黃小慶 劉 純
(重慶醫(yī)科大學(xué)附屬第一醫(yī)院內(nèi)分泌科,重慶400016)
IL-21調(diào)節(jié)外周血中Treg細(xì)胞的表達(dá)在 Graves病發(fā)病機(jī)制中的研究①
黃小慶劉純
(重慶醫(yī)科大學(xué)附屬第一醫(yī)院內(nèi)分泌科,重慶400016)
[摘要]目的:探究IL-21調(diào)節(jié)外周血Treg細(xì)胞的表達(dá)在Graves病發(fā)病機(jī)制中的研究。方法:收集28 例初發(fā)Graves病患者(GD)、27例經(jīng)藥物治療后甲狀腺功能恢復(fù)正常的GD(eGD)患者和24例健康對(duì)照者(NC),電化學(xué)發(fā)光法檢測(cè)患者的血清 FT3、FT4、 uTSH、TgAb、TPOAb 和 TRAb 水平。分離研究對(duì)象外周血單個(gè)核細(xì)胞分為IL-21刺激組與未刺激組。實(shí)時(shí)熒光定量PCR法檢測(cè)Foxp3和IL-10 mRNA的表達(dá)水平;ELISA 法檢測(cè)培養(yǎng)上清液中IL-10蛋白的表達(dá)。結(jié)果:GD組甲功和自身抗體水平與eGD 組和NC組比較,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05);但eGD組甲功和自身抗體水平與NC組比較差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。IL-21刺激前,GD組的Foxp3、IL-10 mRNA和IL-10蛋白表達(dá)水平均較eGD組和NC組明顯升高,差異有統(tǒng)計(jì)學(xué)意義(P<0.05) ,但eGD組與NC組比較差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。經(jīng) IL-21 刺激后,GD組的Foxp3、IL-10 mRNA和IL-10蛋白的表達(dá)水平均顯著低于刺激前,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。結(jié)論:IL-21可能通過抑制Treg細(xì)胞的分化及其效應(yīng)分子IL-10的產(chǎn)生,使Treg細(xì)胞數(shù)量和功能下降,降低其對(duì)效應(yīng)T細(xì)胞的抑制能力,從而參與GD的發(fā)病過程。
[關(guān)鍵詞]IL-21;Graves??;Treg細(xì)胞;Foxp3;IL-10
Graves病(Graves disease,GD)是一種以甲狀腺素合成增多的器官特異性自身免疫性疾病,是內(nèi)分泌科常見的疾病之一。傳統(tǒng)理論認(rèn)為,Th1細(xì)胞、Th2細(xì)胞是主要參與免疫反應(yīng)的CD4+T細(xì)胞;Th1細(xì)胞通過分泌細(xì)胞因子IL-2、IFN-γ,Th2細(xì)胞通過分泌細(xì)胞因子IL-4、IL-13和IL-5參與免疫反應(yīng)[1,2]。Th17細(xì)胞是CD4+T細(xì)胞的一個(gè)新分支,它參與許多自身免疫性疾病的發(fā)病過程[3]。免疫系統(tǒng)的主要功能是識(shí)別并清除外來抗原,產(chǎn)生免疫記憶,并產(chǎn)生免疫耐受;免疫平衡的維持依賴于許多因素,其中包括Th17細(xì)胞的激活和Treg細(xì)胞的抑制,當(dāng)免疫平衡被打破時(shí),免疫系統(tǒng)趨向于激活,此時(shí)機(jī)體更容易發(fā)生自身免疫性疾病[4]。Th17/Treg的失衡參與了許多自身免疫性疾病的發(fā)病過程,如1型糖尿病(DM1)、多發(fā)性硬化(MS)、系統(tǒng)性紅斑狼瘡(SLE)和銀屑病等[5-8]。Treg細(xì)胞是CD4+T細(xì)胞的一個(gè)新亞群,具有免疫應(yīng)答低下和免疫抑制特性,在維持機(jī)體免疫耐受和免疫應(yīng)答穩(wěn)態(tài)方面具有非常重要的作用。Treg細(xì)胞主要通過產(chǎn)生細(xì)胞因子IL-10、TGF-β而發(fā)揮生物學(xué)效應(yīng)。許多自身免疫性疾病都與外周血Treg細(xì)胞缺陷有關(guān)[9]。叉頭蛋白P3(Forkhead box protein P3,F(xiàn)oxp3)是近幾年來發(fā)現(xiàn)的控制Treg細(xì)胞發(fā)育和功能的關(guān)鍵轉(zhuǎn)錄因子,其主要表達(dá)在Treg細(xì)胞的細(xì)胞核上[10]。Foxp3作為一個(gè)轉(zhuǎn)錄調(diào)控因子,通過直接調(diào)控多種基因來調(diào)節(jié)Treg的活性,目前關(guān)于Foxp3通過何種方式調(diào)控這些基因表達(dá)的機(jī)制尚未闡明。
IL-21由一系列CD4+T細(xì)胞亞型及NKT細(xì)胞產(chǎn)生[11]。IL-21受體存在于CD4+T、CD8+T、NK細(xì)胞、巨噬細(xì)胞、DC細(xì)胞及角質(zhì)細(xì)胞上;IL-21通過與IL-2、IL-4、IL-7、IL-9、IL-13同源受體及IL-21特異性受體結(jié)合而發(fā)揮作用[12]。Th17細(xì)胞和Treg細(xì)胞的分化均需要TGF-β的參與[13], 只有TGF-β存在的情況下,CD4+T細(xì)胞分化為Th17細(xì)胞,在TGF-β和IL-21共同存在的情況下,CD4+T細(xì)胞分化為Treg細(xì)胞[14]。我們前期研究發(fā)現(xiàn),IL-21可能通過調(diào)節(jié)Th17細(xì)胞分化而上調(diào)IL-17的表達(dá)水平,參與了GD的發(fā)病過程[15]。有研究表明IL-21不但不能誘導(dǎo)Treg的增殖[16],同時(shí)還會(huì)抑制Treg的抑制功能。本文通過檢測(cè)IL-21刺激前后外周血單個(gè)核細(xì)胞(PBMC)中Treg細(xì)胞特異性轉(zhuǎn)錄因子Foxp3及其分泌的細(xì)胞因子IL-10的水平,深入了解Treg細(xì)胞在GD中的作用和意義,進(jìn)一步探討Graves病的發(fā)病機(jī)理。
1材料與方法
1.1材料
1.1.1研究對(duì)象收集2014年10月~2015年6月在重慶醫(yī)科大學(xué)附屬第一醫(yī)院內(nèi)分泌科門診就診的Graves病患者,根據(jù)診斷標(biāo)準(zhǔn)分為GD 組和甲狀腺功能恢復(fù)正常的GD (eGD) 組。GD組:根據(jù)中華醫(yī)學(xué)會(huì)內(nèi)分泌病分會(huì)2008年頒布的《中國甲狀腺疾病診治指南》[17]首次確診為GD 且未服用任何抗甲狀腺藥物的患者,有甲狀腺功能亢進(jìn)的癥狀和體征;血漿游離 T3(FT3)或 T4(FT4)升高及敏感 TSH(sTSH)降低;均有不同程度彌漫性甲狀腺腫大;血漿 TRAb 抗體不同程度陽性;共28例,其中女性21例,男性7例。eGD組:明確診斷為GD的患者,經(jīng)抗甲狀腺藥物治療時(shí)間≥1年且甲狀腺功能恢復(fù)正常,現(xiàn)甲巰咪唑(賽治)治療劑量5~10 mg/d的GD患者27例,其中女性21例,男性6例。正常對(duì)照組(NC):無甲狀腺疾病史及家族史,甲狀腺功能正常,甲狀腺自身抗體陰性,排除妊娠、其他自身免疫性疾病、過敏性疾病、炎癥性疾病等,年齡及性別匹配的24名健康志愿者設(shè)為正常對(duì)照組,其中女性16例,男性8例。所有入選對(duì)象均需排除患有1型糖尿病、系統(tǒng)性紅斑狼瘡、類風(fēng)濕性關(guān)節(jié)炎、自身免疫性肝炎等常見的自身免疫性疾病、妊娠、急性感染及慢性炎癥性疾病等。
1.1.2實(shí)驗(yàn)材料IL-21、anti-CD3和anti-CD28抗體(德國 MiltenyiBiotec 公司);RPMI1640 、胎牛血清(美國 Gibco 公司)淋巴細(xì)胞分離液(天津TBD生物技術(shù)發(fā)展中心);RNAiso Plus、PrimeScriptTMRT reagent Kit(Perfect Real Time)和SYBR?Premix Ex TaqTMⅡ(Tli RNaseH Plus)( 寶生物工程有限公司,中國);人IL-10 ELISA試劑盒(美國R&D公司);游離三碘甲狀腺原氨酸(Free triiodothyronine,F(xiàn)T3)、游離甲狀腺素(Free thyroxine,F(xiàn)T4)、超敏促甲狀腺激素(Ultra-sensitive thyrotropin,uTSH )、甲狀腺球蛋白抗體(Thyroglobulin antibody,TgAb )、甲狀腺過氧化物酶抗體(Thyroidperoxidase antibody,TPOAb)、促甲狀腺素受體抗體(Thyrotropin receptor antibody,TRAb)試劑盒及檢測(cè)儀器(美國貝克曼庫爾特),采用電化學(xué)發(fā)光法測(cè)定。
1.2方法
1.2.1樣本的采集和外周血單個(gè)核細(xì)胞(Peripheral blood mononuclear cells,PBMCs) 的分離及培養(yǎng)采集研究對(duì)象空腹靜脈10 ml于EDTA抗凝真空采血管內(nèi),F(xiàn)icoll密度梯度離心法分離PBMC,調(diào)整PBMC細(xì)胞密度為2×106個(gè)/ml,懸浮于含10%胎牛血清的RPMI1640培養(yǎng)液中,分為IL-21刺激組和IL-21非刺激組,接種于24孔平底培養(yǎng)板中,兩組均加入1 μg/ml anti-CD3和1 μg/ml anti-CD28抗體,IL-21刺激組加入10 ng/ml IL-21,放于37℃、5%CO2的孵箱內(nèi)孵育72 h,收集未貼壁細(xì)胞用于抽提RNA,收集培養(yǎng)上清液于-80℃下保存?;罴?xì)胞數(shù)≥95%。
1.2.2熒光定量RT-PCR法測(cè)定Foxp3和IL-10 mRNA的表達(dá)細(xì)胞總RNA的提取按照RNAiso Plus的說明書進(jìn)行。逆轉(zhuǎn)錄成cDNA按照PrimeScriptTMRT reagent Kit的說明書進(jìn)行。聚合酶鏈反應(yīng),引物的設(shè)計(jì)采用 PrimerPremier 5.0。β-actin 、Foxp3和IL-10 mRNA的引物序列參見表1。使用熒光定量PCR 儀(CFX 96 Real-Time System,Bio-RAD,美國),反應(yīng)條件為95℃,30 s;95℃,5 s;60℃,30 s;重復(fù) 39個(gè)循環(huán)。反應(yīng)體系(10 μl):cDNA 1 μl,上游引物1 μl,下游引物1 μl,SYBE GREEN 5 μl,DEPC水2 μl。以未用IL-21干預(yù)的NC組為對(duì)照,計(jì)算各組2-△△Ct,獲得各組目的基因的相對(duì)表達(dá)量。
1.2.3ELISA法測(cè)定IL-10蛋白的表達(dá)取上述凍存細(xì)胞培養(yǎng)上清,ELISA法測(cè)定IL-10蛋白的表達(dá),具體操作嚴(yán)格按試劑盒說明書進(jìn)行。
1.2.4甲狀腺功能及抗體的檢測(cè)電化學(xué)發(fā)光法檢測(cè)FT3、FT4、uTSH、TgAb、TPOAb、TRAb的水平。
2結(jié)果
2.1甲功及相關(guān)抗體水平GD組甲功與eGD 組和NC組比較,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05);但eGD組甲功與NC組比較差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。GD組自身抗體水平較 eGD組和NC組增高,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05);但eGD組自身抗體水平與NC組比較差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。見表2。
表1β-actin、Foxp3和IL-10 mRNA 的引物序列
Tab.1Primer sequences for β-actin,F(xiàn)oxp3 and IL-10 mRNA
PrimerSequencesbpβ-actinForward5'CCACGAAACTACCTTCAACTCC3'132Reverse5'GTGATCTCCTTCTGCATCCTGT3'Foxp3Forward5'AGAAGGGCAGGGCACAATG3'151Reverse5'TCGGATGATGCCACAGATGAA3'IL-10Forward5'CAAGACCCAGACATCAAGGCG3'134Reverse5'GCATTCTTCACCTGCTCCACG3'
GDgroupeGDgroupNCgroupn(F/M)21/721/616/8FT3(pg/ml)11.62±9.062)3)2.90±0.351)2.96±0.37FT4(ng/dl)3.36±1.722)3)0.88±0.111)0.89±0.09uTSH(μU/ml)0.06±0.072)3)1.65±0.911)1.53±0.72TGAb(ng/ml)87.00±182.982)3)11.65±26.701)0.39±1.09TPOAb(U/ml)342.9±423.032)3)145.27±242.771)1.71±3.71TRAb(U/L)14.94±14.692)3)3.89±3.981)0.71±1.23
Note:1)P>0.05 vs.NC group;2)P<0.05 vs.NC group;3)P<0.05 vs.eGD group.
2.2Foxp3 mRNA表達(dá)水平未用IL-21處理時(shí),GD組Foxp3 mRNA的表達(dá)量較eGD組和NC組增高,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05);但eGD組與NC組比較差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。經(jīng)IL-21處理后,GD組、eGD組和NC組的Foxp3 mRNA的表達(dá)水平均有所降低,且較各組自身處理前有統(tǒng)計(jì)學(xué)意義(P<0.05)。見表3、圖1。
2.3IL-10 mRNA 表達(dá)水平未用IL-21處理時(shí),GD組IL-10 mRNA的表達(dá)量較eGD組和NC組增高,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05);但 eGD 組與NC組比較差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。經(jīng)IL-21處理后,GD組、eGD組和NC組的Foxp3 mRNA的表達(dá)水平均有所降低,且較各組自身處理前有統(tǒng)計(jì)學(xué)意義(P<0.05)。見表4、圖2。
Groupsn2-△△CtGD281.62±0.702)3)GD+IL-21280.47±0.311)eGD271.11±0.592)eGD+IL-21270.73±0.321)NC240.94±0.44NC+IL-21240.51±0.181)
Note:Compared with the corresponding groups without IL-21,1)P<0.05;compared with NC group,2)P>0.05;compared with eGD group,3)P<0.05.
圖1 IL-21處理前后Foxp3 mRNA 表達(dá)水平比較Fig.1 Expression of Foxp3 mRNA before and after intervention of IL-21Note: Compared with the corresponding groups without IL-21,*.P<0.05;compared with NC group,#.P>0.05;compared with eGD group,&.P<0.05.
Groupsn2-△△CtGD281.77±0.602)3)GD+IL-21280.73±0.411)eGD271.25±0.652)eGD+IL-21270.69±0.261)NC241.09±0.64NC+IL-21240.65±0.441)
Note:Compared with the corresponding groups without IL-21,1)P<0.05;compared with NC group,2)P>0.05;compared with eGD group,3)P<0.05.
圖2 IL-21處理前后IL-10 mRNA表達(dá)水平比較Fig.2 Expression of IL-10 mRNA before and after intervention of IL-21Note: Compared with the corresponding groups without IL-21,*.P<0.05;compared with NC group,#.P>0.05;compared with eGD group,&.P<0.05.
2.4IL-10 蛋白表達(dá)水平未用IL-21處理時(shí),GD組IL-10蛋白的表達(dá)量較eGD組和NC組增高,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05);但eGD組與NC組比較差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。經(jīng)IL-21處理后,GD組、eGD組和NC組的IL-10蛋白的表達(dá)水平均有所降低,且較各組自身處理前有統(tǒng)計(jì)學(xué)意義(P<0.05)。見表5、圖3。
3討論
一類新的抑制性細(xì)胞Treg于1970年首次被Gershon和Kondo發(fā)現(xiàn),這種細(xì)胞能夠在體外抑制免疫反應(yīng)[18]。Treg細(xì)胞在維持免疫耐受方面發(fā)揮著至關(guān)重要的作用[19]。研究表明Treg細(xì)胞的功能缺陷或細(xì)胞數(shù)量減少參與了多種自身免疫性疾病的發(fā)病過程[20-27]。Foxp3是Treg細(xì)胞分化過程中的關(guān)鍵性轉(zhuǎn)錄因子,當(dāng)Foxp3基因敲除,Treg細(xì)胞的數(shù)量減少,增加了自身免疫性疾病的發(fā)生率[28]。Sasaki等[29]的研究表明,在感染時(shí)IL-10 mRNA同IFN-γmRNA一樣都升高;這是因?yàn)闄C(jī)體免疫本身處于一個(gè)平衡狀態(tài),促炎因子升高的同時(shí)相應(yīng)的也會(huì)引起抗炎因子的升高,只是在疾病的不同階段促炎因子與抗炎因子所占的比重不同。
GroupsnConcentration(ng/L)GD2836.12±5.272)3)GD+IL-212829.59±6.211)eGD2720.90±5.532)eGD+IL-212715.21±5.921)NC2410.09±5.63NC+IL-21247.15±4.781)
Note:Compared with the corresponding groups without IL-21,1)P<0.05;compared with NC group,2)P>0.05;compared with eGD group,3)P<0.05.
圖3 IL-21處理前后 IL-10蛋白表達(dá)水平比較Fig.3 Levels of IL-10 protein before and after intervention of IL-21Note: Compared with the corresponding groups without IL-21,*.P<0.05;compared with NC group,#.P>0.05;compared with eGD group,&.P<0.05.
本實(shí)驗(yàn)結(jié)果中,GD患者外周血單個(gè)核細(xì)胞中的Foxp3 mRNA 和IL-10 mRNA表達(dá)水平顯著高于正常人群,而且其分泌的IL-10蛋白在GD患者中也明顯升高,這與以往研究結(jié)果相符[29]。這些結(jié)果說明在GD的發(fā)病過程中,Treg細(xì)胞的功能隨著免疫狀態(tài)的激活也受到一定程度的激活,且其通過增加分泌免疫抑制性細(xì)胞因子IL-10來使免疫達(dá)到平衡狀態(tài)。但Treg細(xì)胞具體通過何種途徑發(fā)揮作用仍不十分清楚。
IL-21是新近發(fā)現(xiàn)的IL-2細(xì)胞因子家族的新成員。IL-21主要由活化的各類CD4+T細(xì)胞亞型產(chǎn)生,其受體表達(dá)于多種免疫細(xì)胞,因此對(duì)多種免疫細(xì)胞有重要的生物調(diào)節(jié)作用。IL-21與其受體結(jié)合后通過激活Jak-STAT信號(hào)通路,從而引發(fā)一系列生物學(xué)效應(yīng)[30]。研究表明,IL-21參與了多種自身免疫性疾病的發(fā)病過程,如系統(tǒng)性硬化、系統(tǒng)性紅斑狼瘡(SLE)、1型糖尿病、自身免疫性甲狀腺疾病[31-34]。在IL-21缺乏的情況下,IL-6誘導(dǎo)的CD4+T細(xì)胞中Foxp3+的表達(dá)量增加。Korn等[35]的研究發(fā)現(xiàn),IL-6和TGF-β能夠誘導(dǎo)Th17細(xì)胞的分化;在IL-6缺失的情況下,IL-21協(xié)同TGF-β通過非IL-6依賴途徑使Th17細(xì)胞分化并抑制Treg細(xì)胞的表達(dá)。與細(xì)胞因子IL-2、IL-15和IL-7能誘導(dǎo)Treg細(xì)胞增殖的能力相反,IL-21非但不能誘導(dǎo)Treg細(xì)胞的增殖,反而還會(huì)抑制CD4+Treg細(xì)胞或CD8+Treg細(xì)胞的免疫抑制功能[16]。IL-21能通過活化CD4+T細(xì)胞亞型中的效應(yīng)性T細(xì)胞來抑制調(diào)節(jié)性T細(xì)胞的活性[36]。以上研究表明IL-21可以作為一個(gè)獨(dú)立的因素在調(diào)節(jié)Treg細(xì)胞的分化過程中發(fā)揮著重要的作用。
本研究結(jié)果顯示,IL-21 刺激PBMCs后,GD組、eGD組和NC組的Foxp3 mRNA和IL-10 mRNA的表達(dá)水平顯著低于刺激前。這可能是因?yàn)镮L-21可以通過下調(diào)轉(zhuǎn)錄因子Foxp3的表達(dá),抑制了Treg細(xì)胞的活化[16],并抑制細(xì)胞因子IL-10的分泌[37]。IL-21 刺激PBMCs后,GD組較正常組Foxp3 mRNA和IL-10 mRNA降低趨勢(shì)更明顯,這提示在疾病狀態(tài)下,免疫系統(tǒng)被激活,機(jī)體更容易受炎癥因子的影響。因此,IL-21是促進(jìn)GD發(fā)病的重要因素。
綜上所述,本研究表明IL-21可能通過抑制Treg細(xì)胞的分化及其效應(yīng)分子IL-10的產(chǎn)生,使Treg細(xì)胞數(shù)量和功能下降,降低其對(duì)效應(yīng)T細(xì)胞的抑制能力,從而參與GD的發(fā)病過程。由于本研究樣本量較小,所以IL-21在GD中的發(fā)病機(jī)制仍有待大樣本的研究資料進(jìn)行驗(yàn)證。
參考文獻(xiàn):
[1]Noack M,Miossec P.Th17 and regulatory T cell balance in autoimmune and inflammatory diseases[J].Autoimmun Rev,2014,34(6):668-677.
[2]Song X,Qian Y.The activation and regulation of IL-17 receptor mediated signaling[J].Cytokine,2013,62(2):175-182.
[3]Duhen R,Glatigny S,Arbelaez CA,etal.Cutting edge: the pathogenicity of IFN-γ-producing Th17 cells is Independent of T-bet[J].J Immunol,2013,190(9):4478-4482.
[4]Peck A,Mellins ED.Breaking old paradigms: Th17 cells in autoimmune arthritis[J].Clin Immunol,2009,132(3):295-304.
[5]Esendagli G,Kurne AT,Sayat G,etal.Evaluation of Th17-related cytokines and receptors in multiple sclerosis patients under interferon β-1 therapy[J].J Neuroimmunol,2013,255(1/2):81-84.
[6]Ryba-Stanistawowska M,Skrzypkowska M,Myliwiec M,etal.Loss of the balance between CD4(+)Foxp3(+) regulatory T cells and CD4(+)IL17A(+) Th17 cells in patients with type 1 diabetes[J].Hum Immunol,2013,74(6):701-707.
[7]Vincze K,Kovats Z,Cseh A,etal.Peripheral CD4+cell prevalence and pleuropulmonary manifestations in systemic lupus erythematosus patients[J].Respir Med,2014,108(5):766-774.
[8]Zhang L,Yang XQ,Cheng J,etal.Increased Th17 cells are accompanied by FoxP3(+) Treg cell accumulation and correlated with psoriasis disease severity[J].Clin Immunol,2010,135(1):108-117.
[9]Sakaguchi S,Miyara M,Costantino CM.FOXP3(+) regulatory T cells in the human immune system[J].Nat Rev Immunol,2010,10(7):490-500.
[10]Maruyama T,Kono K,Mizukami Y,etal.Distribution of Th17 cells and FoxP3(+) regulatory T cells in tumor-infiltrating lymphocytes,tumor-draining lymph nodes and peripheral blood lymphocytes in patients with gastric cancer[J].Cancer Sci,2010,101(9):1947-1954.
[11]Leonard WJ,Zeng R,Spolski R.Interleukin 21: a cytokine/cytokine receptor system that has come of age[J].J Leukoc Biol,2008,84(2):348-356.
[12]Spolski R,Leonard WJ.The yin and yang of interleukin-21 in allergy,autoimmunity and cancer[J].Curr Opin Immunol,2008,20(3):295-301.
[13]Bettelli E,Carrier Y,Gao W,etal.Reciprocal developmental pathways for the Generation of pathogenic effector TH17 and regulatory T cells[J].Nature,2006,441(790):235-238.
[14]Leung S,Liu X,Fang L,etal.The cytokine milieu in the interplay of pathogenic Th1/Th17 cells and regulatory T cells in autoimmune disease[J].Cell Mol Immunol,2010,7(3):182-189.
[15]盧永霞,劉純.IL-21上調(diào)IL-17的表達(dá)在Graves病中的意義[J].上海交通大學(xué)學(xué)報(bào):醫(yī)學(xué)版,2014,34(1):65-69.
[16]Peluso I,Fantini MC,Fina D,etal.IL-21 counteracts the regulatory T cell-mediated suppression of human CD4+T lymphocytes[J].J Immunol,2007,178(2):732-739.
[17]滕衛(wèi)平,曾正陪,李光偉,等.中國甲狀腺疾病診治指南[M].北京:中華醫(yī)學(xué)會(huì)內(nèi)分泌學(xué)分會(huì),2007:47.
[18]Gershon RK,Kondo K.Cell interactions in the induction of tolerance: the role of thymic lymphocytes[J].Immunology,1970,18(5):723-737.
[19]Sakaguchi S,Yamaguchi T,Nomura T,etal.Regulatory T cells and immune tolerance[J].Cell,2008,133(5):775-787.
[20]Grant CR,Liberal R,Mieli-Vergani G,etal.Regulatory T-cells in autoimmune diseases: challenges,controversies and--yet--unanswered questions[J].Autoimmun Rev,2015,14(2):105-116.
[21]Kessel A,Haj T,Peri R,etal.Human CD19(+)CD25(high) B regulatory cells suppress proliferation of CD4(+) T cells and enhance Foxp3 and CTLA-4 expression in T-regulatory cells[J].Autoimmun Rev,2012,11(9):670-677.
[22]Liston A,Gray DH.Homeostatic control of regulatory T cell diversity[J].Nat Rev Immunol,2014,14(3):154-165.
[23]Dwivedi M,Kemp EH,Laddha NC,etal.Regulatory T cells in vitiligo: Implications for pathogenesis and therapeutics[J].Autoimmun Rev,2015,14(1):49-56.
[24]Osnes LT,Nakken B,Bodolay E,etal.Assessment of intracellular cytokines and regulatory cells in patients with autoimmune diseases and primary immunodeficiencies-novel tool for diagnostics and patient follow-up[J].Autoimmun Rev,2013,12(10):967-971.
[25]Gertel-Lapter S,Mizrachi K,Berrih-Aknin S,etal.Impairment of regulatory T cells in myasthenia gravis: studies in an experimental model[J].Autoimmun Rev,2013,12(9):894-903.
[26]Fenoglio D,Bernuzzi F,Battaglia F,etal.Th17 and regulatory T lymphocytes in primary biliary cirrhosis and systemic sclerosis as models of autoimmune fibrotic diseases[J].Autoimmun Rev,2012,12(2):300-304.
[27]Kornete M,Piccirillo CA.Critical co-stimulatory pathways in the stability of Foxp3+Treg cell homeostasis in Type I diabetes[J].Autoimmun Rev,2011,11(2):104-111.
[28]Zheng Y,Rudensky AY.Foxp3 in control of the regulatory T cell lineage[J].Nat Immunol,2007,8(5):457-462.
[29]Sasaki S,Nishikawa S,Miura T,etal.Interleukin-4 and interleukin-10 are involved in host resistance to Staphylococcus aureus infection through regulation of gamma interferon[J].Infect Immun,2000,68(5):2424-2430.
[30]Zeng R,Spolski R,Casas E,etal.The molecular basis of IL-21-mediated proliferation[J].Blood,2007,109(10):4135-4142.
[31]Lei L,He ZY,Zhao C,etal.Elevated frequencies of CD4(+) IL-21(+) T,CD4(+) IL-21R(+) T and IL-21(+) Th17 cells,and increased levels of IL-21 in bleomycin-induced mice May be associated with dermal and pulmonary inflammation and fibrosis[J].Int J Rheum Dis,2016,19(4):392-404..
[32]Wang HX,Chu S,Li J,etal.Increased IL-17 and IL-21 producing TCRαβ+CD4-CD8-T cells in Chinese systemic lupus erythematosus patients[J].Lupus,2014,23(7):643-654.
[33]Ferreira RC,Simons HZ,Thompson WS,etal.IL-21 production by CD4+effector T cells and frequency of circulating follicular helper T cells are increased in type 1 diabetes patients[J].Diabetologia,2015,58(4):781-790.
[34]Guan LJ,Wang X,Meng S,etal.Increased IL-21/IL-21R expression and its proinflammatory effects in autoimmune thyroid disease[J].Cytokine,2015,72(2):160-165.
[35]Korn T,Bettelli E,Gao W,etal.IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells[J].Nature,2007,448(7152):484-487.
[36]Chevalier N,Thorburn AN,Macia L,etal.Inflammation and lymphopenia trigger autoimmunity by suppression of IL-2-controlled regulatory T cell and increase of IL-21-mediated effector T cell expansion[J].J Immunol,2014,193(10):4845-4858.
[37]Spolski R,Kim HP,Zhu W,etal.IL-21 mediates suppressive effects via its induction of IL-10[J].J Immunol,2009,182(5):2859-2867.
[收稿2015-10-11修回2015-10-27]
(編輯倪鵬)
Effect of IL-21 on Treg cells in peripheral blood mononuclear cells in pathogenesis of Graves disease
HUANG Xiao-Qing,LIU Chun.
Department of Endocrinology,The First Affiliated Hospital of Chongqing Medical University,Chongqing 400016,China
[Abstract]Objective:To explore the role of IL-21 in regulating the expression of peripheral blood Treg cells in the pathogenesis of Graves disease (GD).Methods: Electrochemical luminescence detection was used to determine levels of thyroid function indexes and autoantibodies.Peripheral blood mononuclear cells (PBMCs) were extracted,then,cultured in the presence or absence of IL-21 in vitro.The level of IL-10 protein was measured by enzyme-linked immunosorbent assay (ELISA),and expressions of Foxp3 and IL-10 mRNA were examined by Real-time PCR.Results: Compared to eGD and control group,there were significant differences in the levels of thyroid function indexes in GD group (P<0.05),whereas there was no difference between control group and eGD group (P>0.05).Before IL-21 stimulation,compared to eGD and control groups,expressions of Foxp3 and IL-10 mRNA and level of IL-10 protein were significantly higher in GD group(P<0.05);but there were no significant differences between eGD group and control group (P>0.05).After IL-21 stimulation,expressions of Foxp3,IL-10 mRNA and IL-10 protein levels were decreased markedly in all three groups,among which GD group showed the greatest change(P<0.05).Conclusion: IL-21 may inhibit the differentiation of Treg cells and the production of IL-10,therefore decreasing the number of Treg cells and the ability of suppressing effector T cells ,thus should be involved in the pathogenesis of GD.
[Key words]IL-21;Graves disease;Regulatory T cells;Foxp3;IL-10
doi:10.3969/j.issn.1000-484X.2016.06.018
作者簡(jiǎn)介:黃小慶(1989年-),女,碩士,主要從事甲狀腺疾病免疫發(fā)病機(jī)制研究,E-mail:1548511929@qq.com。 通訊作者及指導(dǎo)教師:劉純(1963年-),女,主任醫(yī)師,碩士生導(dǎo)師,主要從事甲狀腺疾病免疫發(fā)病機(jī)研究,E-mail:liuchun200157@163.com。
中圖分類號(hào)R581.1
文獻(xiàn)標(biāo)志碼A
文章編號(hào)1000-484X(2016)06-0853-06
①本文受重慶市渝中區(qū)科技計(jì)劃項(xiàng)目(20140127) 和 國家臨床重點(diǎn)專科建設(shè)項(xiàng)目資助(2011)。