劉沛通,蔡花真,吳廣楓,*,于可濟(jì)(.中國(guó)農(nóng)業(yè)大學(xué)食品科學(xué)與營(yíng)養(yǎng)工程學(xué)院,北京00083;.河南質(zhì)量工程職業(yè)學(xué)院,河南平頂山467000)
?
釀造工藝對(duì)葡萄酒中生物胺的影響
劉沛通1,蔡花真2,吳廣楓1,*,于可濟(jì)1
(1.中國(guó)農(nóng)業(yè)大學(xué)食品科學(xué)與營(yíng)養(yǎng)工程學(xué)院,北京100083;2.河南質(zhì)量工程職業(yè)學(xué)院,河南平頂山467000)
摘要:生物胺在葡萄酒等發(fā)酵食品中普遍存在,含量過高時(shí)對(duì)葡萄酒品質(zhì)及安全性有不良作用。酒中生物胺的種類及含量取決于釀酒葡萄和釀酒工藝,綜述了抽汁處理、浸漬處理、酒帽管理、酵母及乳酸菌等釀酒工藝對(duì)葡萄酒中生物胺的影響,對(duì)實(shí)際生產(chǎn)中葡萄酒的優(yōu)質(zhì)安全釀造提供一定的理論依據(jù)。
關(guān)鍵詞:生物胺;葡萄酒;釀造工藝
生物胺(biogenic amines)是一類分子量較低的含氮化合物,在葡萄酒等發(fā)酵食品中普遍存在,由微生物對(duì)相應(yīng)氨基酸的脫羧作用或氨基酸轉(zhuǎn)氨酶對(duì)醛酮的轉(zhuǎn)氨作用產(chǎn)生,部分生物胺也可由水果、蔬菜、魚等非發(fā)酵食品內(nèi)源性生成[1-2]。
葡萄果實(shí)和葡萄酒中均有生物胺的檢出。大量研究表明葡萄果實(shí)中存在腐胺、亞精胺、尸胺、乙醇胺、組胺和羥色胺等多種生物胺,其中生物胺的種類和含量受品種、產(chǎn)地、年份、氣候、土壤、栽培處理、品種及成熟度等因素影響[3-13]。
葡萄酒中也存在著多種生物胺,部分來(lái)自葡萄果實(shí),部分由發(fā)酵產(chǎn)生。Soufleros、Manfroi等分別在酒精發(fā)酵階段檢測(cè)出組胺、酪胺、亞精胺的生成,研究發(fā)現(xiàn)釀酒酵母可顯著提高酒中的生物胺含量[4,14]。更多學(xué)者認(rèn)為葡萄酒中生物胺的主要來(lái)源是蘋乳發(fā)酵。蘋乳發(fā)酵過程中,葡萄酒中的生物胺前體氨基酸減少,組胺、腐胺等生物胺的含量顯著升高[6,15-16]。蘋乳發(fā)酵過程中生物胺主要由乳酸菌的脫羧作用產(chǎn)生,但也不排除其他微生物污染導(dǎo)致生物胺含量升高[6,17]。含酒腳的葡萄酒中生物胺含量較高,這是由于酒腳中的酵母發(fā)生自溶釋放游離氨基酸和多肽,提高了生物胺前體物質(zhì)的數(shù)量,繼而被乳酸菌水解或脫羧生成生物胺[12]。發(fā)酵過程中的其他因素如酒的pH、二氧化硫添加量、澄清劑的使用以及木桶陳釀的時(shí)間等,都對(duì)葡萄酒中生物胺的種類及含量有一定影響[18-20]。發(fā)酵結(jié)束后的葡萄酒中存在多種生物胺,其中腐胺、酪胺、組胺是主要的生物胺[15-16,21-22]。
低含量的生物胺是生物體許多生理功能所必須的,但當(dāng)人體對(duì)生物胺的攝入超過一定量時(shí),會(huì)引發(fā)如惡心、呼吸困難等過敏性失調(diào)癥狀[1,23]。由于生物胺的生理功能和毒理學(xué)性質(zhì),其在食品中的存在構(gòu)成了潛在的公共健康隱患,故對(duì)其控制就顯得格外重要。FDA規(guī)定食品中的組胺不能超過500 mg/kg,而在酒精飲料中,各國(guó)對(duì)葡萄酒中組胺的規(guī)定范圍如下:德國(guó)不超過2 mg/L,比利時(shí)不超過5 mg/L~6 mg/L,法國(guó)不超過8 mg/L,瑞士不超過10 mg/L[12,24-25]。
葡萄酒中的生物胺大部分是在發(fā)酵過程中產(chǎn)生的,不同的釀造工藝(圖1)會(huì)影響葡萄酒中酚類物質(zhì)、含氮化合物、多糖等物質(zhì)的含量,繼而對(duì)酒中生物胺的種類及含量造成影響,故選擇合適的釀造工藝至關(guān)重要[12,26]。
圖1 發(fā)酵工藝流程圖Fig.1 Enological process of wine
2.1抽汁處理
抽汁處理(Juice Run-off,也稱Saignée)是指在葡萄酒發(fā)酵前抽取一部分葡萄汁以增加皮汁比的工藝。由于葡萄酒中的花色苷、單寧及部分含氮化合物等物質(zhì)多在皮籽中存在,故該工藝可以提高葡萄汁中這些物質(zhì)的浸出率,增加其在成酒中的含量[26]。Zamora等研究了抽汁和葡萄酒中酚類物質(zhì)含量的關(guān)系,通過對(duì)9個(gè)品種葡萄的檢測(cè)分析,發(fā)現(xiàn)陳釀約4個(gè)月后葡萄酒中類黃酮和花色苷含量的規(guī)律為:10%抽汁>未抽汁>10%添汁[27]。抽汁增加“黑比諾”、“西拉”葡萄酒中的酚類物質(zhì)含量[26,28]。有研究表明,酚類物質(zhì)可抑制氨基酸脫羧酶的活性,從而減少葡萄酒中生物胺的生成[12,29-30]。Gawel等研究發(fā)現(xiàn)抽汁處理可改變葡萄汁中氨基酸的含量,進(jìn)而影響葡萄酒中的生物胺含量[28]。
2.2浸漬處理
釀酒過程中葡萄皮的浸漬有利于葡萄中如酚類物質(zhì)、氨基酸和多糖等成分的浸提。葡萄皮浸漬工藝廣泛地應(yīng)用于紅酒生產(chǎn)中,其中包括冷浸漬(酒精發(fā)酵前的低溫浸漬)、帶皮發(fā)酵(普通浸漬)和酒精發(fā)酵結(jié)束之后的后浸漬。碳浸漬和熱浸漬等也是常見的浸漬工藝。冷浸漬處理是指在酒精發(fā)酵前將葡萄汁在低溫下(5℃~15℃)浸漬若干天(4 d~10 d),以提升葡萄汁中香氣物質(zhì)和酚類物質(zhì)等的含量[31]。大量研究表明冷浸漬可減少葡萄酒的氧化水平,增加酒中多酚和花色苷的含量[32-33]。
酒中生物胺的含量主要取決于前體氨基酸的含量。通常情況下,游離氨基酸含量的增加會(huì)導(dǎo)致生物胺含量上升[10]。氨基酸在皮、肉和籽中的分布與葡萄園管理、風(fēng)土和品種有關(guān)。有研究發(fā)現(xiàn)“赤霞珠”葡萄果實(shí)15%~23%的氨基酸在果皮中,約77%的氨基酸在果肉中,8.5%的氨基酸在果籽中[34]。葡萄果皮和果籽中存在較多氨基酸,因而延長(zhǎng)葡萄汁及葡萄酒與果皮的接觸可增加酒中氨基酸的含量。浸漬工藝的結(jié)果就是從葡萄皮和籽中浸出氨基酸,或通過蛋白質(zhì)水解及乳酸菌蛋白酶對(duì)酵母菌體的分解釋放出氨基酸。Guitert等研究發(fā)現(xiàn)浸漬工藝可顯著提高“霞多麗”葡萄酒中絲氨酸、甘氨酸、組氨酸和丙氨酸的含量,并可通過這些氨基酸的含量判別葡萄酒是否進(jìn)行過該工藝處理[35]。葡萄皮浸漬工藝與酒中生物胺含量之間的關(guān)系曾有不同的報(bào)道。Soleas等發(fā)現(xiàn)浸漬時(shí)間與生物胺含量之間沒有聯(lián)系,但其他學(xué)者發(fā)現(xiàn)浸漬過程對(duì)酒中的生物胺含量有重要影響,時(shí)間越長(zhǎng)生物胺含量越高[36]。Martín-álvarez等認(rèn)為葡萄中添加蛋白水解酶并不會(huì)增加酒中的生物胺含量,其他釀造工藝如熱浸漬、誘導(dǎo)還原發(fā)酵等可使生物胺含量升高[37]。Smit等研究發(fā)現(xiàn),酒精發(fā)酵前冷浸漬處理的葡萄酒中氨基酸和生物胺含量較高,但蘋果酸-乳酸發(fā)酵結(jié)束的葡萄酒中生物胺含量最低,冷浸漬可抑制葡萄酒中生物胺的生成[12]。
2.3酒帽管理
帶皮發(fā)酵中,二氧化碳生成導(dǎo)致葡萄固形物上升至發(fā)酵罐頂部形成酒帽。酒帽的形成會(huì)使發(fā)酵罐內(nèi)部溫度不均勻,酒帽附近溫度升高,同時(shí)果皮和果籽與葡萄汁的接觸變少,不利于發(fā)酵的進(jìn)行,故發(fā)酵過程中要進(jìn)行果皮和果汁之間的接觸混合。常見的混合方式有兩種:將果皮壓到葡萄汁表面下,俗稱“壓帽”(punch-down);或者把葡萄汁泵到發(fā)酵罐頂部進(jìn)行淋汁,俗稱“淋帽”(pump-over)。Fischer等分析了不同酒帽管理對(duì)包括“黑比諾”在內(nèi)的3個(gè)品種葡萄酒中酚類物質(zhì)含量的影響,結(jié)果表明酒帽管理可增加葡萄酒中酚類物質(zhì)的種類,壓帽處理的葡萄酒中浸出量比淋帽更多[38]。Marais的研究表明壓帽處理的葡萄酒中總酚含量高于淋帽處理[39-40]。酚類物質(zhì)含量的增加可抑制葡萄酒中生物胺的產(chǎn)生。酒帽管理增加了葡萄汁與果皮之間的接觸,提高了果皮中酚類物質(zhì)、含氮化合物等的浸出量,進(jìn)而影響葡萄酒中生物胺的生成。
2.4酵母的種類
在葡萄酒的發(fā)酵過程中,除了釀酒酵母Saccha romyces cerevisiae外,還有許多其他酵母生長(zhǎng)繁殖。葡萄酒中的生物胺一部分是由酵母菌在酒精發(fā)酵過程中產(chǎn)生的,不同酵母菌種對(duì)葡萄酒中生物胺的含量有一定影響[41]。Martín-álvarez等研究表明葡萄酒中的生物胺種類及含量與酵母的種類有關(guān),酵母脫羧酶的活性很大程度上取決于菌種[37]。Manfroi等研究了“美樂”葡萄酒酒精發(fā)酵和蘋果酸-乳酸發(fā)酵過程中生物胺的變化,結(jié)果表明酵母顯著影響葡萄酒中亞精胺的含量,Saccharomyces cerevisiae酵母發(fā)酵的葡萄酒中亞精胺含量顯著高于Saccharomyces bayanus發(fā)酵的葡萄酒,同時(shí)也檢測(cè)到不同酵母發(fā)酵的葡萄酒的酒精度、總酸和揮發(fā)酸以及感官品質(zhì)等方面有顯著差異[14]。Caruso等研究發(fā)現(xiàn)Saccharomyces cerevisiae等5個(gè)不同種的50株酵母菌在葡萄酒發(fā)酵過程中都能產(chǎn)生甲胺和胍丁胺,大部分酵母菌產(chǎn)生生物胺的總量低于10 mg/L,酵母菌的選擇對(duì)葡萄酒品質(zhì)有重要影響,而生物胺的產(chǎn)生量即可作為選擇酵母菌的標(biāo)準(zhǔn)之一[42]。
酒精發(fā)酵結(jié)束后,葡萄酒中存在大量酒腳,其中含有大量酵母菌體,如不及時(shí)從酒中分離,菌體會(huì)發(fā)生自溶釋放大量氨基酸,其他微生物進(jìn)行氨基酸脫羧作用會(huì)產(chǎn)生生物胺,這是酵母菌對(duì)葡萄酒中生物胺的另一方面影響[17]。Bauza等發(fā)現(xiàn)帶酒腳進(jìn)行蘋果酸-乳酸發(fā)酵的葡萄酒中會(huì)有更高含量的酪胺和腐胺生成[7]。
2.5乳酸菌的添加
乳酸菌(Lactic acid bacteria,LAB)是一類能利用可發(fā)酵糖產(chǎn)生乳酸的細(xì)菌,存在于葡萄汁和葡萄酒中,主要屬于乳桿菌科(Lactobacillaceae)和鏈球菌科(Streptococcaceae)的4個(gè)屬[43]。乳酸菌的主要作用是在酒精發(fā)酵結(jié)束后,將葡萄酒中的蘋果酸分解為乳酸和二氧化碳,達(dá)到葡萄酒降酸的目的。蘋果酸-乳酸發(fā)酵中產(chǎn)生的生物胺,主要由乳酸菌通過氨基酸脫羧酶對(duì)葡萄酒中的氨基酸脫羧產(chǎn)生[25,44]。Manfroi等研究了分別用Lactobacillus plantarum、Oenococcus oeni進(jìn)行蘋果酸-乳酸發(fā)酵和自然啟動(dòng)蘋乳發(fā)酵的酒樣,發(fā)現(xiàn)乳酸菌的種類顯著影響蘋乳發(fā)酵中羥色胺含量及生物胺總量,用L. plantarum發(fā)酵的酒樣中羥色胺顯著高于其他樣品[14]。與此不同的是,Martín-álvarez等研究發(fā)現(xiàn)相較自然啟動(dòng)蘋乳發(fā)酵,接種乳酸菌啟動(dòng)蘋乳發(fā)酵可降低葡萄酒中的生物胺含量,可能是因?yàn)榻臃N的乳酸菌抑制了葡萄酒中自帶乳酸菌的繁殖,或是降低了其他雜菌的生物胺生成量[37]。Polo等研究發(fā)現(xiàn)乳酸菌類型是影響葡萄酒中生物胺含量的主要因素,使用商業(yè)菌株啟動(dòng)蘋乳發(fā)酵可減少生物胺的產(chǎn)生,但并不能抑制野生細(xì)菌的繁殖增長(zhǎng)[45]。Garciía-Ruiz等合成生物相容性的銀納米離子,以控制葡萄酒中的乳酸菌,減少其生物胺的產(chǎn)生[46]。近期研究表明,部分乳酸菌含有胺降解酶,可降解組胺、酪胺、腐胺等生物胺[29,47]。篩選低產(chǎn)生物胺甚至可降解生物胺的乳酸菌,對(duì)于葡萄酒的安全釀造具有重要意義。
2.6其他影響因素
葡萄酒中生物胺的種類和含量還受發(fā)酵溫度、浸漬時(shí)間、二氧化硫添加量、pH、酒精度、溶氧量等的影響。其中二氧化硫含量、pH、酒精度和溶氧量等可通過調(diào)控乳酸菌的生長(zhǎng)繁殖來(lái)影響葡萄酒中的生物胺。發(fā)酵溫度一方面調(diào)控乳酸菌的生長(zhǎng),另一方面影響葡萄酒中含氮化合物的浸出量。葡萄酒在陳釀和瓶?jī)?chǔ)過程中也會(huì)產(chǎn)生生物胺。Landete等在瓶?jī)?chǔ)6個(gè)月的葡萄酒中檢測(cè)到組胺含量有所上升,這可能是葡萄酒帶酒腳儲(chǔ)藏造成的[25]。
葡萄酒中生物胺主要來(lái)源于發(fā)酵過程,選擇適當(dāng)?shù)尼勗旃に噷?duì)于保證葡萄酒的安全性十分重要。影響生物胺含量的因素主要是前體氨基酸及釀酒微生物,在釀酒過程中可通過控制影響葡萄酒中前體氨基酸的抽汁處理、浸漬、酒帽管理,以及葡萄酒發(fā)酵過程中主要的微生物釀酒酵母及乳酸菌來(lái)調(diào)控葡萄酒中的生物胺含量及種類。同時(shí),抽汁、浸漬等工藝還可對(duì)葡萄酒中的酚類物質(zhì)含量產(chǎn)生影響,進(jìn)而影響葡萄酒中生物胺的生成。實(shí)際生產(chǎn)中,選擇品質(zhì)優(yōu)良、衛(wèi)生狀況好的葡萄原料,輔之以適當(dāng)?shù)尼勗旃に?,可減少葡萄酒中生物胺的產(chǎn)生。
參考文獻(xiàn):
[1]Zhijun L,Yongning W,Gong Z,et al. A survey of biogenic amines in Chinese red wines[J]. Food Chemistry,2007,105(4):1530-1535
[2]?nal A. A review:Current analytical methods for the determination of biogenic amines in foods[J]. Food Chemistry,2007,103:1475-1486
[3]Beneduce L,Romano A,Capozzi V,et al. Biogenic amine in wines [J]. Annals of microbiology,2010,60(4):573-578
[4]Soufleros E H,Bouloumpasi E,Zotou A,et al. Determination of biogenic amines in Greek wines by HPLC and ultraviolet detection after dansylation and examination of factors affecting their presence and concentration[J]. Food Chemistry,2007,101(2):704-716
[5]Smit I,Pfliehinger M,Binner A,et al. Nitrogen fertilisation increases biogenic amines and amino acid concentrations in Vitis vinifera var. Riesling musts and wines[J]. Journal of the science of food and agriculture,2014,94(10):2064-2072
[6]Del Prete V,Costantini A,Cecchini F,et al. Occurrence of biogenic amines in wine:The role of grapes[J]. Food Chemistry,2009,112(2):474-481
[7]Bauza T,Kelly M T,Blaise A. Study of polyamines and their precursor amino acids in Grenache noir and Syrah grapes and wine of the Rhone Valley[J]. Food Chemistry,2007,105:405-413
[8]Bover-Cid S,Iquierdo-Pulido M,Mariné-Font A,et al. Biogenic mono-,di- and polyamine contents in Spanish wines and influence of a limited irrigation[J]. Food Chemistry,2006,96(1):43-47
[9]Ko?merl T,?uc ur S,Prosen H. Biogenic amines in red wine- The impact of technological processing of grape and wine[J]. Acta agriculturae Slovenica,2013,101(2):249-261
[10]Herbert P,Cabrita M J,Ratola N,et al. Free amino acids and biogenic amines in wines and musts from the Alentejo region:Evolution of amines during alcoholic fermentation and relationship with variety,sub-region and vintage[J]. Journal of Food Engineering,2005,66(3):315-322
[11]Cecchini F,Morassut M. Effect of grape storage time on biogenic amines content in must[J]. Food Chemistry,2010,123(2):263-268
[12]Smit A Y,du Toit W J,Stander M,et al. Evaluating the influence of maceration practices on biogenic amine formation in wine[J]. LWT-Food Science and Technology,2013,53(1):297-307
[13]孔維府,范春艷,張翛翰,等.論葡萄酒中生物胺生成的影響因素及其檢測(cè)方法[J].中國(guó)釀造,2010(6):13-16
[14]Manfroi L,Silva P H A,Rizzon L A,et al. Influence of alcoholic and malolactic starter cultures on bioactive amines in Merlot wines[J]. Food Chemistry,2009,116(1):208-213
[15]García-Marino M,Trigueros á,Escribano-Bailón T. Influence of oenological practices on the formation of biogenic amines in quality red wines[J]. Journal of Food Composition and Analysis,2010,23 (5):455-462
[16]Izquierdo Ca?as P M,García Romero E,Gómez Alonso S,et al. Amino acids and biogenic amines during spontaneous malolactic fermentation in Tempranillo red wines[J]. Journal of Food Composition and Analysis,2008,21(8):731-735
[17]Lonvaud-Funel A. Biogenic amines in wines:role of lactic acid bacteria[J]. FEMS Microbiology Letters,2001,199(1):9-13
[18]Martuscelli M,Arfelli G,Manetta A C,et al. Biogenic amines content as a measure of the quality of wines of Abruzzo(Italy)[J]. Food chemistry,2013,140(3):590-597
[19]Alcaide-Hidalgo J M,Moreno-Arribas M V,MartiN-Alvarez P J,et al. Influence of malolactic fermentation,post fermentative treatments and ageing with lees on nitrogen compounds of red wines[J]. Food Chemistry,2007,103(2):572-581
[20]Marques A P,Leit?o M C,Rom?o M V S. Biogenic amines in wines-Influence of oenological factors[J]. Food Chemistry,2008,107(2):853-860
[21]Proestos C,Loukatos P,Komaitis M. Determination of biogenic amines in wines by HPLC with precolumn dansylation and fluorimetric detection[J]. Food Chemistry,2008,106(3):1218-1224
[22]Henríquez-Aedo K,Vega M,Prieto-Rodríguez S,et al. Evaluation of biogenic amines content in chilean reserve varietal wines[J]. Food and Chemical Toxicology,2012,50(8):2742-2750
[23]Zhai H,Yang X,Li L,et al. Biogenic amines in commercial fish and fish products sold in southern China[J]. Food Control,2012,25(1):303-308
[24]Tang T,Qian K,Shi T,et al. Monitoring the contents of biogenic amines in sufu by HPLC with SPE and pre-column derivatization[J]. Food Control,2011,22(8):1203-1208
[25]Landete J M,F(xiàn)errer S,Polo L,et al. Biogenic amines in wines from three spanish regions[J]. Journal of Agricultural and Food Chemistry,2005,53(4):1119-1124
[26]Sacchi K L,Bisson L F,Adams D O. A review of the effect of winemaking techniques on phenolic extraction in red wines[J]. American Journal of Enology and Viticulture,2005,56(3):197-206
[27]Zamora F,Luengo G,Margalef P. Effect of drawing off on colour and phenolic compounds composition of red wine[J]. Revista espa?ola de ciencia y tecnología de alimentos,1994,34(6):663-671
[28]Gawel R,Iland P G,Leske P A,et al. Compositional and sensory differences in Syrah wines following juice runoff prior to fermentation [J]. Journal of Wine Research,2001,12(1):5-18
[29]Callejón S,Sendra R,F(xiàn)errer S,et al. Identification of a novel enzymatic activity from lactic acid bacteria able to degrade biogenic amines in wine[J]. Applied microbiology and biotechnology,2014,98(1):185-198
[30]Kushnereva E V. Formation of biogenic amines in wine production [J]. Applied Biochemistry and Microbiology,2015,51(1):108-112
[31]Cai J,Zhu B,Wang Y,et al. Influence of pre-fermentation cold maceration treatment on aroma compounds of Cabernet Sauvignon wines fermentedin different industrial scale fermenters[J]. Food Chemistry,2014,154:217-229
[32]Ortega-Heras M,Pérez-Magari?o S,González-Sanjosé M L. Comparative study of the use of maceration enzymes and cold pre-fermentative maceration on phenolic and anthocyanic composition and colour of a Mencía red wine[J]. LWT-Food Science and Technology,2012,48(1):1-8
[33]De Santis D,F(xiàn)rangipane M T. Effect of prefermentation cold maceration on the aroma and phenolic profiles of a Merlot red wine[J]. I-talian Journal of Food Science,2010,22(1):47-53
[34]Stines A P,Grubb J,Gockowiak H,et al. Proline and arginine accumulation in developing berries of Vitis vinifera L in Australian vineyards:Influence of vine cultivar,berry maturity and tissue type[J]. Australian Journal of Grape and Wine Research,2000,6(2):150-158
[35]Guitart A,Hernandez-Orte P,Cacho J. Effects of maceration on the amino acid content of Chardonnay musts and wines[J]. VITISGEILWEILERHOF-,1997,36:43-48
[36]Soleas G J,Carey M,Goldberg D M. Method development and cultivar-related differences of nine biogenic amines in Ontario wines[J]. Food Chemistry,1999,64(1):49-58
[37]Martín-álvarez P J,Marcobal á,Polo C,et al. Influence of technological practices on biogenic amine contents in red wines[J]. European Food Research and Technology,2006,222(3/4):420-424
[38]Fischer U,Strasser M,Gutzler K. Impact of fermentation technology on the phenolic and volatile composition of German red wines[J]. International Journal of Food Science and Technology,2000,35(1):81-94
[39]Marais J. Effect of different wine-making techniques on the composition and quality of Pinotage wine.I. Low-temperature skin contact prior to fermentation[J]. South African Journal for Enology and Viticulture,2003,24(2):70-75
[40]Marais J. Effect of different wine-making techniques on the composition and quality of Pinotage wine. II. Juice/skin mixing practices [J]. South African Journal for Enology and Viticulture,2003,24(2):76-79
[41]Torrea D,Ancín C. Content of biogenic amines in a Chardonnay wine obtained through spontaneous and inoculated fermentation[J]. Journal of Agricultural and Food Chemistry,2002,50(17):4895-4899
[42]Caruso M,F(xiàn)iore C,Contursi M,et al. Formation of biogenic amines as criteria for the selection of wine yeasts[J]. World Journal of Microbiology and Biotechnology,2002,18(2):159-163
[43]李華,王華,袁春龍,等.葡萄酒工藝學(xué)[M].北京:科學(xué)出版社,2007 [44]Fátima Pérez-Martín,Susana Sese?a,Pedro Miguel Izquierdo,et al. Are Enterococcus populations present during malolactic fermentation of red wine safe?[J].Food Microbiology,2014,42:95-101
[45]Polo L,F(xiàn)errer S,Pe?a-Gallego A,et al. Biogenic amine synthesis in high quality Tempranillo wines. Relationship with lactic acid bacteria and vinification conditions[J]. Annals of microbiology,2011,61 (1):191-198
[46]García-Ruiz A,Crespo J,López-de-Luzuriaga J M,et al. Novel biocompatible silver nanoparticles for controlling the growth of lactic acid bacteria and acetic acid bacteria in wines[J]. Food Control,2015,50:613-619
[47]García-Ruiz A,González-Rompinelli E M,Bartolomé B,et al. Potential of wine-associated lactic acid bacteria to degrade biogenic amines[J]. International journal of food microbiology,2011,148(2):115-120
The Effects of Enological Managements on Biogenic Amines in Wines
LIU Pei-tong1,CAI Hua-zhen2,WU Guang-feng1,*,YU Ke-ji1
(1. College of Food Science & Nutritional Engineering,China Agricultural University,Beijing 100083,China;2. Henan Quality Polytechnic,Pingdingshan 467000,Henan,China)
Abstract:Biogenic amines have negative effect on the quality and safety of wines. Their contents in wines are influenced by grape and enological managements. The effects of juice-off treatment,cold maceration,cap management,yeast and lactic acid bacteria on biogenic amines in wines were summarized in this article.
Key words:biogenic amine;wine;enological management
DOI:10.3969/j.issn.1005-6521.2016.09.051
作者簡(jiǎn)介:劉沛通(1991—),女(漢),博士研究生,研究方向:食品生物技術(shù)。
*通信作者:吳廣楓(1974—),女,副教授,博士,研究方向:營(yíng)養(yǎng)與食品安全。
收稿日期:2015-05-29