黃華山, 楊志敏, 周真明, 劉淑坡, 沈春花, 李飛, 苑寶玲
(華僑大學(xué) 土木工程學(xué)院, 福建 廈門 361021)
?
凈水廠污泥覆蓋控制底泥氮磷釋放效果
黃華山, 楊志敏, 周真明, 劉淑坡, 沈春花, 李飛, 苑寶玲
(華僑大學(xué) 土木工程學(xué)院, 福建 廈門 361021)
摘要:室內(nèi)靜態(tài)模擬凈水廠污泥與沙、沸石、鎖磷劑(鑭改性膨潤(rùn)土Phoslock?)等4種覆蓋材料控制底泥氮磷的釋放效果.結(jié)果表明:在覆蓋強(qiáng)度為2 kg·m-2條件下,與對(duì)照組相比,沸石覆蓋對(duì)氨氮的平均削減率為42.04%,沙覆蓋和鎖磷劑覆蓋對(duì)氨氮均沒有削減效果,凈水廠污泥覆蓋不僅對(duì)氨氮沒有削減效果,而且還會(huì)向水體釋放氨氮;鎖磷劑、凈水廠污泥、沸石和沙的覆蓋對(duì)正磷酸鹽的平均削減率分別為75.98%,53.73%,28.09%和10.69%.最后,分析幾種覆蓋材料控制底泥氮磷釋放的可行性及存在問題,表明凈水廠污泥開發(fā)為覆蓋材料控制底泥磷釋放是可行的.
關(guān)鍵詞:原位覆蓋; 底泥; 凈水廠污泥; 沸石; 鎖磷劑; 氮磷
氮和磷是水體富營(yíng)養(yǎng)化的主要限制因子,控制水體氮和磷的質(zhì)量濃度能有效抑制水體富營(yíng)養(yǎng)化[1-2].目前,控制底泥氮磷釋放的主要措施有清淤法和原位覆蓋法[3].覆蓋材料是原位覆蓋技術(shù)核心部分.覆蓋材料類型發(fā)展迅速,從傳統(tǒng)的沙[4]、礫石和潔凈土壤[5]等惰性材料發(fā)展到方解石[6]、活性炭[7]、焦炭[8]、沸石[9]及其改性產(chǎn)品[10-15],以及其他礦物材料為基質(zhì)改性的鎖磷產(chǎn)品[16](鑭改性膨潤(rùn)土Phoslock?,也稱鎖磷劑)等活性材料.然而,上述大多數(shù)活性材料費(fèi)用較高且大規(guī)模制備困難,因此,尋求開發(fā)經(jīng)濟(jì)、有效的覆蓋材料是非常必要的.凈水廠污泥主要以無(wú)機(jī)物為主,有機(jī)物成分質(zhì)量分?jǐn)?shù)較少,含有豐富的鋁或鐵等化合物,具有較高的比表面積,一般帶有正電荷,對(duì)磷具有很好吸附效果[17].利用凈水廠污泥除磷將是其資源化利用的新途徑,不僅減少了凈水廠污泥處置運(yùn)行成本,而且作為經(jīng)濟(jì)有效的除磷產(chǎn)品,真正實(shí)現(xiàn)變廢為寶.目前,國(guó)內(nèi)外學(xué)者針對(duì)凈水廠污泥除磷主要集中在水處理中[18],對(duì)凈水廠污泥作為污染底泥覆蓋材料控制底泥氮磷釋放研究甚少.本文通過比較凈水廠污泥和沙、沸石和鎖磷劑3種常見底泥覆蓋材料控制底泥氮磷釋放效果,探討凈水廠污泥資源化利用的新途徑.
1材料與方法
1.1試驗(yàn)材料
1.2試驗(yàn)裝置與方法
試驗(yàn)在10 L,瓶口徑為200 mm的廣口玻璃瓶中進(jìn)行,每個(gè)瓶中底泥的質(zhì)量約為1.39 kg,厚度約為5 cm.覆蓋材料的覆蓋強(qiáng)度為2 kg·m-2(質(zhì)量為63 g).通過塑料軟管,利用虹吸原理,將湖水緩緩沿瓶壁加入玻璃瓶中,上覆水的體積約為8 L.試驗(yàn)共有10個(gè)玻璃瓶,分為5組,每組2個(gè)平行, 分別編號(hào)為1#~5#.其中:1#為對(duì)照系統(tǒng),未覆蓋任何材料;2#為沙覆蓋系統(tǒng);3#為凈水廠污覆蓋系統(tǒng);4#為鎖磷劑覆蓋系統(tǒng);5#為沸石覆蓋系統(tǒng).
試驗(yàn)于2015年5月8日開始進(jìn)行,6月12日結(jié)束,歷時(shí)35 d.試驗(yàn)在室溫下進(jìn)行,玻璃瓶口敞開(不控制上覆水溶解氧(DO)),放置在室內(nèi),每天定時(shí)測(cè)定系統(tǒng)中水深10 cm處水溫、pH值和DO值.在歷時(shí)35 d過程試驗(yàn)中,各系統(tǒng)中水溫變化范圍為24.1~29.9 ℃,pH值變化范圍為7.22~7.86,DO的質(zhì)量濃度變化范圍為0.19~5.04 mg·L-1.定期取50 mL水樣,分別測(cè)定水樣中的氨氮、正磷酸鹽,取水樣后用原水進(jìn)行補(bǔ)充至原刻度線.
1.3項(xiàng)目測(cè)試方法
1.4數(shù)據(jù)處理
上覆水體氨氮和正磷酸鹽的削減率(R)的計(jì)算式為
(1)
式(1)中:ρC,i為取樣時(shí)覆蓋系統(tǒng)上覆水中氨氮或正磷酸鹽質(zhì)量濃度(mg·L-1);ρNC,i為取樣時(shí)對(duì)照系統(tǒng)上覆水中氨氮或正磷酸鹽質(zhì)量濃度(mg·L-1);i為取樣次數(shù).
采用方差分析覆蓋系統(tǒng)與對(duì)照系統(tǒng)之間削減氮磷效果的差異.
圖1 各系統(tǒng)上覆水中-N質(zhì)量濃度的變化Fig.1 Changes of -N mass concentrations of overlying water in each system
2實(shí)驗(yàn)結(jié)果與分析
2.1覆蓋材料控制底泥氨氮釋放效果
圖2 各系統(tǒng)上覆水中-P質(zhì)量濃度的變化Fig.2 Changes of -P mass concentrations of overlying water in each system
2.2覆蓋材料控制底泥正磷酸鹽釋放效果
3覆蓋材料的應(yīng)用和存在問題分析
沙作為污染底泥原位覆蓋的傳統(tǒng)覆蓋材料,價(jià)格便宜(一般50~100元·t-1),來(lái)源廣泛,主要應(yīng)用于厚層覆蓋,控制底泥釋放重金屬和難降解有機(jī)物.但厚層覆蓋存在減少水體容量,影響排洪能力和儲(chǔ)存水量能力等問題,且隨時(shí)間推移,存在高濃度污染物穿透厚覆蓋層進(jìn)入水體的風(fēng)險(xiǎn),致使水體污染物濃度快速上升[12].
沸石對(duì)氨氮有很好的吸附能力[22],其多孔結(jié)構(gòu)有助于化學(xué)改性[13-14]、微生物附著生長(zhǎng)[10-12],以及微生物可再生沸石吸附氨氮能力[10-12,23].因此,國(guó)內(nèi)很多學(xué)者對(duì)沸石作為底泥覆蓋材料進(jìn)行研究,其改性產(chǎn)品發(fā)展迅速[10-13,15,24].這些改性沸石不僅對(duì)氨氮有很好的吸附效果,而且對(duì)磷有很好的固定效果,實(shí)現(xiàn)同步除氮固磷.然而,改性沸石制備成本較高(僅天然沸石價(jià)格就有600~1 200元·t-1),大部分大規(guī)模制備困難,目前,文獻(xiàn)報(bào)道的僅有新西蘭?zkundakci和Gibbs等研發(fā)的Z2G1有大規(guī)模制備、商品化及應(yīng)用[14],以及我國(guó)黃廷林團(tuán)隊(duì)研發(fā)生物沸石大規(guī)模制備與應(yīng)用示范工程[19].此外,沸石屬于稀有礦物資源,大規(guī)模開采使用必受到限制.
到目前為止,鎖磷劑(鑭改性膨潤(rùn)土)廣泛應(yīng)用于澳洲、歐洲,以及美國(guó)、加拿大、新西蘭等水庫(kù)和湖泊,大規(guī)模應(yīng)用超過120個(gè)案例.鎖磷劑有快速(4 h內(nèi))削減水體中游離態(tài)磷,厭氧狀態(tài)下也能有效捕捉游離態(tài)磷,且LaPO4在自然狀態(tài)下具有極其穩(wěn)定、低毒性、高沉降性等特性[16],并具有向水體復(fù)氧功能.研究也表明:在試驗(yàn)進(jìn)行的前7天內(nèi),鎖磷劑覆蓋系統(tǒng)中DO值為2~5 mg·L-1,明顯高于其他系統(tǒng)DO值(1 mg·L-1).然而,鎖磷劑成本較高,每噸大約為4 000美元,且LaPO4極其穩(wěn)定,不利于磷回收,大規(guī)模使用將會(huì)導(dǎo)致全球磷資源的耗竭.
1) 污泥煅燒.將凈水廠污泥經(jīng)過高溫煅燒,在煅燒過程中,不僅可以去除污泥中的氮污染物,而且可以去除污泥中少量有機(jī)物,但該途徑會(huì)大大增加制備成本,且在煅燒過程中產(chǎn)生的粉塵和廢氣會(huì)進(jìn)一步污染大氣環(huán)境.
2) 污泥摻合沸石粉.文中研究粒徑為1~2 mm的天然沸石對(duì)氨氮有很好吸附能力,若在凈水廠污泥濃縮工藝過程中,將沸石粉加入排泥水,不僅能將沸石粉摻合在污泥中,而且加大污泥濃縮工藝污泥含固率,減少后續(xù)污泥脫水成本.最后,再通過離心脫水工藝,獲得摻合沸石粉的污泥,通過污泥中沸石粉吸附氨氮,不僅解決污泥釋放氨氮問題,也可以增加凈水廠污泥覆蓋控制底泥氮釋放效果.該途徑運(yùn)行成本低,且對(duì)環(huán)境污染小.
3) 污泥固定高效菌劑.將高效脫氮生物菌劑固定在凈水廠污泥上,制備成生物活性凈水廠污泥顆粒,制備方法參考文獻(xiàn)[19]的生物沸石制備方法.利用高效生物脫氮菌劑去除污泥釋放的氨氮,污泥中少量有機(jī)物也許可以補(bǔ)充高效菌脫氮過程所消耗碳源,解決高效菌后期缺少碳源問題,從而提高高效菌劑脫氮能力.生物活性凈水廠污泥顆粒具備同步脫氮固磷功能,該途徑不僅解決污泥釋放氨氮問題,而且能大大提高污泥覆蓋控制底泥氨氮釋放效果.但該途徑運(yùn)行成本高于污泥摻合沸石粉,且大規(guī)模制備較為困難.
4結(jié)束語(yǔ)
凈水廠污泥覆蓋不僅不能控制底泥氨氮釋放,而且還會(huì)向水體釋放氨氮.凈水廠污泥覆蓋能有效控制底泥中正磷酸鹽釋放,同等覆蓋強(qiáng)度下,凈水廠污泥覆蓋對(duì)正磷酸鹽削減率僅比鎖磷劑覆蓋低22%.由于沸石屬于稀有礦物資源,大規(guī)模開采使用必受到限制,且鎖磷劑成本較高,凈水廠污泥具有開發(fā)成底泥覆蓋材料的潛力,將是其資源化利用新途徑.下一步的工作是,研究通過凈水廠污泥煅燒、摻合沸石粉和固定高效菌劑等途徑解決其向水體釋放氨氮的問題.
參考文獻(xiàn):
[1]LEWIS W M,WURTSBAUGH W A,PAERL H W.Rationale of control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters[J].Environmental Science and Technology,2011,45(24):10300-10305.
[2]鐘繼承,劉國(guó)鋒,范成新,等.湖泊底泥疏浚環(huán)境效應(yīng): (I) 內(nèi)源磷釋放控制作用[J].湖泊科學(xué),2009,21(1):84-93.
[3]F?RSTNER U,APIT S E.Sediment remediation: U.S. focus on capping and monitored natural recovery[J].Journal of Soils and Sediments,2007,7(6):351-358.
[4]KIM G,JUNG W.Role of sand capping in phosphorus release from sediment[J].Journal of Civil Engineering,2010,14(6):815-821.
[5]XU Di,DING Shiming,SUN Qin,et al.Evaluation of in situ capping with clean soils to control phosphate release from sediments[J].Science of the Total Environment,2012,438(3):334-341.
[6]BERG U,NEUMANN T,DONNERT D,et al.Sediment capping in eutrophic lakes-efficiency of undisturbed calcite barriers to immobilize phosphorus[J].Applied Geochemistry,2004,19(11):1759-1771.
[7]CORNELISSEN G,AMSTAETTER K,HAUGE A,et al.Large-scale field study on thin-layer capping of marine PCDD/F-contaminated sediments in Grenlandfjords, Norway physicochemical effects[J].Environmental Science and Technology,2012,46(21):12030-12037.
[8]MCDONOUGH K M,MURPHY P,OLSTA J,et al.Development and placement of a sorbent-amended thin layer sediment cap in the Anacostia river[J].Soil and Sediment Contamination,2007,16(3):313-322.
[9]JACOBS P H,F(xiàn)?RSTNER U.Concept of subaqueous capping of contaminated sediments with active barrier system (ABS) using natural and modified zeolite[J].Water Research,1999,33(9):2083-2087.
[10]ZHOU Zhenming,HUANG Tinglin,YUAN Baoling,et al.Remediation of nitrogen-contaminated sediment using bioreactive, thin-layer capping with biozeolite[J].Soil and Sediment Contamination,2016,25(1):89-100.
[11]HUANG Tinglin,ZHOU Zhenming,SU Junfeng,et al.Nitrogen reduction in eutrophic landscape river using bioactive multilayer capping (BMC) with biozeolite and sand[J].Journal of Soils and Sediments,2013,13(7):1309-1317.
[12]HUANG Tinglin,ZHOU Zhenming,XU Jinlan,et al.Biozeolite capping for reducing nitrogen load of the ancient canal in Yangzhou city[J].Water Science and Technology,2012,66(2):336-344.
[13]YANG Mengjuan,LIN Jianwei,ZHAN Yanhui,et al.Immobilization of phosphorus from water and sediment using zirconium-modified zeolites[J].Environmental Science and Pollution Research,2015,22(5):3606-3619.
[14]?ZKUNDAKCI D,HAMILTON D P,GIBBS M M.Hypolimnetic phosphorus and nitrogen dynamics in a small,eutrophic lake with a seasonally anoxic hypolimnion[J].Hydrobiologia,2011,661(1):5-20.
[15]SUN Shujuan,WANG Lei,HUANG Suiliang,et al.The effect of capping with natural and modified zeolite on the release of phosphorus and organic contaminants from river sediment[J].Frontiers of Environmental Science and Engineering,2011,5(3):308-313.
[16]MEIS S,SPEARS B M,MABERLY S C,et al.Assessing the mode of action of Phoslock?in the control of phosphorus release from the bed sediments in a shallow lake (Loch Flemington, UK)[J].Water Research,2013,47(13):4460-4473.
[17]帖靖璽,趙莉,張仙娥.凈水廠污泥的磷吸附特性研究[J].環(huán)境科學(xué)與技術(shù),2009,32(6):149-151.
[18]崔寒,任新,趙雪松,等.凈水廠污泥在污水處理中的應(yīng)用研究[J].中國(guó)給水排水,2015,31(6):16-21.
[19]周真明.城市河湖污染沉積物原位生物/物化組合修復(fù)技術(shù)研究[D].西安:西安建筑科技大學(xué),2013:35,101-115.
[20]國(guó)家環(huán)境保護(hù)總局.水和廢水監(jiān)測(cè)分析方法[M].4版.北京:中國(guó)環(huán)境科學(xué)出版社,2002:243-246,276-281.
[21]鮑士旦.土壤農(nóng)化分析[M].3版.北京:中國(guó)農(nóng)業(yè)出版社,2005:49-55.
[22]CAPUTO D,PEPE F.Experiments and data processing of ion exchange equilibria involving Italian natural zeolites: A review[J].Microporous and Mesoporous Materials,2007,105(3):222-231.
[23]LAHAV O,GREEN M.Ammonium removal using ion exchange and biological regeneration[J].Water Research,1998,32(7):2019-2028.
[24]LI Zhaohui,BOWMAN R S.Sorption of perchloroethylene by surfactant-modified zeolite as controlled by surfactant loading[J].Environmental Science and Technology,1998,32(15):2278-2282.
(責(zé)任編輯: 錢筠英文審校: 劉源崗)
Efficiency of Controlling Nitrogen and Phosphorus Release From Sediment Using Thin-Layer Capping With Water Treatment Plant Sludge
HUANG Huashan, YANG Zhimin, ZHOU Zhenming,LIU Shupo, SHEN Chunhua, LI Fei, YUAN Baoling
(College of Civil Engineering, Huaqiao University, Xiamen 361021, China)
Abstract:The efficiency of controlling nitrogen and phosphorus release from sediment using four capping materials (including water treatment plant sludge, sand, natural zeolite and lanthanum-modified bentonite) were evaluated through sediment incubation laboratory experiments lasted for 35 days. The results showed that, under the condition of dose rate 2 kg·m-2, the average reduction efficiency of ammonia nitrogen in overlying water by zeolite capping was 42.04%, and there was no obvious effect on ammonia nitrogen reduction between sand capping and lanthanum-modified bentonite capping. More notably, water treatment plant sludge capping not only failed to control ammonia nitrogen release from sediment but also released ammonia nitrogen into overlying water. The average reduction efficiency of orthophosphate in overlying water using lanthanum-modified bentonite, water treatment plant sludge, zeolite and sand capping was 75.98%, 53.73%, 28.09% and 10.69%, respectively. Finally, the feasibility and difficulties were analyzed when the four capping materials were used, which indicates that the water treatment plant sludge is a feasible way for developing as a sediment capping material to control the nitrogen and phosphorus release from sediment.
Keywords:in situ capping; sediment; water treatment plant sludge; zeolite; lanthanum-modified bentonite; nitrogen and phosphorus
中圖分類號(hào):X 524
文獻(xiàn)標(biāo)志碼:A
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(51408243, 51378227); 福建省自然科學(xué)基金資助項(xiàng)目(2012J05094, 2015J01213); 福建省泉州市科技計(jì)劃重點(diǎn)項(xiàng)目(2014Z128); 華僑大學(xué)中青年教師科研提升資助計(jì)劃(ZQN-PY313)
通信作者:黃華山(1978-),男,講師,博士,主要從事水污染防治理論與技術(shù)的研究.E-mail:huanghuashan@hqu.edu.cn.
收稿日期:2016-03-15
doi:10.11830/ISSN.1000-5013.2016.03.0347
文章編號(hào):1000-5013(2016)03-0347-05