邢琳 張旭 葉雨靜 秦磊 沙雨純 朱偉芳 石霏
摘要:脈絡(luò)膜血管自動檢測在臨床上具有重要意義,可通過觀察分析脈絡(luò)膜血管的形態(tài)、厚度等信息對多種眼底疾病進行診斷。為輔助臨床診斷,提出了一種新的基于SD-OCT圖像的脈絡(luò)膜血管自動檢測方法。首先檢測出色素上皮層下邊界,確定感興趣區(qū)域(Volume of Interest,VOI),然后對圖像進行基于灰度線性變換的增強以及三維塊匹配濾波等預(yù)處理,隨后采用Hessian矩陣對血管進行初步提取,提取結(jié)果作為目標(biāo)區(qū)域的種子點,進一步用三維區(qū)域生長方法檢測完整的血管區(qū)域,并通過形狀信息排除誤檢以及形態(tài)學(xué)濾波對檢測結(jié)果進行后處理。測試結(jié)果表明,該方法是一種有效的脈絡(luò)膜血管自動檢測方法。
關(guān)鍵詞:脈絡(luò)膜血管;Hessian矩陣;區(qū)域生長;三維塊匹配濾波
DOIDOI:10.11907/rjdk.161164
中圖分類號:TP319文獻標(biāo)識碼:A文章編號:1672-7800(2016)006-0132-05
參考文獻:
[1]L WU N,ALPIZAR ALVAREZ.Choroidal imaging by spectral domainoptical coherence tomography[J].Taiwan Journal of Ophthalmology,2013,3(1):3-13.
[2]M HOPE-ROSS,L A YANNUZZI,E S GRAGOUDAS,et al.Puliafito,adverse reactions due to indocyanine green[J].Ophthalmology,1994(101):529-533.
[3]MOTAGHIANNEZAM SM,KOOS D,F(xiàn)RASER SE.Differential phasecontrast,swept-source optical coherence tomography at 1060 nm for in vivo human retinal and choroidal vasculature visualization[J].J Biomed Opt,2012(17):026011.
[4]N R MAHAJAN,R C R DONAPATI,S S CHANNAPPAYYA,et al.An automated algorithm for blood vessel count and area measurement in 2-D choroidal scan images[J].Engineering in Medicine and Biology Conference (EMBC),Osaka,Japan,2013(23): 3355-3358.
[5]V KAJIC ,E MARIEH,G CARL,et al .Automated threedimensional choroidal vessel segmentation of 3D 1060 nm OCT retinal data[J].Biomedical optics express,2013,4(1):134-150.
[6]Z HU,X WU,Y OUYANG,et al.Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans[J].Investigative ophthalmology & visual science,2013,54(3):1722-1729.
[7]SRINATH N ,PATIL A ,KUMAR V K,et al.Automated detection of choroid boundary and vessels in optical coherence tomography images[C].2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),2014.
[8]PAL N R,MACHINE INTELL,UNIT INDIAN STAT,et al.A review on image segmentation techniques[J].Pattern Recognition,1993,26(9):94-1277.
[9]K DABOV,A FOI,V KATKOVNIK,et al.Image denoising by sparse 3-D transform-domain collaborative filtering[J].IEEE Transactions on Image Processing,2007,16(8):2080-2095.
[10]SATO Y,WESTIN CF,BHALERAO A.Tissue classification based on 3D local intensity structures for volume rendering[J].IEEE Trans Vis Computer Graphics,2000(6):160-179.
[11]SATO Y,NAKAJIMA S,SHIRAGA N,et al.Three-dimensional multiscale line filter for segmentation and visualization of curvilinear structures in medical images[M].Med Image Anal,1998.
[12]FRANGI AF,NIESSEN WJ,VINCKEN KL,et al.Multiscale vessel enhancement filtering[M].New York,NY: Springer- Verlag,1998:130-137.
[13]LEVINE M D,NAZIF A M.Dynamic measurement of computer generated image segmentations[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1985,7(2):64-155.
[14]S C ZHU,A YUILLE.Region competition:unifying snakes,region growing,and bayes/mdl for multiband image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(9):884-900.
[15]ZHU S C,YUILLE A.Region competition:unifying snakes,region growing,and bayes/mdl for multi-band image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996:884-900.
[16]章毓晉.圖像工程(上冊) 圖像處理[M].第3版.北京:清華大學(xué)出版社,2012.