王麗,季鳴,陳曉光
(中國醫(yī)學科學院/北京協(xié)和醫(yī)學院 藥物研究所,北京 100730)
PARP3生物學功能研究進展
(中國醫(yī)學科學院/北京協(xié)和醫(yī)學院 藥物研究所,北京 100730)
PARP3屬于聚(ADP-核糖)聚合酶[Poly(ADP-ribose) polymerase,PARP]超家族,與PARP1、2有極高的同源性,均具有DNA依賴的ADP-核糖基團轉(zhuǎn)移活性,但其在組織分布、生物學功能方面卻又表現(xiàn)出極大不同。目前PARP1、2研究已較為深入,而PARP3的研究尚處于起步階段,已有研究證明其可被雙鏈斷裂DNA及單鏈斷裂啞鈴型DNA所激活并對靶蛋白及自身進行MAR修飾,在DNA單鏈斷裂、雙鏈斷裂、PARP1活化、神經(jīng)系統(tǒng)和體液免疫等方面發(fā)揮作用,且與膠質(zhì)瘤、乳腺癌存在相關性,但具體機制尚不明確。本文旨在從結(jié)構、活化、功能及與疾病的關系4個方面對PARP3的研究現(xiàn)狀進行總結(jié)。
PARP3;結(jié)構;激活;功能;腫瘤
聚(ADP-核糖)聚合酶[Poly(ADP-ribose) polymerase,PARP]蛋白家族是一類ADP-核糖基轉(zhuǎn)移酶,以NAD+為底物,將帶負電荷的ADP-核糖基團轉(zhuǎn)移至靶蛋白,對蛋白質(zhì)進行翻譯后修飾,從而調(diào)控一系列細胞功能,如DNA修復、轉(zhuǎn)錄調(diào)節(jié)、RNA干擾、影響線粒體功能等[1]。在PARP蛋白家族的17個成員中,只有PARP1、PARP2、PARP3具有DNA依賴的ADP-核糖基團轉(zhuǎn)移活性,提示其在DNA損傷應答中發(fā)揮著一定的作用[2]。這3種酶通過結(jié)合損傷的DNA對自身進行ADP-核糖基化修飾或?qū)ζ渌械鞍走M行ADP-核糖基化修飾[3]。目前PARP1、PARP2的研究已經(jīng)較為深入,研究表明,它們可催化靶標蛋白的PAR修飾,主要進行DNA損傷修復的調(diào)節(jié)、細胞死亡及轉(zhuǎn)錄的調(diào)節(jié),進而在多種急慢性疾病尤其是腫瘤中發(fā)揮著極其重要的作用,其抑制劑Olaparib已經(jīng)上市用于卵巢癌治療[4-5]。而蛋白質(zhì)組學研究表明,PARP3存在于包含DNA-蛋白激酶、PARP-1、DNA連接酶III、DNA連接酶IV、Ku70蛋白和Ku80蛋白的免疫復合物中[6]。由于PARP3與PARP1、2蛋白同源性高,預示PARP3在DNA損傷修復、轉(zhuǎn)錄調(diào)節(jié)等過程中也可能起到重要作用。然而當PARP1表達被抑制后,PARP2的表達會代償性增加,但PARP3卻不會在PARP1、2表達受到抑制后代償性增加[7-10]。此外,PARP1與PARP2在哺乳動物的組織分布非常相似,但PARP3的組織分布卻與2者區(qū)別很大[7],這些都提示PARP3具有獨特的生物學作用。本文旨在從結(jié)構、活化、功能及與疾病的聯(lián)系等4個方面對PARP3的研究現(xiàn)狀進行總結(jié)。
圖1 PARP1、PARP2和PARP3結(jié)構Fig.1 Structures of PARP1, PARP2 and PARP3
PARP3由3個結(jié)構域組成:一個特殊的N端結(jié)構域(NTR)、一個中間的WGR結(jié)構域和一個含有螺旋區(qū)域的C端催化結(jié)構域(CD)[11]。PARP3 WGR結(jié)構域和CD結(jié)構域與PARP1有很高的同源性,而 NTR區(qū)域與PARP1相差較遠。PARP1的 NTR區(qū)域中含有3個鋅指結(jié)構和一個BRCT區(qū)域,在結(jié)合DNA和傳遞信息至催化區(qū)域方面發(fā)揮著重要功能,而PARP3 NTR區(qū)域只有40個氨基酸[12-14]。研究證明,若PARP1喪失了 NTR區(qū)域,則其DNA結(jié)合能力以及DNA依賴的催化活性基本完全喪失,而PARP3失去 NTR區(qū)域后,其DNA結(jié)合能力以及DNA依賴的ADP-核糖基化活性會有降低,但不會完全喪失,表明NTR區(qū)域?qū)τ赑ARP3的催化活性不是必需的,而WGR區(qū)域?qū)τ赑ARP3的催化活性則是必需的,PARP3的WGR區(qū)域可結(jié)合DNA并將信息傳遞至CD區(qū)域,具有PARP1 NTR區(qū)域所具有的部分功能[15]。同樣, Grundy等[16]實驗結(jié)果表明,人源PARP3的WGR區(qū)域若發(fā)生突變,就會喪失在DNA損傷部位聚集及加速DNA斷裂修復的功能。此外,PARP3自身也存在其他翻譯后修飾,包括其N端α氨基酸的甲基化和461位絲氨酸(S461)的磷酸化,其中S461的磷酸化在PARP3介導的DNA雙鏈斷裂修復發(fā)揮重要作用[17]。
PARP3近幾年來被證實可被雙鏈斷裂DNA及含缺口的寡聚核苷酸所激活[18-21],而Langelier等[15]證明PARP-3可選擇性的被含有5’磷酸基團的斷裂DNA所激活,其中平末端雙鏈DNA中間含單一缺口或由單鏈DNA所形成的中間部位含有單一缺口啞鈴型結(jié)構可使PARP3的活性達到最高水平。粘末端即使含有5’磷酸基團,其激活能力也明顯弱于平末端或啞鈴型結(jié)構。
關于PARP3究竟具有單腺苷二磷酸核糖基化(MonoADP-ribose,MAR)活性還是聚腺苷二磷酸核糖基化(PolyADP-ribose,PAR)活性這一問題目前頗有爭議。Sejal等[22]用多種水解酶及化學方法水解所形成的DP-核酸基團,通過TLC和高分辨率丙烯酰胺測序凝膠的方法證實了PARP3對于自身修飾表現(xiàn)出MAR活性,而Stuart將PARP3修飾的組蛋白進行了ADP-核酸基團的分離后通過丙烯酰胺測序凝膠的方法證實了PARP3對組蛋白的修飾主要表現(xiàn)為MAR活性,但也可形成少量的低分子量PAR(最多15個ADP-核糖基團)[21]。PARP1與PARP2對蛋白的翻譯后修飾是形成PAR,而PARP3主要形成MAR,由此推測,PARP的功能與PARP1、PARP2可能有較大差距。PAR的功能涉及細胞分裂[23-25]、轉(zhuǎn)錄調(diào)節(jié)[26]、蛋白降解[27]和細胞應激反應[28-31]等多個方面,而MAR的功能研究則較為匱乏。有研究表明,外源性白喉毒素可通過在EEF2的白喉酰胺上添加一個ADP-核糖基化從而抑制RNA的轉(zhuǎn)錄[32]。提示MAR也可影響蛋白-蛋白相互作用以及蛋白-核酸的相互作用。
3.1 雙鏈斷裂修復 DNA雙鏈斷裂修復對于維持細胞的基因穩(wěn)定性至關重要[33],真核細胞主要通過同源重組、經(jīng)典非同源末端重組和替代非同源末端重組這幾種方式進行DNA雙鏈斷裂的修復[34],幾種方式之間相互競爭且各有特點,DNA末端剪切可使細胞傾向于同源重組及易于出錯的替代非同源末端重組這2個途徑[35]。PARP3可使Ku80ADP-核糖基化,限制DNA末端剪切使細胞進行經(jīng)典非同源末端重組[18]。敲除PARP3后,Ku80在激光導致的DNA損傷處聚積減少,使BRCA1 和53BP1之間的平衡更傾向于BRCA1[18],導致DNA末端剪切增多[36-41],經(jīng)典非同源末端重組減少。有趣的是,敲除PARP3雖增加了DNA末端剪切,卻同時抑制了同源重組,只促進易于導致刪除突變的替代非同源末端重組,其中機制尚待進一步探索與闡明。除了在修復方式的選擇環(huán)節(jié)起作用外,PARP3在經(jīng)典非同源末端重組的修復過程中也發(fā)揮著重要的作用。研究表明,當激光導致細胞DNA損傷后,PARP3可被招募至損傷處,而敲除PARP3后導致DNA雙鏈損傷修復的缺陷及DNA損傷相關γ-H2AX灶點消失的延遲[21]。敲除PARP3后加入野生型的PARP3會使DNA雙鏈損傷修復功能恢復,但加入無催化活性的PARP3則無此效果[21]。此外,PARP3也可促進γ射線或基因損傷藥物、化療藥物所導致的細胞DNA雙鏈斷裂的修復[21]。PARP3被DNA雙鏈斷裂損傷激活后,引起其對自身和APLF蛋白進行ADP-核糖基化,并招募APLF至DNA損傷處,過量表達APLF可使PARP3缺失細胞中γ-H2AX灶點的消失速度恢復正常,進而表明PARP3可通過增加細胞內(nèi)的APLF來促進細胞中的DNA雙鏈斷裂損傷修復[21]。而APLF作為DNA雙鏈斷裂修復的一個核心蛋白,其與非同源末端重組的核心因子XRCC4和Ku80可產(chǎn)生直接的相互作用[42]。APLF和染色質(zhì)結(jié)合后一方面可使染色質(zhì)的結(jié)構改變易于進行DNA損傷修復[21],另一方面可促進XRCC4-LigIV復合體在DNA損傷處的滯留,過量表達XRCC4-LigIV復合體可促進PARP3和APLF雙敲除細胞中的DNA雙鏈損傷修復,提示PARP3和APLF可通過增加XRCC4-LigIV復合體在染色質(zhì)損傷處的聚集來促進DNA雙鏈損傷的非同源末端重組[21]。雖然目前研究已證明PARP3可促進DNA雙鏈損傷的非同源末端重組,但PARP3與XRCC4-LigIV復合體及APLF與XRCC4-LigIV復合體之間的具體作用關系還有待探討。
3.2 單鏈斷裂修復 染色體單鏈斷裂(SSBs)是細胞最常見的DNA損傷,每個細胞平均每天都會出現(xiàn)成千上萬次染色體單鏈斷裂[43-44]。很大一部分SSBs被ADP-核糖基轉(zhuǎn)移酶所監(jiān)測并催化形成PAR或MAR,進而進行修復[45-46]。已有研究表明,PARP1、PARP2在單鏈斷裂修復發(fā)揮重要作用[47-49],研究表明,在雞DT40細胞中,PARP3可促進染色體單鏈斷裂修復,其與PARP1均可作為SSB的檢測器,但其識別的DNA斷裂種類不同,作用方式和靶標也不相同。PARP1可識別多種DNA斷裂,而PARP3只對含有5’-磷酸末端和3’-羥基末端的DNA斷裂較為敏感;PARP1活化后通過使自身及組蛋白H1形成PAR發(fā)揮作用[50],而PARP3則是通過使自身及組蛋白H2BE2形成MAR發(fā)揮作用[16]。PARP1和PARP3均可在單鏈斷裂修復中發(fā)揮重要作用,識別不同單鏈斷裂,激活不同靶標,2者是否會有空間與時間上的關聯(lián)與區(qū)分呢?比如,2者是否分別識別不同發(fā)展階段的單鏈斷裂,是否進行不同細胞區(qū)域的單鏈斷裂修復等。此外,PARP3在雞DT40細胞中可促進染色體單鏈斷裂修復,但雞DT40不含PARP2,與人源細胞有一定區(qū)別,這些都有待于進一步研究和探討。
3.3 激活PARP1 研究表明,PARP3和PARP1存在相互作用[51-52],PARP3可在無DNA存在的情況下激活PARP1[53]。在PAR 形成過程中,第一個ADP-核糖基化,即MAR的形成是限速步驟,故PARP3可作為PARP1的活性啟動器來促進PARP1的作用[53-54]。雖然其他PARP是否也具有這一相互作用還有待研究,但具有ADP催化活性的PARP共定位的廣泛存在[31],提示這種相互作用可能較為普遍,在PARP活性調(diào)節(jié)中發(fā)揮關鍵作用。
3.4 調(diào)控神經(jīng)發(fā)生發(fā)展 Michele等[55]在人源SK-N-SH細胞中利用染色質(zhì)免疫共沉淀的方法分析了PARP3與基因組的相互作用,結(jié)果表明,PARP3主要定位于發(fā)育基因,尤其是神經(jīng)形成相關基因的周圍。人源PARP3與起始復合體2(PRC2)中的一些PcG蛋白存在相互作用,包括EZH2、 SUZ12、RBAP46/48、YY1和 HDAC1/2[6],而這些蛋白是胚胎發(fā)生發(fā)展過程中的重要調(diào)控因子[56]。SoxE家族轉(zhuǎn)錄因子SOX8、SOX9、SOX1與DLX3和DLX4在神經(jīng)嵴特化和前基板外胚層的分化過程中發(fā)揮著關鍵的作用[57-58],而染色質(zhì)免疫共沉淀分析結(jié)果表明這些基因均為PARP3的靶標,提示PARP3可通過調(diào)節(jié)這些基因的表達來調(diào)控神經(jīng)基板邊界的特化和神經(jīng)嵴的形成和多樣化。脊椎動物模型斑馬魚的體內(nèi)研究進一步證實了在斑馬魚胚胎發(fā)育過程中,這些基因的表達確實依賴于PARP3的表達[55]。斑馬魚早期胚胎中PARP3基因被抑制后,SOX9a、DLX3b、DLX4b和神經(jīng)源性分化蛋白等的表達降低及胚胎內(nèi)耳(起源于前基板外胚層)的缺失,色素沉淀(黑色素細胞來源于神經(jīng)嵴細胞)的延遲進一步表明了PARP3在神經(jīng)嵴和神經(jīng)板邊界形成過程中發(fā)揮著關鍵的轉(zhuǎn)錄調(diào)控功能。此外,成年猴的多種組織末梢神經(jīng)節(jié)的神經(jīng)元中均可檢測到大量的PARP3表達,提示PARP3在外周神經(jīng)系統(tǒng)的神經(jīng)元中可能發(fā)揮一定的作用[59]。此外,在多發(fā)性硬化癥小鼠的脊髓中可檢測到PARP3表達顯著上調(diào),提示PARP3在中樞神經(jīng)系統(tǒng)也可能發(fā)揮一定的作用[60]。
3.5 其他 PARP3也與細胞周期有關,過表達PARP3不會影響中心體的復制,但會造成細胞G1/S期阻滯[61]。PARP3還可負性調(diào)控免疫球蛋白轉(zhuǎn)換重組(class switch recombination,CSR)[62],PARP3的缺失可增強B細胞的轉(zhuǎn)換重組,從而加強B細胞應對感染等所產(chǎn)生抗體的多樣性。PARP3也可抑制端粒酶的活性,在一些腫瘤細胞中抑制PARP3后會導致端粒酶活性的增強從而促進端粒的維持,減少基因的不穩(wěn)定性[63]。PARP3的功能及機制尚待進一步探討及挖掘。
4.1 膠質(zhì)瘤 膠質(zhì)瘤患者5年生存率為20%,而惡性膠質(zhì)瘤,作為一種高侵襲、高轉(zhuǎn)移且易復發(fā)的腦部腫瘤,其患者5年生存率只有不到3%[64]。目前臨床治療包括手術、化療、放療等多種方法,然而患者生存期依然非常短,中位生存期僅為12~15個月[64]。放療是一種傳統(tǒng)有效的治療方法,但隨之產(chǎn)生的放療抵抗卻非常棘手[65-66],近期研究表明,PARP3有可能是克服化療抵抗的一個潛在靶點[67]。惡性膠質(zhì)瘤患者腫瘤組織中PARP3表達顯著高于正常組織,如若敲除惡性膠質(zhì)瘤細胞中PARP3基因則會抑制其在體內(nèi)、體外的生長速度,且對放療更加敏感,這可能與PARP3參與細胞DNA損傷修復有關。機制研究表明,敲除PARP3可抑制FOXM1的活性從而增強惡性膠質(zhì)瘤細胞的放療敏感性,但其下游通路及具體機制尚待闡明,PARP3是否還通過其他途徑抑制膠質(zhì)瘤細胞生長和克服放療抵抗也值得探索。
4.2 乳腺癌 Ivan等[68]檢測了443例單側(cè)侵襲性乳腺癌患者腫瘤組織中PARP3的mRNA水平,并將其與正常乳腺組織中PARP3 mRNA含量相比較,結(jié)果發(fā)現(xiàn),PARP3在腫瘤組織中的mRNA含量較正常組織減少,有10.4%的乳腺癌患者腫瘤組織中PARP3表達低;并且PARP3表達低多出現(xiàn)在雌激素受體及孕激素受體陰性的患者中,在這類患者中,低表達PARP3比例為25.7%,而在雌激素受體或孕激素受體陽性的患者中,該比例為5.4%。此外,低表達PARP3更常見于SBR(Scarff-Bloom -Richardson)分級標準中的III期乳腺癌患者(20.1%),而I期乳腺癌患者中的比例為1.9%[68]。以上結(jié)果提示,低表達PARP3與乳腺癌惡性程度相關,但其因果關系是否存在還需進一步研究。此外,低表達PARP3常見于正常表達PARP1的乳腺癌患者(13.4%),少見于高表達PARP1的乳腺癌患者(4.6%)。PARP3可促進DNA雙鏈修復的非同源末端重組途徑,而PARP1可通過抑制Ku蛋白與損傷DNA的結(jié)合從而抑制非同源末端重組途徑[69],PARP3與PARP1之間表達的互斥現(xiàn)象提示,乳腺癌的DNA雙鏈斷裂修復主要依賴于同源重組。
PARP3與PARP1、PARP 2具有極高的同源性,均可被斷裂DNA所激活,在DNA損傷修復、轉(zhuǎn)錄調(diào)節(jié)等過程中起到重要作用,但其具體發(fā)揮作用又有極大不同。PARP3在神經(jīng)系統(tǒng)發(fā)生發(fā)展、體液免疫抗體多樣化、細胞周期及端粒酶調(diào)控方面也扮演著重要的角色,且與膠質(zhì)瘤、乳腺癌存在一定相關性,提示PARP3可作為潛在的抗腫瘤靶點。然而PARP3的研究仍處于起步階段,其分子作用機制、生物學功能以及在疾病發(fā)生發(fā)展中的作用亟待深入探索。本實驗室目前正在建立PARP3的酶學篩選方法,用于選擇性的PARP3抑制劑活性篩選,期待利用抑制劑對PARP3的作用機制進行深入研究。
[1] Robert I,Karicheva O,Reina San MB,et al.Functional aspects of PARylation in induced and programmed DNA repair processes:preserving genome integrity and modulating physiological events[J].Mol Aspects Med,2013,34(6):1138-1152.
[2] De Vos M,Schreiber V,Dantzer F.The diverse roles and clinical relevance of PARPs in DNA damage repair:current state of the art[J].Biochem Pharmacol,2012,84(2):137-146.
[3] Ali SO,Khan FA,Galindo-Campos MA,et al.Understanding specific functions of PARP-2:new lessons for cancer therapy[J].Am J Cancer Res,2016,6(9):1842-1863.
[4] Baldwin P,Van De Ven AL,Seitzer N,et al.Nanoformulation of the PARP Inhibitor Olaparib Enables Radiosensitization of a Radiation-Resistant Prostate Cancer Model[J].Int J Radiat Oncol Biol Phys,2016,96(2S):E595.
[5] McCormick A,Swaisland H.In vitro assessment of the roles of drug transporters in the disposition and drug-drug interaction potential of olaparib[J].Xenobiotica,2016:1-47.
[6] Rouleau M,McDonald D,Gagne P,et al.PARP-3 associates with polycomb group bodies and with components of the DNA damage repair machinery[J].J Cell Biochem,2007,100(2):385-401.
[7] Beck C,Robert I,Reina-San-Martin B,et al.Poly(ADP-ribose) polymerases in double-strand break repair:focus on PARP1,PARP2 and PARP3[J].Exp Cell Res,2014,329(1):18-25.
[8] Ghosh R,Roy S,Kamyab J,et al.Common and unique genetic interactions of the poly(ADP-ribose) polymerases PARP1 and PARP2 with DNA double-strand break repair pathways[J].DNA Repair (Amst),2016,45:56-62.
[9] Sukhanova MV,Abrakhi S,Joshi V,et al.Single molecule detection of PARP1 and PARP2 interaction with DNA strand breaks and their poly(ADP-ribosyl)ation using high-resolution AFM imaging[J].Nucleic Acids Res,2016,44(6):e60.
[10] Tulin AV.Poly (ADP-ribose) polymerase :methods and protocols[M].New York,Humana Press,2011:521.
[11] Lehtio L,Jemth AS,Collins R,et al.Structural basis for inhibitor specificity in human poly(ADP-ribose) polymerase-3[J].J Med Chem,2009,52(52):3108-3111.
[12] Eustermann S,Videler H,Yang JC,et al.The DNA-binding domain of human PARP-1 interacts with DNA single-strand breaks as a monomer through its second zinc finger[J].J Mol Biol,2011,407(1-4):149-170.
[13] Langelier MF,Planck JL,Roy S,et al.Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA:structural and functional insights into DNA-dependent PARP-1 activity[J].J Biol Chem,2011,286(12):10690-10701.
[14] Lonskaya I,Potaman VN,Shlyakhtenko LS,et al.Regulation of poly(ADP-ribose) polymerase-1 by DNA structure-specific binding[J].J Biol Chem,2005,280(17):17076-17083.
[15] Langelier MF,Riccio AA,Pascal JM.PARP-2 and PARP-3 are selectively activated by 5’ phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1[J].Nucleic Acids Res,2014,42(12):7762-7775.
[16] Grundy GJ,Polo LM,Zeng Z,et al.PARP3 is a sensor of nicked nucleosomes and monoribosylates histone H2B(Glu2)[J].Nat Commun,2016,7:12404.
[17] Dai X,Rulten SL,You C,et al.Identification and Functional Characterizations of N-Terminal alpha-N-Methylation and Phosphorylation of Serine 461 in Human Poly(ADP-ribose) Polymerase 3[J].J Proteome Res,2015,14(6):2575-2582.
[18] Beck C,Boehler C,Guirouilh Barbat J,et al.PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways[J].Nucleic Acids Res,2014,42(9):5616-5632.
[19] Boehler C,Gauthier LR,Mortusewicz O,et al.Poly(ADP-ribose) polymerase 3 (PARP3),a newcomer in cellular response to DNA damage and mitotic progression[J].Proc Natl Acad Sci U S A,2011,108(7):2783-2788.
[20] Lindgren AE,Karlberg T,Thorsell AG,et al.PARP inhibitor with selectivity toward ADP-ribosyltransferase ARTD3/PARP3[J].ACS Chem Biol,2013,8(8):1698-1703.
[21] Rulten SL,Fisher AE,Robert I,et al.PARP-3 and APLF function together to accelerate nonhomologous end-joining[J].Mol Cell,2011,41(1):33-45.
[22] Vyas S,Matic I,Uchima L,et al.Family-wide analysis of poly(ADP-ribose) polymerase activity[J].Nat Commun,2014,5(65):121-132.
[23] Chang P,Coughlin M,Mitchison TJ.Tankyrase-1 polymerization of poly(ADP-ribose) is required for spindle structure and function[J].Nat Cell Biol,2005,7(11):1133-1139.
[24] Ha GH,Kim HS,Go H,et al.Tankyrase-1 function at telomeres and during mitosis is regulated by Polo-like kinase-1-mediated phosphorylation[J].Cell Death Differ,2012,19(2):321-332.
[25] Ozaki Y,Matsui H,Asou H,et al.Poly-ADP ribosylation of Miki by tankyrase-1 promotes centrosome maturation[J].Mol Cell,2012,47(5):694-706.
[26] Ji Y,Tulin AV.The roles of PARP1 in gene control and cell differentiation[J].Curr Opin Genet Dev,2010,20(5):512-518.
[27] Huang SM,Mishina YM,Liu S,et al.Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling[J].Nature,2009,461(7264):614-620.
[28] Malanga M,Althaus FR.The role of poly(ADP-ribose) in the DNA damage signaling network[J].Biochem Cell Biol,2005,83(3):354-364.
[29] Petesch SJ,Lis JT.Activator-induced spread of poly(ADP-ribose) polymerase promotes nucleosome loss at Hsp70[J].Mol Cell,2012,45(1):64-74.
[30] Di Giammartino DC,Shi Y,Manley JL.PARP1 represses PAP and inhibits polyadenylation during heat shock[J].Mol Cell,2013,49(1):7-17.
[31] Leung AK,Vyas S,Rood JE,et al.Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm[J].Mol Cell,2011,42(4):489-499.
[32] Collier RJ.Understanding the mode of action of diphtheria toxin:a perspective on progress during the 20th century[J].Toxicon,2001,39(11):1793-1803.
[33] Jackson SP,Bartek J.The DNA-damage response in human biology and disease[J].Nature,2009,461(7267):1071-1078.
[34] Chapman JR,Taylor MR,Boulton SJ.Playing the end game:DNA double-strand break repair pathway choice[J].Mol Cell,2012,47(4):497-510.
[35] Huertas P.DNA resection in eukaryotes:deciding how to fix the break[J].Nat Struct Mol Biol,2010,17(1):11-16.
[36] Barlow JH,Lisby M,Rothstein R.Differential regulation of the cellular response to DNA double-strand breaks in G1[J].Mol Cell,2008,30(1):73-85.
[37] Clerici M,Mantiero D,Guerini I,et al.The Yku70-Yku80 complex contributes to regulate double-strand break processing and checkpoint activation during the cell cycle[J].EMBO Rep,2008,9(8):810-818.
[38] Bunting SF,Callen E,Kozak ML,et al.BRCA1 functions independently of homologous recombination in DNA interstrand crosslink repair[J].Mol Cell,2012,46(2):125-135.
[39] Bunting SF,Callen E,Wong N,et al.53BP1 inhibits homologous recombination in Brca1-deficient cells by blocking resection of DNA breaks[J].Cell,2010,141(2):243-254.
[40] Bouwman P,Aly A,Escandell JM,et al.53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers[J].Nat Struct Mol Biol,2010,17(6):688-695.
[41] Cao L,Xu X,Bunting SF,et al.A selective requirement for 53BP1 in the biological response to genomic instability induced by Brca1 deficiency[J].Mol Cell,2009,35(4):534-541.
[42] Kanno S,Kuzuoka H,Sasao S,et al.A novel human AP endonuclease with conserved zinc-finger-like motifs involved in DNA strand break responses[J].EMBO J,2007,26(8):2094-2103.
[43] Caldecott KW.Single-strand break repair and genetic disease[J].Nat Rev Genet,2008,9(8):619-631.
[44] Caldecott KW.XRCC1 and DNA strand break repair[J].DNA Repair (Amst),2003,2(9):955-969.
[45] Caldecott KW.Protein ADP-ribosylation and the cellular response to DNA strand breaks[J].DNA Repair (Amst),2014,19:108-113.
[46] Hottiger MO,Hassa PO,Luscher B,et al.Toward a unified nomenclature for mammalian ADP-ribosyltransferases[J].Trends Biochem Sci,2010,35(4):208-219.
[47] Boehler C,Gauthier L,Yelamos J,et al.Phenotypic characterization of Parp-1 and Parp-2 deficient mice and cells[J].Methods Mol Biol,2011,780:313-336.
[48] El-Khamisy SF,Masutani M,Suzuki H,et al.A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage[J].Nucleic Acids Res,2003,31(19):5526-5533.
[49] Okano S,Lan L,Caldecott KW,et al.Spatial and temporal cellular responses to single-strand breaks in human cells[J].Mol Cell Biol,2003,23(11):3974-3981.
[50] Poirier GG,Savard P.ADP-ribosylation of pancreatic histone H1 and of other histones[J].Can J Biochem,1980,58(58):509-515.
[51] Schreiber V,Dantzer F,Ame JC,et al.Poly(ADP-ribose):novel functions for an old molecule[J].Nat Rev Mol Cell Biol,2006,7(7):517-528.
[52] Ahel I,Ahel D,Matsusaka T,et al.Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins[J].Nature,2008,451(7174):81-85.
[53] Loseva O,Jemth AS,Bryant HE,et al.PARP-3 is a mono-ADP-ribosylase that activates PARP-1 in the absence of DNA[J].J Biol Chem,2010,285(11):8054-8060.
[54] Mao Z,Hine C,Tian X,et al.SIRT6 promotes DNA repair under stress by activating PARP1[J].Science,2011,332(6036):1443-1446.
[55] Rouleau M,Saxena V,Rodrigue A,et al.A key role for poly(ADP-ribose) polymerase 3 in ectodermal specification and neural crest development[J].PLoS One,2011,6(1):1116-1121.
[56] Schuettengruber B,Chourrout D,Vervoort M,et al.Genome regulation by polycomb and trithorax proteins[J].Cell,2007,128(4):735-745.
[57] Yan YL,Willoughby J,Liu D,et al.A pair of Sox:distinct and overlapping functions of zebrafish sox9 co-orthologs in craniofacial and pectoral fin development[J].Development,2005,132(5):1069-1083.
[58] Sauka-Spengler T,Bronner-Fraser M.A gene regulatory network orchestrates neural crest formation[J].Nat Rev Mol Cell Biol,2008,9(7):557-568.
[59] Rouleau M,El-Alfy M,Levesque MH,et al.Assessment of PARP-3 distribution in tissues of cynomolgous monkeys[J].J Histochem Cytochem,2009,57(7):675-685.
[60] Selvaraj V,Soundarapandian MM,Chechneva O,et al.PARP-1 deficiency increases the severity of disease in a mouse model of multiple sclerosis[J].J Biol Chem,2009,284(38):26070-26084.
[61] Augustin A,Spenlehauer C,Dumond H,et al.PARP-3 localizes preferentially to the daughter centriole and interferes with the G1/S cell cycle progression[J].J Cell Sci,2003,116(8):1551-1562.
[62] Robert I,Gaudot L,Rogier M,et al.Parp3 negatively regulates immunoglobulin class switch recombination[J].PLoS Genet,2015,11(5):e1005240.
[63] Fernandez-Marcelo T,Frias C,Pascua I,et al.Poly (ADP-ribose) polymerase 3 (PARP3),a potential repressor of telomerase activity[J].J Exp Clin Cancer Res,2014,33(1):1-8.
[64] Van Meir EG,Hadjipanayis CG,Norden AD,et al.Exciting new advances in neuro-oncology:the avenue to a cure for malignant glioma[J].CA Cancer J Clin,2010,60(3):166-193.
[65] Kruh GD.Introduction to resistance to anticancer agents[J].Oncogene,2003,22(47):7262-7264.
[66] Perona R,Sanchez-Perez I.Control of oncogenesis and cancer therapy resistance[J].Br J Cancer,2004,90(3):573-577.
[67] Quan JJ,Song JN,Qu JQ.PARP3 interacts with FoxM1 to confer glioblastoma cell radioresistance[J].Tumour Biol,2015,36(11):8617-8624.
[68] Bieche I,Pennaneach V,Driouch K,et al.Variations in the mRNA expression of poly(ADP-ribose) polymerases,poly(ADP-ribose) glycohydrolase and ADP-ribosylhydrolase 3 in breast tumors and impact on clinical outcome[J].Int J Cancer,2013,133(12):2791-2800.
[69] Paddock MN,Bauman AT,Higdon R,et al.Competition between PARP-1 and Ku70 control the decision between high-fidelity and mutagenic DNA repair[J].DNA Repair (Amst),2011,10(3):338-343.
(編校:吳茜)
Research progress on biological function of PARP3
WANG Li-yuan, JI Ming, CHEN Xiao-guangΔ
(Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China)
As a member of PARP superfamily, PARP3 shares a high homology with PARP1 and PARP2, which are all DNA-dependent enzymes that are catalytically activated by DNA strand breaks. Compared to PARP1 and PARP2, PARP3 exerted some special properties in tissue expression pattern and biological function. The evidence has shown that PARP3 could be activated by DNA double strand breaks and special DNA single strand breaks and synthesize mono(ADP-ribose) (MAR) covalently attached to target proteins including itself. PARP3 plays an important role in DNA double strand breaks, DNA single strand breaks, activation of PARP1 and development of nervous system. It has been reported that PARP3 is associated with glioma and breast cancers. In this review, PARP3 structure, activation mechanism, biological function and its relationship with diseases will be presented.
PARP3; structure; activation; function; tumor
10.3969/j.issn.1005-1678.2016.12.004
王麗嫄,女,碩士在讀,研究方向:抗腫瘤分子藥理,E-mail:wangliyuan@imm.ac.cn;陳曉光,通信作者,研究員,研究方向:抗腫瘤分子藥理,E-mail:chxg@imm.ac.cn。
R966
A