吳隨一,胡波,王梁華Δ
(1.第二軍醫(yī)大學(xué) 海醫(yī)系,上海 200433;2.第二軍醫(yī)大學(xué) 海洋生物醫(yī)藥研究中心,上海 200433)
Par-4特異誘導(dǎo)腫瘤凋亡及其機制的研究新進展
吳隨一1,胡波2,王梁華2Δ
(1.第二軍醫(yī)大學(xué) 海醫(yī)系,上海 200433;2.第二軍醫(yī)大學(xué) 海洋生物醫(yī)藥研究中心,上海 200433)
前列腺凋亡反應(yīng)基因-4(prostate apoptosis response gene-4,par-4)基因是最早在前列腺癌細(xì)胞中發(fā)現(xiàn),這個基因在正常細(xì)胞和腫瘤細(xì)胞中均可表達,其編碼產(chǎn)物前列腺凋亡蛋白-(prostate apoptosis response protein,Par-4)可通過內(nèi)源性和外源性途徑選擇性的誘導(dǎo)腫瘤細(xì)胞凋亡,而對正常細(xì)胞沒有影響。Par-4發(fā)揮作用可包括內(nèi)源性Par-4裂解和磷酸化、內(nèi)源性Par-4轉(zhuǎn)運Fas/FasL并激活Fas/FasL促凋亡通路、及外源性的Par-4和細(xì)胞膜上的GPR78結(jié)合誘導(dǎo)細(xì)胞凋亡等過程。特別是Par-4的外源性途徑在腫瘤的靶向治療中有很重要的應(yīng)用價值。本文就Par-4誘導(dǎo)凋亡機制及外源性Par-4在腫瘤治療方面的最新研究進展進行綜述。
前列腺凋亡反應(yīng)蛋白-4;腫瘤;外源性途徑;凋亡
癌癥是世界范圍內(nèi)導(dǎo)致死亡的主要原因之一,也是當(dāng)今人類亟待解決的健康問題。根據(jù)WHO在2016年2月4日全球癌癥日上的數(shù)據(jù)顯示,全球每年新增癌癥患者約1400萬人,每年因癌癥及其相關(guān)疾病死亡的約有800萬人[1]?,F(xiàn)行的癌癥治療仍以手術(shù)、放療和化療為主。由于切除范圍的限制或是癌細(xì)胞對放療或是化療的敏感性差異,腫瘤很難被徹底清除。目前通過研究調(diào)節(jié)細(xì)胞特異蛋白的表達,進而抵抗或消滅腫瘤的方法越來越受到重視[2]。因此,能選擇性殺傷腫瘤細(xì)胞的治療方式被人們越來越寄予厚望。
在癌癥靶向治療中,發(fā)現(xiàn)了很多促凋亡基因,前列腺凋亡反應(yīng)基因-4(prostate apoptosis response-4 gene,par-4)就是其中一個[3],其編碼的前列腺凋亡反應(yīng)蛋白-4(prostate apoptosis response protein-4,Par-4)能夠誘導(dǎo)前列腺癌細(xì)胞凋亡而對正常前列腺細(xì)胞無影響。Par-4不僅能在細(xì)胞內(nèi)介導(dǎo)腫瘤細(xì)胞的凋亡,同時還能分泌出細(xì)胞,在細(xì)胞外誘導(dǎo)包括前列腺癌細(xì)胞在內(nèi)的多種腫瘤細(xì)胞凋亡[4]。這預(yù)示著Par-4作為一種潛在的腫瘤治療藥物具有良好前景。
在par-4保守序列中,包括以下幾個結(jié)構(gòu):(1)2個在N-端的核定位序列(nuclear localization sequence,NLS)分別是位于20-25aa處的NLS1及位于137-153aa處的NLS2。NLS2是Par-4進入細(xì)胞核在核內(nèi)定位以及發(fā)揮凋亡誘導(dǎo)凋亡作用的關(guān)鍵結(jié)構(gòu)域,它對Par-4功能的發(fā)揮至關(guān)重要。(2)在其C-末端(292 -332aa)有一個亮氨酸拉鏈區(qū)(leucine zipper domain,LZ),該區(qū)可以和許多Par-4伴侶分子如WT1、ζ蛋白激酶C和p62等相結(jié)合。(3)C-末端的核輸出序列。同時,在Par-4的分子中,還有2個關(guān)鍵的磷酸化位點T163和S241,需分別經(jīng)PKA和Akt磷酸化后才能入核誘導(dǎo)凋亡。這些結(jié)構(gòu)在Par-4的胞內(nèi)定位,二聚體形成和發(fā)揮誘導(dǎo)凋亡的功能中發(fā)揮重要作用[5]。
Par-4的137-195aa的59個氨基酸區(qū)域,包括了NLS2結(jié)構(gòu)域以及T163位的磷酸化位點,構(gòu)成了Par-4足以誘導(dǎo)凋亡的最小域,即選擇性腫瘤細(xì)胞凋亡誘導(dǎo)域[6](the selective for apoptosis induction cancer cells domain,SAC)(見圖1)。人類和大鼠以及小鼠的SAC是100%同源的[6]。SAC結(jié)構(gòu)域可以通過大鼠肉瘤(rat sarcoma,Ras)或是蛋白激酶C(protein kinase C,PKC)抑制核轉(zhuǎn)錄因子-κB (nuclear factor kappa-light-chain-enhancer of activated B cells,NF-κB)的活性,協(xié)助凋亡相關(guān)因子/凋亡相關(guān)因子因子(factor associated suicide/factor associated suicide ligand,F(xiàn)as/FasL)在細(xì)胞膜上定位,同時激活Fas通路以及通過與B淋巴細(xì)胞瘤-2(B-cell lymphoma-2, Bcl-2)啟動子上的 Wilms 腫瘤蛋白1(Wilms tumor protein 1,WT1)結(jié)合位點結(jié)合下調(diào)Bcl-2表達。這個結(jié)構(gòu)域和完整的Par-4有著相同的誘導(dǎo)腫瘤細(xì)胞凋亡的功能,Par-4發(fā)揮抑制腫瘤生長的作用就是通過這個結(jié)構(gòu)域?qū)崿F(xiàn)的[7]。
通過綠色熒光蛋白標(biāo)記Par-4的實驗,發(fā)現(xiàn)Par-4在誘導(dǎo)細(xì)胞凋亡與其細(xì)胞內(nèi)定位之間存在著密切的聯(lián)系[8]。在大多數(shù)腫瘤細(xì)胞中,Par-4被轉(zhuǎn)移至細(xì)胞核而引起細(xì)胞凋亡。相對的,在正常細(xì)胞中,Par-4定位于細(xì)胞質(zhì)中,如果不發(fā)生繼發(fā)的引起凋亡損傷,則不能引起細(xì)胞凋亡。類似的,如雄激素依賴的前列腺癌和激素依賴的乳腺癌細(xì)胞系等激素依賴的腫瘤細(xì)胞中,Par-4主要定位于細(xì)胞質(zhì),則它就不能引起細(xì)胞凋亡。但是,在這2種細(xì)胞衍生的激素非依賴細(xì)胞中[持續(xù)表達Ras的乳腺癌細(xì)胞系MCF-7細(xì)胞(human breast cancer cell line,MCF-7cells)Ras細(xì)胞系和持續(xù)表達IL-6的LNCaP-IL6前列腺淋巴結(jié)癌細(xì)胞系LNCaP細(xì)胞(lymph node carcinoma of prostate cell line,LNCaP cells)細(xì)胞系],Par-4可以轉(zhuǎn)移至細(xì)胞核而誘導(dǎo)凋亡。Par-4進入細(xì)胞核后再發(fā)揮誘導(dǎo)腫瘤細(xì)胞凋亡的特點說明NLS2比NLS1更為重要,因為前者是決定Par-4的核內(nèi)定位的。同時,Par-4可以被細(xì)胞自發(fā)的分泌至細(xì)胞外,并在細(xì)胞外選擇性誘導(dǎo)腫瘤細(xì)胞凋亡。這個重要特性使得Par-4成為治療腫瘤的一個潛在靶點[7]。
圖1 Par-4蛋白質(zhì)結(jié)構(gòu)和關(guān)鍵位點示意圖NLS1:核內(nèi)定位序列1;cleavage site at EEPD131↓G:Caspase-3裂解位點;NLS2:核內(nèi)定位序列2;T163:PKA磷酸化位點;SAC:選擇性腫瘤細(xì)胞凋亡誘導(dǎo)域;S241:AKT磷酸化位點;LZ:亮氨酸拉鏈結(jié)構(gòu)域;CC:C-末端輸出序列Fig.1 Schematic diagram of protein structure and the specific amino acid sites of Par-4NLS1:Nuclear localization sequence 1;cleavage site at EEPD131↓G:cleavage site of Caspase-3;NLS2:Nuclear localization sequence 2;T163:Phosphorylation site of PKA;SAC:The elective for apoptosis induction cancer cells domain;S241:Phosphorylation site of AKT;LZ:Leucine zipper domain;CC:coiled-coil motif
3.1 內(nèi)源性Par-4經(jīng)裂解和磷酸化后進入細(xì)胞核誘導(dǎo)凋亡 在正常細(xì)胞中Par-4主要分布在細(xì)胞質(zhì)中,而在前列腺癌細(xì)胞中Par-4在細(xì)胞質(zhì)和細(xì)胞核內(nèi)均有分布,這說明Par-4的功能和它在細(xì)胞內(nèi)的分布密切相關(guān)[9]。內(nèi)源性Par-4選擇性誘導(dǎo)腫瘤細(xì)胞凋亡而對正常細(xì)胞沒有殺傷作用,這是因為Par-4亮氨酸拉鏈結(jié)構(gòu)域上的S241位點能夠被細(xì)胞中的Akt磷酸化[10],磷酸化的亮氨酸拉鏈結(jié)構(gòu)域能夠和細(xì)胞中的14-3-3蛋白結(jié)合形成復(fù)合物,進而停留在細(xì)胞質(zhì)內(nèi)[6],不能誘導(dǎo)正常細(xì)胞凋亡。醉茄素A(withaferin A)通過磷酸化AKT的Ser473位點抑制AKT活性后,能夠促進Par-4入核誘導(dǎo)凋亡。抑制AKT的活性也促進了依賴于叉頭框蛋白O-3a(Forkhead box O-3a,F(xiàn)OXO3a)的細(xì)胞凋亡,F(xiàn)OXO3a能結(jié)合在Par-4的啟動子上調(diào)控Par-4的翻譯[11]。在腫瘤細(xì)胞中Caspase-3表達水平升高,Caspase-3能夠?qū)ar-4裂解為19kd和25kd的2個片段,C端的25kd片段(包含SAC片段)進入細(xì)胞核中誘導(dǎo)凋亡[12]。研究發(fā)現(xiàn)抗癌晶體蛋白-2Aa1(parasporin-2Aa1)作用于細(xì)胞后,能夠發(fā)揮和Caspase-3相同的裂解Par-4的作用[13]。
有研究將Par-4的SAC結(jié)構(gòu)域在正常的細(xì)胞中過表達,盡管SAC沒有亮氨酸拉鏈結(jié)構(gòu)域,不會和14-3-3蛋白結(jié)合,應(yīng)該更容易進入細(xì)胞核誘導(dǎo)凋亡,但實驗中正常細(xì)胞并沒有凋亡。研究分析Par-4的SAC結(jié)構(gòu)域上的有一個發(fā)揮作用的關(guān)鍵位點T163,T163被細(xì)胞中的PKA磷酸化之后才會發(fā)揮誘導(dǎo)細(xì)胞凋亡的作用。腫瘤細(xì)胞中PKA的表達顯著高于正常細(xì)胞,能夠充分將SAC結(jié)構(gòu)域的T163位點磷酸化,而在正常細(xì)胞中,PKA的表達含量較低,不足以將胞質(zhì)中SAC結(jié)構(gòu)域上的T163充分磷酸化,SAC也就不能發(fā)揮誘導(dǎo)凋亡的作用[4]。
3.2 Par-4入核后通過下調(diào)Bcl-2,抑制NF-κB和抑制TOPO1促進細(xì)胞凋亡 在淋巴細(xì)胞中Par-4能夠通過轉(zhuǎn)錄和轉(zhuǎn)錄后修飾抑制Bcl-2蛋白家族中抗凋亡蛋白的表達。Bcl-2表達量下調(diào)[14]會引起線粒體膜電位的下降,淋巴細(xì)胞進而凋亡。Par-4和轉(zhuǎn)錄因子WT1相互作用后,WT1通過結(jié)合在Bcl-2基因啟動子上抑制Bcl-2的轉(zhuǎn)錄[15];Par-4也可上調(diào)miR-24a,進而抑制Bcl-2 的mRNA的翻譯[16]。研究發(fā)現(xiàn)Par-4濃度增高導(dǎo)致的Bcl-2表達下調(diào)能夠促進三疊氮醉茄素A(3-azido withaferin A)誘導(dǎo)的前列腺癌自噬,同時Par-4上升會抑制自噬效應(yīng)蛋白(Beclin 1,BECN1)從而中斷Bcl-2和BECN1的相互作用[17]。所以在腫瘤細(xì)胞中Bcl-2與Par-4的表達呈負(fù)相關(guān),Par-4也可和抗癌藥物三疊氮醉茄素A發(fā)揮協(xié)同作用。Par-4影響NF-κB[11],蛋白激酶(protein kinase C,PKC)和蛋白激酶C(protein kinase B,Akt)。這3種蛋白介導(dǎo)的通路相互聯(lián)系:PKC和Akt能促進NF-κB的激活,PKC也增強Akt的活性。Par-4結(jié)合到PKC上造成PKC構(gòu)象改變,抑制了PKC的活性。Par-4能抑制NF-κB的復(fù)制和轉(zhuǎn)錄。同時,Par-4也可以通過結(jié)合到PKC的鋅指結(jié)構(gòu)域,導(dǎo)致PKC的空間構(gòu)象改變,生物活性下降,活化IκB激酶的能力下降。IκB激酶活性下降后,IκB磷酸化受到抑制,NF-κB活化過程受阻[13]。此外,Par-4通過抑制Akt的活性來抑制NF-κB的活性。Par-4入核后還可以通過抑制TOPO1(拓?fù)洚悩?gòu)酶1)的活性,使得基因DNA不能解旋,從而抑制NF-κB的激活和促進細(xì)胞凋亡[15]。
3.3 內(nèi)源性Par-4將Fas/FasL轉(zhuǎn)運到細(xì)胞膜上并激活Fas/FasL促凋亡通路 內(nèi)源性Par-4能促進Fas/FasL轉(zhuǎn)移到細(xì)胞膜上,激活Fas/FasL通路,誘導(dǎo)細(xì)胞凋亡。Fas受體,也稱為APO1(CD95),屬于I型跨膜蛋白的TNF-κB受體家族中成員。它的c-端有一個大約80aa區(qū)域,稱為死亡結(jié)構(gòu)域[19](death domain)。Fas受體與Fas配體結(jié)合后形成三聚體并且招募Fas死亡結(jié)構(gòu)域相關(guān)蛋白(fas-associating protein with death domain,F(xiàn)ADD),F(xiàn)ADD可以吸引pro-Caspase-8,通過其死亡效應(yīng)結(jié)構(gòu)域(Death Effector Domain)形成死亡誘導(dǎo)信號復(fù)合體(death inducing signaling complex,DISC),從而特異切割pro-Caspase 8成活性的Caspase-8,啟動凋亡[13]。只有內(nèi)源性Par-4將FADD激活,形成DISC后,才能夠使外源性Par-4的GPR78/FADD/Caspase8/Caspase3信號途徑發(fā)揮作用,進而誘導(dǎo)腫瘤細(xì)胞凋亡[14]。
3.4 內(nèi)質(zhì)網(wǎng)應(yīng)激后Par-4分泌到細(xì)胞外同時將GPR78轉(zhuǎn)運至細(xì)胞膜上 當(dāng)細(xì)胞外界條件惡劣時,例如低營養(yǎng)水平,缺氧等可干擾內(nèi)質(zhì)網(wǎng)的正常功能,并引起未成熟蛋白在內(nèi)質(zhì)網(wǎng)中聚集,產(chǎn)生內(nèi)質(zhì)網(wǎng)應(yīng)激。內(nèi)質(zhì)網(wǎng)應(yīng)激后,Par-4通過經(jīng)典途徑被分泌到胞外。3-芳基喹啉能夠誘導(dǎo)Par-4從正常細(xì)胞的中間絲蛋白和波形蛋白上釋放并促進Par-4通過旁分泌的方式和靶癌細(xì)胞結(jié)合[20]。6H也可以作為Par-4的促分泌素促進Par-4的分泌[21]。研究發(fā)現(xiàn)用波形蛋白處理正常細(xì)胞后,Par-4局限在細(xì)胞內(nèi)而不向胞外分泌[20]。繼體外實驗發(fā)現(xiàn)前列腺癌細(xì)胞可分泌Par-4到細(xì)胞外之后,在Par-4轉(zhuǎn)基因小鼠的體內(nèi)實驗中也發(fā)現(xiàn)了血清中存在Par-4,并且血清里的Par-4也可以特異性誘導(dǎo)腫瘤細(xì)胞凋亡[4]。作為熱休克蛋白70家族成員之一,內(nèi)質(zhì)網(wǎng)分子伴侶GPR78能夠與未折疊和錯誤折疊的蛋白結(jié)合,通過蛋白修飾糾正這些錯誤折疊蛋白的結(jié)構(gòu),從而減少未折疊和錯誤折疊蛋白[22]。Par-4在GPR78的表達或分泌中不發(fā)揮作用,但是能夠影響GPR78在細(xì)胞內(nèi)的定位。過表達Par-4后細(xì)胞膜上的GPR78含量增加,相似的,抑制Par-4的表達導(dǎo)致細(xì)胞膜上Par-4的含量下降。Par-4參與了GPR78的重新定位,但是未參與其他ER分子伴侶蛋白的定位。當(dāng)腫瘤細(xì)胞表面的GPR78含量上升時,對Par-4的敏感性也隨之升高。內(nèi)質(zhì)網(wǎng)應(yīng)激初期,GPR78的表達量迅速增加以適應(yīng)細(xì)胞的應(yīng)激水平[23]。內(nèi)質(zhì)網(wǎng)穩(wěn)態(tài)對于正常細(xì)胞的生存至關(guān)重要,腫瘤細(xì)胞中內(nèi)質(zhì)網(wǎng)的穩(wěn)態(tài)被打破,細(xì)胞出于自我機制會自行凋亡,避免正常機體細(xì)胞受到損害[24]。
3.5 外源性Par-4和細(xì)胞表面的GPR78結(jié)合后誘導(dǎo)腫瘤細(xì)胞凋亡 內(nèi)質(zhì)網(wǎng)應(yīng)激后,腫瘤細(xì)胞表面的GPR78含量上升。外源性Par-4和細(xì)胞表面的GPR78結(jié)合,研究人員用含有全長的GPR78載體,或是含有N端結(jié)構(gòu)域突變的GPR78載體轉(zhuǎn)染前列腺癌細(xì)胞,并將內(nèi)源性Par-4敲除,再用外源性的Par-4處理以上細(xì)胞,發(fā)現(xiàn)用GPR78的N端結(jié)構(gòu)域突變的載體處理的細(xì)胞不凋亡。提示:Par-4的SAC結(jié)構(gòu)域和GPR78的N端特異性結(jié)合,進一步激活FADD,進而激活Caspase-8凋亡通路,最終導(dǎo)致細(xì)胞凋亡[5]。但是研究也發(fā)現(xiàn),如果干擾掉腫瘤細(xì)胞的內(nèi)源性的Par-4,使腫瘤細(xì)胞只保留細(xì)胞膜表面較高密度的GPR78,再用外源性的Par-4處理腫瘤細(xì)胞,腫瘤細(xì)胞并不發(fā)生凋亡[5]。這是因為內(nèi)源性Par-4促進Fas/FasL從胞質(zhì)內(nèi)轉(zhuǎn)移到細(xì)胞膜上,使Fas/FasL通路被激活后,外源性Par-4誘導(dǎo)的凋亡通路才能發(fā)揮作用。此外,Capsase-3水平升高后能夠?qū)⒏嗟腜ar-4裂解為SAC,使得SAC能夠進入細(xì)胞核誘導(dǎo)凋亡。Par-4也可以活化Caspase-3,2者形成一個正反饋調(diào)節(jié),進一步促進了腫瘤細(xì)胞凋亡[12]。
在腫瘤細(xì)胞中,內(nèi)質(zhì)網(wǎng)應(yīng)激刺激Par-4參與GRP78的膜轉(zhuǎn)移以及Par-4自身的分泌,而Par-4和GRP78在胞膜上的相互作用又可以進一步激活內(nèi)質(zhì)網(wǎng)應(yīng)激,這就形成一個包括GRP78,內(nèi)源性和外源性Par-4一起參與的應(yīng)激環(huán)路。Par-4在多種不同的腫瘤細(xì)胞中都表現(xiàn)出誘導(dǎo)凋亡的作用,見表1。同時Par-4上升也能增加抗癌藥物的作用。高濃度Par-4能夠促進三疊氮醉茄素A誘導(dǎo)的前列腺癌自噬[17],減輕了卵巢癌的發(fā)展并且增加了對紫杉醇治療的敏感性[9]。Par-4是醉茄素A抑制雌激素抵抗的前列腺癌的一個重要的下游靶標(biāo)。關(guān)于Par-4的分泌及其在胞外誘導(dǎo)腫瘤細(xì)胞凋亡的作用的研究,見圖2。
表1 Par-4在不同腫瘤組織中誘導(dǎo)凋亡及其機制
圖2 腫瘤細(xì)胞中Par-4促進凋亡的通路:胞內(nèi)途徑;:胞外途徑;:胞內(nèi)外共同途徑;:抑制作用;:相互抑制作用Fig.2 Signaling pathway of Par-4 inducing apoptosis in cancer cells:Intracellular promoting effect;:Extracellular promoting effect;:Intracellular and extracellular promoting effect;:Inhibitoryeffect;:Mutual inhibitory effect
關(guān)于Par-4和GRP78的研究,展現(xiàn)了它們在腫瘤治療方面的良好前景。在煙草中表達par-4的SAC蛋白后,植物源性的SAC蛋白作用于前列腺癌等腫瘤細(xì)胞后均能抑制腫瘤細(xì)胞的生長;最新的研究已經(jīng)實現(xiàn)將SAC蛋白的含量在煙草植物的總可溶性蛋白中占到0.15%[7],Par-4大規(guī)模生產(chǎn)后將會在腫瘤治療中發(fā)揮重要作用。腫瘤細(xì)胞分泌的Par-4和用藥物刺激后正常細(xì)胞分泌的Par-4是否有結(jié)構(gòu)上的差異性?植物源性的Par-4在體內(nèi)是如何運輸?shù)??是否能夠?gòu)建合適的運載體提高Par-4在體內(nèi)的穩(wěn)定性?這些都是需要進一步研究的問題,這些問題的解答將有助于更好地發(fā)揮Par-4的抗腫瘤作用。
[1] WHO.Cancer[OL].February 2016; Available from: http://www.who.int/mediacentre/factsheets/fs297/en/.
[2] Bjorkholm M, Ohm L, Eloranta S, et al.Success story of targeted therapy in chronic myeloid leukemia: a population-based study of patients diagnosed in Sweden from 1973 to 2008[J].J Clin Oncol, 2011, 29(18):2514-2520.
[3] Sells SF, Wood DP Jr, Joshi-Barve SS, et al.Commonality of the gene programs induced by effectors of apoptosis in androgen-dependent and -independent prostate cells[J].Cell Growth Differ, 1994,5(4):457-466.
[4] Burikhanov R, Zhao Y, Goswami A, et al.The tumor suppressor Par-4 activates an extrinsic pathway for apoptosis[J].Cell, 2009,138(2):377-388.
[5] Hebbar N, Shrestha-Bhattarai T,Rangnekar VM, Cancer-selective apoptosis by tumor suppressor par-4[J].Adv Exp Med Biol, 2014(818):155-166.
[6] Gan X, Wu Q, Deng W, et al.Effect of Par-4 on the apoptosis of islet beta cell[J].Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2015,40(1):6-11.
[7] Sarkar S,Jain S, Rai V, et al.Plant-derived SAC domain of PAR-4 (Prostate Apoptosis Response 4) exhibits growth inhibitory effects in prostate cancer cells[J].Front Plant Sci, 2015(6):822.
[8] Liu Y, Gilbert MR, Kyprianou N, et al.The tumor suppressor prostate apoptosis response-4 (Par-4) is regulated by mutant IDH1 and kills glioma stem cells[J].Acta Neuropathol, 2014,128(5):723-732.
[9] Meynier S, Kramer M, Ribaux P, et al.Role of PAR-4 in ovarian cancer[J].Oncotarget, 2015,6(26):22641-22652.
[10] Wu Z, Wang G, Zhang K.Pro-apoptosis and selective anticancer activities of prostate apoptosis response protein 4: research progress and prospects[J].Nan Fang Yi Ke Da Xue Xue Bao, 2014,34(1):128-132.
[11] Das TP, Suman S, Alatassi H, et al.Inhibition of AKT promotes FOXO3a-dependent apoptosis in prostate cancer[J].Cell Death Dis, 2016(7):e2111.
[12] Thayyullathil F, Pallichankandy S, Rahman A, et al.Caspase-3 mediated release of SAC domain containing fragment from Par-4 is necessary for the sphingosine-induced apoptosis in Jurkat cells[J].J Mol Signal, 2013, 8(1):2.
[13] Brasseur K, Auger P, Asselin E, et al.Parasporin-2 from a New Bacillus thuringiensis 4R2 Strain Induces Caspases Activation and Apoptosis in Human Cancer Cells[J].PLoS One, 2015,10(8):e0135106.
[14] Jagtap JC, Dawood P, Shah RD, et al.Expression and regulation of prostate apoptosis response-4 (Par-4) in human glioma stem cells in drug-induced apoptosis[J].PLoS One, 2014,9(2):e88505.
[15] Amin H, Nayak D, Ur Rasool R, et al.Par-4 dependent modulation of cellular beta-catenin by medicinal plant natural product derivative 3-azido Withaferin A[J].Mol Carcinog, 2015.doi: 10.1002/mc.22328.
[16] Nguyen KA, Hamzeh-Cognasse H, Laradi S, et al.Specific activation, signalling and secretion profiles of human platelets following PAR-1 and PAR-4 stimulation[J].Platelets, 2015,26(8):795-798.
[17] Rah B, ur Rasool R, Nayak D, et al.PAWR-mediated suppression of BCL2 promotes switching of 3-azido withaferin A (3-AWA)-induced autophagy to apoptosis in prostate cancer cells[J].Autophagy, 2015,11(2):314-331.
[18] Chen X, Sahasrabuddhe AA, Szankasi P, et al.Fbxo45-mediated degradation of the tumor-suppressor Par-4 regulates cancer cell survival[J].Cell Death Differ, 2014,21(10):1535-1545.
[19] Merhi B, Bayliss G, Gohh RY, Role for urinary biomarkers in diagnosis of acute rejection in the transplanted kidney[J].World J Transplant, 2015,5(4):251-260.
[20] Sviripa VM, Burikhanov R, Obiero JM, et al.Par-4 secretion: stoichiometry of 3-arylquinoline binding to vimentin[J].Organic & Biomolecular Chemistry, 2016,14(1):74-84.
[21] Frasinyuk MS,Bondarenko SP,Sviripa VM,et al.Development of -Chromeno[3,4-]pyrido[3',2':4,5]thieno[2,3-e]pyridazin-6-ones as Par-4 Secretagogues[J].Tetrahedron Lett,2015, 56(23):3382-3384.
[22] Ge Y, Li G, Liu B, et al.The Protective Effect of Lacidipine on Myocardial Remodeling Is Mediated by the Suppression in Expression of GPR78 and CHOP in Rats[J].Evid Based Complement Alternat Med, 2015(2015):945076.
[23] Yee SB, Choi HJ, Chung SW, et al, Growth inhibition of luteolin on HepG2 cells is induced via p53 and Fas/Fas-ligand besides the TGF-beta pathway[J].Int J Oncol, 2015,47(2):747-754.
[24] Chen W, Zou P, Zhao Z, et al.Selective killing of gastric cancer cells by a small molecule via targeting TrxR1 and ROS-mediated ER stress activation[J].Oncotarget, 2016.doi: 10.18632/oncotarget.7565.
[25] Moscat J, Diaz-Meco MT, Wooten MW.Of the atypical PKCs, Par-4 and p62: recent understandings of the biology and pathology of a PB1-dominated complex[J].Cell Death Differ, 2009,16(11):1426-1437.
[26] Lee TJ, Jang JH, Noh HJ, et al.Overexpression of Par-4 sensitizes TRAIL-induced apoptosis via inactivation of NF-kappaB and Akt signaling pathways in renal cancer cells[J].J Cell Biochem, 2010,109(5):885-895.
[27] Wang G, Dinkins M, He Q, et al.Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD)[J].J Biol Chem, 2012,287(25):21384-21395.
[28] Hart LS and El-Deiry WS.Cell death: a new Par-4 the TRAIL[J].Cell, 2009,138(2):220-222.
[29] Tan J, You Y, Xu T, et al.Par-4 downregulation confers cisplatin resistance in pancreatic cancer cells via PI3K/Akt pathway-dependent EMT[J].Toxicol Lett, 2014,224(1):7-15.
[30] Visavadiya NP, Li Y, Wang S.High glucose upregulates upstream stimulatory factor 2 in human renal proximal tubular cells through angiotensin II-dependent activation of CREB[J].Nephron Exp Nephrol, 2011,117(3):e62-70.
[31] Jagtap JC, Parveen D, Shah RD, et al.Secretory prostate apoptosis response (Par)-4 sensitizes multicellular spheroids (MCS) of glioblastoma multiforme cells to tamoxifen-induced cell death[J].FEBS Open Bio, 2015(5):8-19.
[32] Libich DS, Schwalbe M, Kate S, et al.Intrinsic disorder and coiled-coil formation in prostate apoptosis response factor 4[J].FEBS J, 2009,276(14):3710-3728.
[33] Lu C, Li JY, Ge Z, et al.Par-4/THAP1 complex and Notch3 competitively regulated pre-mRNA splicing of CCAR1 and affected inversely the survival of T-cell acute lymphoblastic leukemia cells[J].Oncogene, 2013,32(50):5602-5613.
[34] Alvarez JV,Pan TC, Ruth J, et al. Par-4 downregulation promotes breast cancer recurrence by preventing multinucleation following targeted therapy[J].Cancer Cell, 2013,24(1):30-44.
[35] Saegusa M, Hashimura M, Kuwata T, et al.Transcriptional regulation of pro-apoptotic Par-4 by NF-kappaB/p65 and its function in controlling cell kinetics during early events in endometrial tumourigenesis[J].J Pathol, 2010,221(1):26-36.
[36] Sviripa VM, Burikhanov R, Obiero JM, et al.Par-4 secretion: stoichiometry of 3-arylquinoline binding to vimentin[J].Org Biomol Chem, 2015,14(1):74-84.
(編校:王冬梅)
New research progresses on the prostate apoptosis response protein-4 for apoptosis induction cancer and its mechanism
WU Sui-yi1, HU Bo2, WANG Liang-hua2Δ
(1.Faculty of Naval Medicine, The Second Military Medical University, Shanghai 200433, China; 2.Marine Biomedical Research Center, The Second Military Medical University, Shanghai 200433, China)
Prostate apoptosis response gene-4(par-4)was first identified from the prostate tissue.This gene can express in both normal and cancer cells.The translation product ofpar-4 is prostate apoptosis response protein-4(Par-4),which is unique in its ability to selectively induce apoptosis in cancer cells while leaving the normal cells unaffected through intracellular and extracellular pathway.Par-4 is cleaved and phosphorylated by caspase3 and PKA; Par-4 transportsFas/FasL tocell membrane and activation of pro-apoptotic pathway;intracellular Par-4 transports GPR78 to cell membrane; extracellular Par-4 binds to GRP78 and activates it.There is a significant potential role in anti-tumors therapy of extracellular Par-4.The latest research progress on the mechanism of apoptosis induced by Par-4 and the treatment of exogenous Par-4 in tumor was discussed in this article.
prostate apoptosis response protein-4;tumor;extracellular pathway; apoptosis
第二軍醫(yī)大學(xué)大學(xué)生創(chuàng)新能力培養(yǎng)基金(ZD2014031)
吳隨一,男,本科在讀,研究方向:生物化學(xué)與分子生物學(xué),E-mail:wusuiyi@foxmail.com;王梁華,通信作者,男,博士,副教授,研究方向:生物化學(xué)與分子生物學(xué),E-mail:lhwang@smmu.edu.cn。
R91
A
10.3969/j.issn.1005-1678.2016.04.07