué)位移(δ,ppm):194.1,176.0,171.4,161.8,142.5,139.8,136.8,135.2,134.5,133.9,130.7,128.2,124.6,123.1,71.5,59.1,50.9,42.5,39.5,37.1,30.5,29.7,29.0,28.6,26.3,22.6,20.8,14.1,13.1,12.8。經(jīng)驗證合成反應(yīng)所生成的產(chǎn)物即蝦青素琥珀酸二酯。
圖5 蝦青素琥珀酸二酯的DEPTQ圖
質(zhì)子Proton化學(xué)位移(δ)Chemicalshift/ppm積分結(jié)果Integralresults7/7',8/8',10/10',11/11'12/12',14/14',15/15'6.75~6.1714H3/3'5.672H22/22',23/23'2.85~2.738H19/19',20/20',2/2'2.09~1.9516H17/17'1.926H16/16'1.386H18/18'1.256H
圖6 蝦青素琥珀酸二酯的結(jié)構(gòu)
3結(jié)語
本文以合成蝦青素和琥珀酸酐為原料經(jīng)三乙胺催化成功合成蝦青素琥珀酸二酯,純化后純度可達95%,通過光譜和色譜手段驗證了蝦青素琥珀酸二酯的結(jié)構(gòu)。本實驗以毒性相對于二氯甲烷更低的二氧六烷為反應(yīng)溶劑體系,以及成本更低的三乙胺為催化劑合成蝦青素琥珀酸二酯,此制備工藝更有利于工業(yè)化生產(chǎn)。蝦青素琥珀酸二酯作為一種中間體,相比較于蝦青素極性增大,其暴露的羧基端可使合成其他高水溶性蝦青素衍生物更加容易,為擴展蝦青素的應(yīng)用范圍、提高蝦青素的生物利用度等提供基礎(chǔ)。
參考文獻:
[1]朱明軍, 宗敏華. 蝦青素研究進展[J]. 食品工業(yè)科技, 2000(2): 79-81.
ZHU Mingjun, ZONG Minhua. The research progress of astaxanthin[J]. Journal of Science and Technology of Food Industry, 2000(2): 79-81.
[2]何強強, 惠伯棣, 宮平, 等. 類胡蘿卜素代謝物的生物學(xué)活性研究進展[J]. 食品科學(xué), 2011, 32(15): 289-295.
HE Qiangqiang, HUI Bodi, GONG Ping, et al. Research progress in bioactivities of carotenoid metabolites[J]. Journal of Food Science, 2011, 32(15): 289-295.
[3]Naguib Y M A. Antioxidant activities of astaxanthin and related carotenoids[J]. Journal of Agricultural and Food Chemistry, 2000, 48(4): 1150-1154.
[4]Miki W. Biological functions and activities of animal carotenoids[J]. Pure and Applied Chemistry, 1991, 63(1): 141-146.
[5]Sommer T R, Potts W T, Morrissy N M. Utilization of microalgal astaxanthin by rainbow trout (Oncorhynchusmykiss)[J]. Aquaculture, 1991, 94(1): 79-88.
[6]Guerin M, Huntley M E, Olaizola M. Haematococcus astaxanthin: applications for human health and nutrition[J]. Trends in Biotechnology, 2003, 21(5): 210-216.
[7]Liu X J, Wu Y H, Zhao L C, et al. Determination of astaxanthin inHaematococcuspluvialisby first-order derivative spectrophotometry[J]. Journal of AOAC International, 2011, 94(6): 1752-1757.
[8]Jyonouchi H, Sun S, Iijima K, et al. Antitumor activity of astaxanthin and its mode of action[J]. Nutrition and Cancer, 2000, 36(1): 59-65.
[9]Park J S, Chyun J H, Kim Y K, et al. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans[J]. Nutrition and Metabolism, 2010, 7(1): 18.
[10]陶姝穎, 明建. 蝦青素功能特性及其在功能食品中的應(yīng)用研究進展[J]. 食品工業(yè), 2012, 33(8): 110-112.
Tao Shuying, Ming Jian. Research advance on the functional characteristics of astaxanthin and its application in functional food[J]. Journal of Food Industry, 2012, 33(8): 110-112.
[11]Lockwood S F, O'Malley S, Mosher G L. Improved aqueous solubility of crystalline astaxanthin (3, 3′-dihydroxy-β, β-carotene-4, 4′-dione) by Captisol (sulfobutyl ether β-cyclodextrin)[J]. Journal of Pharmaceutical Sciences, 2003, 92(4): 922-926.
[12]Horn D. Preparation and characterization of microdisperse bioavailable carotenoid hydrosols[J]. Die Angewandte Makromolekulare Chemie, 1989, 166(1): 139-153.
[13]Anarjan N, Tan C P. Developing a three component stabilizer system for producing astaxanthin nanodispersions[J]. Food Hydrocolloids, 2013, 30(1): 437-447.
[14]Anarjan N, Nehdi I A, Tan C P. Protection of astaxanthin in astaxanthin nanodispersions using additional antioxidants[J]. Molecules, 2013, 18(7): 7699-7710.
[15]Naess S N, Elgsaeter A, Foss B J, et al. Hydrophilic carotenoids: Surface properties and aggregation of crocin as a biosurfactant[J]. Helvetica Chimica Acta, 2006, 89(1): 45-53.
[16]Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea F M, et al. Microencapsulation of astaxanthin in a chitosan matrix[J]. Carbohydrate Polymers, 2004, 56(1): 41-45.
[17]Bustos-Garza C, Yáez-Fernández J, Barragán-Huerta B E. Thermal and pH stability of spray-dried encapsulated astaxanthin oleoresin fromHaematococcuspluvialisusing several encapsulation wall materials[J]. Food Research International, 2013, 54(1): 641-649.
[18]Showalter L A, Osterlie M. Plasma appearance and tissue accumulation of non-esterified, free astaxanthin in C57BL/6 mice after oral dosing of a disodium disuccinate diester of astaxanthin (Heptax TM)[J]. Comparative Biochemistry and Physiology C-toxicology & Pharmacology, 2004, 137: 227-236.
[19]Cardounel A J, Dumitrescu C, Zweier J L, et al. Direct superoxide anion scavenging by a disodium disuccinate astaxanthin derivative: relative efficacy of individual stereoisomers versus the statistical mixture of stereoisomers by electron paramagnetic resonance imaging[J]. Biochemical and Biophysical Research Communications, 2003, 307(3): 704-712.
[20]Laura M H, Samuel F L. Up regulation of connexin 43 protein expression and increased gap junctional communication by water soluble disodium disuccinate astaxanthin derivatives[J]. Cancer Letters, 2004, 211(1): 25-37.
[21]Gross G J, Zsout B, Ferenc Z, et al. Cardioprotection and myocardial salvage by a disodium disuccinate astaxanthin derivative (Cardax TM)[J]. Life Science, 2004, 75: 215-224.
[22]Jackson H L, Cardounel A J, Zweier J L, et al. Synthesis, characterization, and direct aqueous superoxide anion scavenging of a highly water-dispersible astaxanthin-amino acid conjugate[J]. Bioorganic & Medicinal Chemistry Letters, 2004, 14(15): 3985-3991.
[23]惠伯棣. 類胡蘿卜素化學(xué)及生物化學(xué)[M]. 北京:中國輕工業(yè)出版社, 2005: 148-152.
HUI Bodi. Carotenoids chemistry and biochemistry[M]. Beijing: China Light Industry Press, 2005: 148-152.
[24]Frey D A, Kataisto E W, Ekmanis J L, et al. The efficient synthesis of disodium disuccinate astaxanthin (Cardax)[J]. Organic Process Research & Development, 2004, 8(5): 796-801.
責(zé)任編輯朱寶象
Preparation Technology of Astaxanthin Succinate Diester and its Structure Characterization
ZHANG Ting, XU Jie, ZHOU Qing-Xin, LI Xue-Min, YANG Shu, XUE Chang-Hu
(College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China)
Abstract:Astaxanthin has many powerful functions including antioxidation, immune system improvement, prevention of a series of chronic diseases such as cardiovascular disease, cancer, diabetes among others. However, the limitation of astaxanthin aqueous solubility reduces its bioavailability and application range. In order to improve the aqueous solubility of astaxanthin, many other researchers committed themselves to overcome these limitations. Their trials included microencapsulation and structure improvement. Furthermore, microencapsulation has some restrictions like low transparency and inferior stability. Hence, we adopted chemical synthesis to improve astaxanthin polarity and solubility. Our researches included also the structural characterization with high performance liquid chromatography (HPLC), liquid chromatography/mass spectrometer and spectrum methods like ultraviolet spectrum scanning, nuclear magnetic resonance spectrum. In this study, astaxanthin succinate diester was synthesized with succinic anhydride and synthetic astaxanthin (the molar ratio is 10∶1), and catalyzed by triethyl amine (the molar ratio to synthetic astaxanthin is 3∶1). Then with silica gel column chromatography, the astaxanthin succinic diester was purified by eluting with chloroform: methanol (90∶10, v/v). The purity of astaxanthin succinate diester was 95% as was determined with HPLC. The maximum absorption wavelength of astaxanthin succinic diester was 487 nm which was similar to that of astaxanthin. TLC result showed that the polarity of astaxanthin succinic diester increased. The spectrum of LC-(APCI) MS/MS illustrated that the molecule weight of astaxanthin succinic diester was 796.5, and the fragment ions of astaxanthin m/z 561.5 and m/z 579.5 were discovered simultaneously. Finally, the analysis of1H NMR and DEPTQ spectrum showed that the derivative was astaxanthin succinic diester.We employed a new method for synthesizing astaxanthin succinic diester with dioxane reaction system, which possesses low toxicity and can be amplified in scale. This research systematically characterized the astaxanthin succinic diester with several chromatography and spectrum methods, which provided the basic data for future studies. Astaxanthin succinic diester terminated with carboxyl at both sides, which would magnify the polarity of astaxanthin. In addition, it would be an intermediate to synthesize with other high aqueous solubility materials such as sugars, proteins, amino acids among others, which will enlarge the application and bioavailability of astaxanthin.
Key words:astaxanthin succinate diester; preparation process; structure; liquid chromatography-mass spectrometry; nuclear magnetic resonance spectrum
DOI:10.16441/j.cnki.hdxb. 20150087
中圖法分類號:O656.5
文獻標(biāo)志碼:A
文章編號:1672-5174(2016)04-050-06
作者簡介:張婷(1991-),女,碩士生。E-mail:specialhuiyi@126.com**通訊作者: E-mail:xuech@ouc.edu.cn
收稿日期:2015-03-12;
修訂日期:2015-05-29
*基金項目:國家自然科學(xué)基金項目(31571864);“泰山學(xué)者攀登計劃”專項經(jīng)費資助
Supported by Natural Science Foundation of China(31571864);The Special Funds for “Taishan Scholar Climbing Plan”