巴振寧, 梁建文, 張艷菊
1 天津大學(xué)土木系, 天津 300072 2 濱海土木工程結(jié)構(gòu)與安全教育部重點(diǎn)實(shí)驗(yàn)室, 天津 300072
?
三維層狀黏彈性半空間中球面SH、P和SV波源自由場
巴振寧1,2, 梁建文1,2, 張艷菊1
1 天津大學(xué)土木系, 天津300072 2 濱海土木工程結(jié)構(gòu)與安全教育部重點(diǎn)實(shí)驗(yàn)室, 天津300072
摘要采用剛度矩陣方法結(jié)合Hankel積分變換,求解了層狀黏彈性半空間中球面SH、P和SV波的自由波場.首先,在柱坐標(biāo)系下建立層狀黏彈性半空間的反軸對稱(柱面SH波)和軸對稱(柱面P-SV波)情況精確動(dòng)力剛度矩陣.進(jìn)而由Hankel變換將空間域內(nèi)的球面波展開為波數(shù)域內(nèi)柱面波的疊加,然后將球面波源所在層的上下端面固定,求得固定層內(nèi)的動(dòng)力響應(yīng)和固定端面反力,將固端反力反向施加到層狀黏彈性半空間上,采用直接剛度法求得固端反力的動(dòng)力響應(yīng),疊加固定層內(nèi)和固端反力動(dòng)力響應(yīng),求得波數(shù)域內(nèi)球面波源動(dòng)力響應(yīng).最后由Hankel積分逆變換求得頻率-空間域內(nèi)球面波源自由場,時(shí)域結(jié)果由傅里葉逆變換求得.文中驗(yàn)證了方法的正確性,并以均勻半空間和基巖上單一土層中球面SH、P和SV波為例分別在頻域和時(shí)域內(nèi)進(jìn)行了數(shù)值計(jì)算分析.研究表明基巖上單一土層中球面波自由場與均勻半空間情況有著本質(zhì)差異;基巖上單一土層中球面波位移頻譜峰值頻率與場地固有頻率相對應(yīng),基巖面的存在使得基巖上單一土層地表點(diǎn)的位移時(shí)程非常復(fù)雜,振動(dòng)持續(xù)時(shí)間明顯增長;阻尼的增大顯著降低了動(dòng)力響應(yīng)的峰值,同時(shí)也顯著減少了波在土層的往復(fù)次數(shù).
關(guān)鍵詞球面波源; 自由場; 直接剛度法; 層狀黏彈性半空間; Hankel變換
The method of direct stiffness combining with the technique of Hankel transform is used to calculate the wave propagation of spherical sources. Firstly, the exact dynamic stiffness matrices of the layered visco-elastic half-space corresponding to the anti-symmetric cylindrical SH-waves and to the symmetric cylindrical P- and SV-waves are established, respectively. Then, the spherical sources expressed in the space domain are expanded as the summation of cylindrical waves in the wave-number domain. The layer in which the spherical sources locate is fixed at its top and bottom interfaces and the dynamic responses restricted in the fixed layer and the corresponding reaction forces are obtained. The directions of these forces are then reversed, and they are applied as loads on the whole layered visco-elastic half-space. The dynamic responses induced by the reactions forces can be determined by using the direct stiffness method. And the dynamic responses restricted in the fixed layer are added to the dynamic responses of the reaction forces to determine the global responses in the wave-number domain. Finally, the free-field responses are obtained by using the inverse Hankel transform. And results in time domain can be easily obtained by using the inverse Fourier transform.
The accuracy of the new method is verified by comparing results with those obtained by Lamb′s method. And by taking spherical SH-, P- and SV-wave sources embedded in a uniform half-space and in a single layered overlying on bedrock as examples, the following numerical calculations are performed. (1) Dynamic responses for different stiffness ratio between the bedrock and the layer are illustrated, and numerical results show that both the real and imaginary parts of the displacement and shear stress have kinks at the interface between the layer and the underlying half-space. (2) Spectrums of surface displacement amplitudes for different layer′s thickness are given, and numerical results show that the spectrums for the single layered half-space have definite peak frequencies, which vary with thickness of the layer. In addition, the dynamic responses of the spherical SH- and SV-wave sources are less sensitive to the layer′s thickness. (3) Effects of material damping ratio on the free field responses are studied, and numerical results show that both the real and imaginary parts of the dynamic responses are decreased significantly with the increase of the material damping ratio, especially for peak displacement and stress. (4) Time domain results are illustrated by using the inverse Fourier transform, and numerical results show that only reflected SH-waves are observed for spherical SH sources, and both the reflected P- and SV-waves can be observed for P- or SV- sources due to Wave Mode Conversion. Additionally, in cases of the single layer half-space, reflected waves from the surface of the bedrock can be observed in the time histories.
The free-field responses for the single layer half-space can be significantly different from those of the uniform half-space case; The peak frequencies of the surface displacement amplitude are strongly related to the fundamental frequencies of the single layer site; The existence of the bedrock makes the time histories of the surface displacement amplitudes very complicated and the duration of vibration very long; And the peak values of the dynamic responses decreased greatly and the times of wave propagating up and down in the layer reduced greatly with the increase of the material damping.
1引言
場地自由場地震反應(yīng)是研究地震波散射以及土-結(jié)構(gòu)地震相互作用等問題的基礎(chǔ)和前提,因此針對場地自由場地震反應(yīng)的求解和分析有著重要的意義.目前場地自由場地震反應(yīng)的研究主要是針對平面波進(jìn)行的,且平面波的研究又包括一維自由場反應(yīng)和二維自由場反應(yīng).一維自由場研究方面:Idriss和Seed(1968)提出了土層地震反應(yīng)的等效線性化方法,并編制了計(jì)算場地一維自由場反應(yīng)的計(jì)算程序SHAKE,此后也對層狀場地的一維自由場地震反應(yīng)進(jìn)行了研究(高玉峰等, 1999; 金星等, 2004; 欒茂田和林皋, 1992; 李小軍, 1987).
對于二維自由場地震反應(yīng),Thomson(1950)和Haskell(1953)開創(chuàng)性地給出了層狀場地中波傳播問題的傳遞矩陣方法,研究了層狀半空間中波的傳播問題;Kausel和Roёsset(1981)利用Thomson-Haskell傳遞矩陣方法給出了層狀半空間的剛度矩陣,采用剛度矩陣方法對波的傳播問題進(jìn)行了研究;Wolf和Obernhuber(1982a, 1982b)建立了層狀半空間的平面外(平面SH波)和平面內(nèi)(平面P-SV波)精確動(dòng)力剛度矩陣,并采用剛度矩陣方法求解了層狀半空間中SH、Love、P、SV和Rayleigh波的自由場;薛松濤等(2000,2004)在Wolf理論的基礎(chǔ)上,建立層狀TI介質(zhì)的平面外和平面內(nèi)剛度矩陣,求解了SH、P和SV波入射下層狀TI半空間的自由場.劉晶波和王艷(2006)將波動(dòng)輸入轉(zhuǎn)化為等效節(jié)點(diǎn)荷載施加在邊界節(jié)點(diǎn)上,采用有限元法求解了SH波斜入射下彈性半空間的自由場.李山有等(2003)基于水平成層介質(zhì)波動(dòng)傳播的特點(diǎn)建立了相鄰節(jié)點(diǎn)間自由場運(yùn)動(dòng)的關(guān)系式,給出了計(jì)算水平成層半空間自由場的時(shí)域方程.梁建文等(2014)考慮波型轉(zhuǎn)換,提出了一種層狀彈性場地基巖斜入射地震動(dòng)二維反演方法.Lin等(2005)求解了無黏性飽和半空間中入射P1和SV波的自由場,且考慮了自由表面透水和不透水兩種情況.Liang和You(2004)將Wolf理論拓展到層狀飽和半空間情況,建立了飽和土層和半空間的平面內(nèi)精確動(dòng)力剛度矩陣,并采用剛度矩陣方法求解了層狀飽和半空間P1和SV入射下的自由波場.
值得指出的是以上關(guān)于地震波自由場的研究均假定入射波為平面波,這在震源距較大時(shí)是合適的.當(dāng)震源距較小時(shí),地震波傳播的曲率影響將不能忽略,采用球面波來模擬地震波更為合理.然而目前關(guān)于球面波自由場的研究非常少,Lamb(1904)采用Hankel積分變換方法給出了均勻彈性半空間中球面膨脹波源(P波)自由場的計(jì)算公式,但沒有給出數(shù)值結(jié)果,對于層狀半空間中球面波源自由場,則未見報(bào)道.因此本文基于柱面SH、P和SV波勢函數(shù),建立了層狀黏彈性半空間的反軸對稱(柱面SH波)和軸對稱(柱面P-SV波)精確動(dòng)力剛度矩陣,進(jìn)而采用剛度矩陣方法結(jié)合Hankel積分變換求解了層狀黏彈性半空間中球面SH、P和SV波源的自由場.
本文關(guān)于層狀黏彈性半空間中球面波源自由場的研究為今后將震源模擬為點(diǎn)震源,研究復(fù)雜場地(盆地、山脈和盆山復(fù)合)對地震波的散射以及土結(jié)構(gòu)相互作用等問題提供了精確的自由場波場,另外本文層狀黏彈性半空間中球面波的自由波場亦為層狀黏半空間中球面波的格林函數(shù),而層狀黏半空間中球面SH、P和SV波格林函數(shù)構(gòu)成了層狀黏半空間中一組完備的基本解,也為今后建立以層狀黏半空間中球面SH、P和SV波格林函數(shù)為基本解的邊界元方法求解工程波動(dòng)問題奠定了基礎(chǔ).
2模型與求解
具體求解時(shí),首先通過Hankel積分變換將球面波展開為相應(yīng)柱面波的疊加,也即將球面波由空間域變換到波數(shù)域中;如圖2所示,在波數(shù)域中將球面波源所在土層上下端面固定,求得固定層內(nèi)的動(dòng)力響應(yīng),同時(shí)計(jì)算滿足這樣條件的相應(yīng)反力(其中固定層內(nèi)動(dòng)力響應(yīng)以及固定端面反力又分別由相應(yīng)的特解和齊次解組成),然后將反力以相反的方向作用到總體系上,采用直接剛度法計(jì)算固定端面反力引起的動(dòng)力響應(yīng);疊加固定層內(nèi)動(dòng)力響應(yīng)和固定端面反力產(chǎn)生動(dòng)力響應(yīng),可求得層狀黏彈性半空間中任意點(diǎn)波數(shù)域中的動(dòng)力響應(yīng);最后采用Hankel積分逆變換,將動(dòng)力響應(yīng)由波數(shù)域變換到空間域內(nèi),求得球面波源空間域內(nèi)的動(dòng)力響應(yīng),也即層狀黏彈性半空間中球面波源自由場.時(shí)域自由場則可通過對頻域結(jié)果的傅里葉逆變換求得.以下將對層狀黏彈性半空間的反軸對稱(柱面SH波)和軸對稱(柱面P-SV波)情況精確動(dòng)力剛度矩陣的建立和層狀半黏彈性空間中球面SH、P和SV的自由場求解進(jìn)行介紹.
2.1層狀黏彈性半空間精確動(dòng)力剛度矩陣
2.1.1層狀黏彈性半空間反軸對稱(柱面SH波)精確動(dòng)力剛度矩陣
假定土層中上行和下行的柱面SH波的勢函數(shù)為
圖1 (a) 層狀黏彈性半空間中埋置球面波源; (b) 球面SH、P和SV示意圖Fig.1 (a) Buried spherical sources in a layered half-space; (b) Spherical SH-, P- and SV-waves
圖2 球面波源自由場求解示意圖球面波為SH波時(shí),固定層上下端面上僅有剪應(yīng)力τzθ,固定端面的反力僅有沿環(huán)向的力Q1和Q2;球面波為P或SV波時(shí),固定層上下端面上有剪應(yīng)力τzr和正應(yīng)力σz,固定端面的反力有沿徑向的力P1和P2以及沿豎向的力R1和R2.Fig.2 Diagram for calculation of dynamic responses of buried spherical sourcesFor spherical SH-waves, there is only shear stress τzθ on the top and bottom interfaces of the fixed layer, and there are only the corresponding circumferential reaction forces Q1 and Q2 are exist. For spherical P- and SV-waves, there are shear stress τzr and normal stress σz on the top and bottom interface of the fixed layer, and there are the corresponding radial reaction forces P1 and P2 and vertical reaction forces R1 and R2 exist.
(1)
(2)
(3)
其中,μ*=μ(1+2isgn(ω)ζ)為復(fù)剪切模量.將z=0和z=h(h為土層厚度)分別代入式(2)和(3),可得土層頂面和底面的位移和應(yīng)力幅值分別為
(4)
(5)
(6)
上標(biāo)“L”代表土層,在動(dòng)力剛度矩陣中下標(biāo)“SH”代表反軸對稱運(yùn)動(dòng).
在半空間的表面施加反軸對稱荷載,只會(huì)產(chǎn)生幅值為C2的去波,以下標(biāo)“0”表示半空間自由表面,在式(5)和(6)中,令C1=0,Q0=-τz θ0,消去C2得半空間的動(dòng)力剛度系數(shù)SHR為
(7)
由于半空間多用作模擬基巖,故用上標(biāo)“R”表示.集
(8)
(9)
2.1.2層狀黏彈性半空間軸對稱(柱面P-SV波)精確動(dòng)力剛度矩陣
假定土層中上行和下行的柱面P和SV波的勢函數(shù)為
(10)
(11)
(12)
(13)
將式(10)和(11)代入式(12)和(13)得
(14)
(15)
應(yīng)力τzr和σz與位移ur和uz之間滿足關(guān)系式
(16)
(17)
其中,λ*=λ(1+2i sgn(ω)ζ),將式(14)和(15)代入式(16)和(17)得
(18)
(19)
將z=0和z=h分別代入式(14)、(15)、(18)和(19),可得土層頂面和底面的位移和應(yīng)力幅值為
(20)
(21)
(22)
(23)
(24)
(25)
2.2層狀黏彈性半空間球面波源自由場
2.2.1層狀黏彈性半空間中球面SH波自由場
(26)
由式(26),球面SH波的每個(gè)柱面波分量可寫為
(27)
(28)
由τz θ=μ*?uθ/?z,可得固定層內(nèi)的應(yīng)力特解幅值(以上標(biāo)“p”表示)為
4.遵守黨的優(yōu)良傳統(tǒng)。黨的優(yōu)良傳統(tǒng)作風(fēng)是我們黨在長期實(shí)踐中培育起來的體現(xiàn)黨的性質(zhì)、宗旨的做法和習(xí)慣,是黨保持自身先進(jìn)性和純潔性的外在表現(xiàn)。因此,嚴(yán)肅黨內(nèi)政治生活就是要進(jìn)一步發(fā)揚(yáng)光大黨的優(yōu)良傳統(tǒng)作風(fēng),形成浩然正氣并使之在黨內(nèi)蔚然成風(fēng)。習(xí)近平同志強(qiáng)調(diào):“要堅(jiān)持和發(fā)揚(yáng)實(shí)事求是、理論聯(lián)系實(shí)際、密切聯(lián)系群眾、開展批評和自我批評、堅(jiān)持民主集中制等優(yōu)良傳統(tǒng)?!盵1]
(29)
將z=-d和z=hi-d代入式(28)可求得固定層頂面和底面的位移特解幅值為
(30)
(31)
(32)
(33)
(35)2.2.2層狀黏彈性半空間中球面P和SV波自由場
同球面SH情況,空間域內(nèi)球面P或SV波可通過Hankel變換,展開為波數(shù)域內(nèi)柱面波的疊加:
(36)
(37)
球面P波或SV波的每個(gè)柱面波分量在波數(shù)域中的勢函數(shù)可寫為
(38)
(39)
將式(38)和(39)代入式(12)和(13),可得固定層內(nèi)分別對應(yīng)球面P和SV波的位移特解幅值為
(40)
(41)
將式(40)和(41)帶入式(16)和(17),可得分別對應(yīng)球面P和SV波的固定層內(nèi)應(yīng)力特解幅值為
(42)
(43)
將z=-d和z=hi-d代入式(40)和(41)可求得分別對應(yīng)球面P和SV波的固定層頂面和底面的位移特解幅值為
(44)
(45)
(46)
(47)
(48)
(49)
(50)
3方法驗(yàn)證
為驗(yàn)證本文方法的正確性,圖3給出本文計(jì)算結(jié)果與Lamb(1904)給出均勻彈性半空間中埋置球面膨脹P波對應(yīng)的地表水平和豎向位移幅值的比較,值得注意的是Lamb(1904)中只給出了均勻半空間中埋置膨脹P波自由場的計(jì)算公式,并沒有給出數(shù)值結(jié)果,圖3中文獻(xiàn)結(jié)果為按照Lamb(1904)中給出計(jì)算公式(142)至(147)求得到的結(jié)果.圖3中半空間介質(zhì)泊松比為0.25,取無量綱頻率η=ω d/cs=1.0,其中ω為球面膨脹波源振動(dòng)頻率,d為其埋深,cs為剪切波速.圖3中連續(xù)結(jié)果為本文結(jié)果,離散結(jié)果為按Lamb(1904)計(jì)算結(jié)果.從圖3中可以看出本文結(jié)果與Lamb(1904)結(jié)果非常吻合,說明了本文方法的正確性.
4數(shù)值結(jié)果
4.1頻域結(jié)果分析
4.1.1基巖與土層剛度比對球面波自由場的影響
圖3 本文結(jié)果與Lamb(1904)結(jié)果的比較Fig.3 Comparison with the results given by Lamb (1904)
圖4 球面波源為P波時(shí),位移和應(yīng)力沿深度的變化(基巖與土層剛度比不同)Fig.4 Displacements and stresses along depth for spherical P-waves (different stiffness ratio between the layer and bed rock)
圖5 球面波源為SV波時(shí),位移和應(yīng)力沿深度的變化(基巖與土層剛度比不同)Fig.5 Displacements and stresses along depth for spherical SV-waves (different stiffness ratio between the layer and bed rock)
圖6 球面波源為SH波時(shí),位移和應(yīng)力沿深度的變化(基巖與土層剛度比不同)Fig.6 Displacements and stresses along depth for spherical SH-waves (different stiffness ratio between the layer and bed rock)
圖7 球面波源為P波時(shí),地表不同觀測點(diǎn)位移幅值頻譜(土層厚度不同)Fig.7 Spectrum of surface displacement amplitudes for spherical P-waves (different depth of the layer)
圖6給出了球面波源為SH波時(shí),對應(yīng)不同基巖與土層剪切波速比、位移和應(yīng)力的實(shí)部和虛部沿深度的變化,圖6中計(jì)算參數(shù)仍同圖4.與球面P波和SV波不同,球面SH波在半空間中的傳播不存在波型轉(zhuǎn)換,也即半空間表面和基巖面產(chǎn)生的反射波僅為球面SH波,因此半空間中僅有環(huán)向位移和剪應(yīng)力,同時(shí)圖6中的結(jié)果也顯示在球面SH波作用水平面位置(z/a=1.0)處,環(huán)向位移和剪應(yīng)力均較大.另外,同球面SV結(jié)果(圖5)相似,基巖上單一土層情況與均勻半空間情況差異要小于球面P波情況,不同基巖與土層剛度比情況的差異也較小.
4.1.2土層厚度對球面波自由場的影響
從圖7中可以看出,由于考慮了場地自身的動(dòng)力特性(具有場地固有頻率),基巖上單一土層情況(h/d=2.0和4.0)對應(yīng)的地表位移幅值頻譜與均勻半空間情況(h/d=∞)有著本質(zhì)的差異.均勻半空間情況地表位移幅值整體上隨頻率的增大逐漸減小,而基巖上單一土層情況位移幅值頻譜表現(xiàn)為以均勻半空間情況為中心的上下振蕩,出現(xiàn)多個(gè)峰值頻率,且在峰值頻率處,基巖上單一土層情況對應(yīng)地表位移幅值顯著大于均勻半空間情況.另外不同土層厚度對應(yīng)的位移幅值頻譜(h/d=2.0和4.0)也有著明顯的差異,這是因?yàn)橥翆雍穸鹊母淖冎苯訉?dǎo)致了土層自身動(dòng)力特性的改變,也即改變了球面波在土層中的相干方式.
圖8給出了球面波源為SV波時(shí),對應(yīng)不同土層厚度,地表不同觀測點(diǎn)的位移幅值頻譜.圖8中計(jì)算參數(shù)同圖7.從圖8亦可以看出,與球面P波結(jié)果(圖7)相同,球面波源為SV波時(shí),基巖單一土層情況與均勻半空間情況地表位移幅值有著顯著的差別,基巖上單一土層情況存在多個(gè)峰值頻率,同時(shí)隨著土層厚度的增大,峰值頻率點(diǎn)逐漸向低頻遷移.另外,球面SV波情況,土層厚度對位移幅值頻譜的影響整體上要低于球面P波情況,尤其在r/d=1.0位置,h/d=4.0與h/d=∞對應(yīng)的位移幅值頻譜非常接近.
圖9給出了球面波源為SH波時(shí),對應(yīng)不同土層厚度,地表不同觀測點(diǎn)的位移幅值頻譜.圖9中計(jì)算參數(shù)同圖7.從圖9中可以看出,與球面P波結(jié)果(圖7)和SV波結(jié)果(圖8)相同,球面波源為SH時(shí),基巖上單一土層情況與均勻半空間情況地表位移幅值存在較大差異,同時(shí)不同的土層厚度也對應(yīng)不同的位移幅值頻譜,但對應(yīng)于相同的土層厚度,球面SH波對應(yīng)的峰值頻率相對小于球面P和SV波情況.
表1 基巖上單一土層固有頻率
圖8 球面波源為SV波時(shí),地表不同觀測點(diǎn)位移幅值頻譜(土層厚度不同)Fig.8 Spectrum of surface displacement amplitudes for spherical SV-waves (different depth of the layer)
圖9 球面波源為SH波時(shí),地表不同觀測點(diǎn)位移幅值頻譜(土層厚度不同)Fig.9 Spectrum of surface displacement amplitudes for spherical SH-waves (different depth of the layer)
土層厚度觀測點(diǎn)峰值頻率h/d=2.0h/d=4.0r/d=1.0r/d=3.0r/d=5.0r/d=1.0r/d=3.0r/d=5.0峰值1峰值2峰值1峰值2峰值1峰值2峰值1峰值2峰值1峰值2峰值1峰值2球P|u*r|1.303.651.303.701.303.700.651.850.651.850.651.85|u*z|1.303.651.303.701.353.800.651.800.651.800.651.85球SV|u*r|1.303.651.403.651.403.600.651.850.651.800.651.85|u*z|1.353.651.453.651.453.650.651.850.751.800.751.85球SH|u*|0.852.300.902.901.152.300.451.150.451.150.501.15
4.1.3黏彈性因素對球面波自由場的影響
圖10對應(yīng)不同阻尼比的結(jié)果表明,阻尼對位移和應(yīng)力的實(shí)部和虛部均有較為顯著的影響.隨著阻尼比的增大,位移以及應(yīng)力的實(shí)部和虛部均表現(xiàn)為逐漸變小,尤其在位移和應(yīng)力的峰值處.另外,比較基巖面以上位置(z/a≤2.0)和基巖面以下位置(z/a>2.0)處的位移和應(yīng)力發(fā)現(xiàn),阻尼比的變化主要影響基巖面以上位置的動(dòng)力響應(yīng),這是因?yàn)榛鶐r面的剛度大于土層的剛度,動(dòng)力響應(yīng)主要集中在土層內(nèi)且阻尼使得位移和應(yīng)力沿深度衰減所致.
從圖11中可以看出,阻尼對基巖上單一土層表面各觀測點(diǎn)的位移幅值頻譜有著顯著影響.隨著阻尼比的增大,各觀測點(diǎn)位移幅值頻譜的峰值顯著降低,但阻尼比改變并不改變位移幅值頻譜的峰值頻率.阻尼對位移幅值的影響,隨著頻率的增大逐漸增大,尤其在峰值頻率處.對比不同阻尼比徑向和豎向位移幅值頻譜發(fā)現(xiàn),阻尼對徑向位移幅值頻譜的影響更為明顯.對比不同觀測點(diǎn)位移幅值頻譜發(fā)現(xiàn),阻尼對距離波源更遠(yuǎn)觀測點(diǎn)(r/d逐漸增大)的影響更為明顯,尤其在較高頻率處(η>4.0).
4.2時(shí)域結(jié)果分析
圖10 球面波源為SV波時(shí),位移和應(yīng)力沿深度的變化(阻尼比不同)
圖11 球面波源為P波時(shí),地表不同觀測點(diǎn)位移幅值頻譜(阻尼比不同)Fig.11 Spectrum of surface displacement amplitudes for spherical P-waves (different damping ratio)
圖12 (a) 球面波為SH波時(shí),地表位移時(shí)程(均勻半空間);(b)球面波為P波時(shí),地表位移時(shí)程(均勻半空間); (c) 球面SV波時(shí),地表位移時(shí)程(均勻半空間)Fig.12 (a) Time histories of displacement amplitudes for spherical SH-waves (uniform half-space);(b) Time histories of displacement amplitudes for spherical P-waves (uniform half-space); (c) Time histories of displacement amplitudes for spherical SV-waves (uniform half-space)
從圖12中可以清晰看出球面波的傳播過程.對于圖12a所示的球面SH波,由于其不存在波型轉(zhuǎn)換現(xiàn)象,直達(dá)SH波傳播到地表后,反射波也僅為SH波,所以在地表僅存在傳播的SH波跡線.同球面SH波不同,對于圖12b所示球面P波,存在波型轉(zhuǎn)換現(xiàn)象,直達(dá)P波到達(dá)地表后,會(huì)同時(shí)產(chǎn)生反射的P波和SV波,因此在地表可觀測到以較快速度傳播的P波跡線和以較慢速度傳播的SV波跡線,同時(shí)球面P波情況,主要能量由P波攜帶,因此對于任一觀測點(diǎn),先發(fā)生以較快速度較強(qiáng)能量傳播來的P波振動(dòng),再發(fā)生以較慢速度較弱能量傳播來的SV波振動(dòng),且地表觀測點(diǎn)越遠(yuǎn),P波和SV波到達(dá)的時(shí)間差越大.同球面P波情況相同,圖12c所示的球面SV波亦存在波型轉(zhuǎn)換問題,因此地表也出現(xiàn)P波和SV波兩條跡線,但球面SV波情況,主要能量由SV波攜帶,因此對于任一觀測點(diǎn),先發(fā)生以較快速度較弱能量傳播來的P波振動(dòng),再發(fā)生以較慢速度較強(qiáng)能量傳播來的SV波振動(dòng).
圖13 (a) 球面SH波時(shí),地表位移時(shí)程(基巖上單一土層);(b) 球面P波時(shí),地表位移時(shí)程(基巖上單一土層);(c) 球面SV波時(shí),地表位移時(shí)程(基巖上單一土層)Fig.13 (a) Time histories of displacement amplitudes for spherical SH-waves (single layered half-space); (b) Time histories of displacement amplitudes for spherical P-waves (single layered half-space); (c) Time histories of displacement amplitudes for spherical SV-waves (single layered half-space)
圖14 球面SH波時(shí),地表位移時(shí)程(不同阻尼比)
比較圖12中均勻半空間結(jié)果與圖13中基巖上單一土層結(jié)果發(fā)現(xiàn),對于球面SH、P和SV波均表現(xiàn)出基巖上單一土層情況對應(yīng)的地表位移幅值時(shí)程較均勻半空間情況要復(fù)雜的多,同時(shí)地表位移的振動(dòng)時(shí)間也有明顯的延長,這是由于波在土層中來回反射形成的(對于均勻半空間情況,反射波傳向無窮遠(yuǎn)處,不會(huì)再返回).球面P波和SV波情況,土層中同時(shí)存在來回反射的P和SV波,而球面SH波情況,土層中僅存在來回反射的SH波,因此圖13b和圖13c對應(yīng)的球面P和SV波位移時(shí)程較圖13a對應(yīng)的SH波位移時(shí)程更為復(fù)雜.
5結(jié)論
基于柱面SH、P和SV波的勢函數(shù),在柱坐標(biāo)系下分別建立了黏彈性土層和半空間的反軸對稱(柱面SH波)和軸對稱(柱面P-SV)波的精確動(dòng)力剛度矩陣,進(jìn)而采用剛度矩陣方法結(jié)合Hankel積分變換給出了層狀黏彈性半空間中球面SH、P和SV波自由波場的計(jì)算公式.文中以均勻半空間和基巖上單一土層中球面SH、P和SV波的自由波場為例,分別在頻域和時(shí)域內(nèi)進(jìn)行了數(shù)值計(jì)算分析,得到了以下主要結(jié)論.
(1) 基巖面的存在使得球面波在土層中多次反射,進(jìn)而使得基巖上單一土層中球面波自由波場與均勻半空間情況有著本質(zhì)的差異.通過對不同基巖與土層剪切波速比的結(jié)果分析發(fā)現(xiàn),基巖與土層剪切波速比的變化對球面P波自由場的影響大于球面SV和SH波自由場的影響.
(2) 基巖上單一土層對應(yīng)的球面波自由場位移幅值頻譜存在多個(gè)峰值頻率,球面P和SV波對應(yīng)的第1和第2峰值頻率與按P波波速計(jì)算求得場地第1和第2階固有頻率非常接近,而球面SH波對應(yīng)的第1和第2峰值頻率則與按S波波速計(jì)算求得場地第1和第2階固有頻率非常接近.
(3) 球面波源為球面P或SV波時(shí),均勻半空間地表可觀測到以較快P波波速和以較慢S波波速傳播的兩條跡線,而球面SH波僅存在以S波傳播的一條跡線.基巖上單一土層中情況的地表點(diǎn)的位移時(shí)程較均勻半空間情況要復(fù)雜的多,同時(shí)振動(dòng)時(shí)間也有明顯延長.
(4) 阻尼的增大會(huì)顯著降低位移幅值頻譜的峰值,但不改變峰值頻率,且隨著頻率的增大,阻尼的影響更加明顯.隨著阻尼比的增大,地表位移幅值逐漸減小的同時(shí)振動(dòng)持續(xù)時(shí)間明顯縮短.
附錄
k14=(coskpzh-coskszh)/D,
k23=(-coskpzh+coskszh)/D,
k21=k12; k31=k13; k32=k23; k41=k14; k42=k24; k43=k34.
References
Gao Y F, Jin J X, Xie K H, et al. 1999. General solution to the soil seismic response on stratified foundations.ChineseJournalofGeotechnicalEngineering(in Chinese), 21(4): 498-500.
Haskell N A. 1953. The dispersion of surface waves on multilayered media.Bull.Seismol.Soc.Am., 43(1): 17-34.
Idriss I M, Seed H B. 1968. Seismic response of horizontal soil layers.JournaloftheSoilMechanicsandFoundationsDivision, 94(4): 1003-1031.Jin X, Kong G, Ding H P. 2004. Nonlinear seismic response analysis of horizontal layered site.EarthquakeEngineeringandEngineeringVibration(in Chinese), 24(3): 38-43.
Kausel E, Roёsset J M. 1981. Stiffness matrices for layered soils.Bull.Seismol.Soc.Am., 71(6): 1743-1761.
Lamb H. 1904. On the propagation of tremors over the surface of an elastic solid.Phil.Trans.Roy.Soc.London,Ser.A, 203(359-371): 1-42.Li S Y, Wang X L, Zhou Z H. 2003. The time-step numerical simulation of free field motion of layered half-space for inclined seismic waves.JournalofJilinUniversity(EarthScienceEdition) (in Chinese), 33(3): 372-376.
Li X J. 1987. Seismic response analysis of soil layer and visco-elastoplastic model [Ph.D.] (in Chinese). Harbin: Institute of Engineering Mechanics, China Seismological Bureau, 34-51.
Liang J W, You H B. 2004. Dynamic stiffness matrix of a poroelastic multi-layered site and its green′s functions.Earthq.Eng.Eng.Vib., 3(2): 273-282.
Liang J W, Zhang A J, He Y. 2014. 2-D inversion of obliquely incident earthquake ground motion in layered elastic half-space.JournalofVibrationEngineering(in Chinese), 27(3): 441-450.
Lin C H, Lee V W, Trifunac M D. 2005. The reflection of plane waves in a poroelastic half-space saturated with inviscid fluid.SoilDyn.Earthq.Eng., 25(3): 205-223.
Liu J B, Wang Y. 2006. A 1-D time-domain method for 2-D wave motion in elastic layered half-space by antiplane wave oblique incidence.ChineseJournalofTheoreticalandAppliedMechanics(in Chinese), 38(2): 219-225.Luan M T, Lin G. 1992. Computational model for nonlinear analysis of soil site seimic response.EngineeringMechanics(in Chinese), 9(1): 94-103.
Thomson W T. 1950. Transmission of elastic waves through a stratified solid medium.J.Appl.Phys., 21(2): 89-93.
Wolf J P, Obernhuber P. 1982a. Free-field response from inclined SV- and P-waves and Rayleigh-waves.Earthq.Eng.Struct.Dyn., 10(6): 847-869.
Wolf J P, Obernhuber P. 1982b. Free-field response from inclined SH-waves and Love-waves.Earthq.Eng.Struct.Dyn., 10(6): 823-845.Xue S T, Chen J, Chen R, et al. 2000. The response analysis of damped TI layered soil for incident SH-waves.JournalofVibrationandShock(in Chinese), 19(4): 54-56.
Xue S T, Xie L Y, Chen R, et al. 2004. Dynamic analysis of response of transversely isotropic stratified media to incident P-SV waves.ChineseJournalofRockMechanicsandEngineering(in Chinese), 23(7): 1163-1168.
附中文參考文獻(xiàn)
高玉峰, 金建新, 謝康和等. 1999. 成層地基一維土層地震反應(yīng)解析解. 巖土工程學(xué)報(bào), 21(4): 498-500.
金星, 孔戈, 丁海平. 2004. 水平成層場地地震反應(yīng)非線性分析. 地震工程與工程振動(dòng), 24(3): 38-43.
李山有, 王學(xué)良, 周正華. 2003. 地震波斜入射情形下水平成層半空間自由場的時(shí)域計(jì)算. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版), 33(3): 372-376.
李小軍. 1987. 粘彈塑性模型及土層地震反應(yīng)分析[博士論文]. 哈爾濱: 國家地震局工程力學(xué)研究所, 34-51.
梁建文, 張愛娟, 何穎. 2014. 層狀彈性場地基巖斜入射地震動(dòng)二維反演. 振動(dòng)工程學(xué)報(bào), 27(3): 441-450.
劉晶波, 王艷. 2006. 成層半空間出平面自由波場的一維化時(shí)域算法. 力學(xué)學(xué)報(bào), 38(2): 219-225.
欒茂田, 林皋. 1992. 場地地震反應(yīng)一維非線性計(jì)算模型. 工程力學(xué), 9(1): 94-103.
薛松濤, 陳軍, 陳镕等. 2000. 有限尼TI層狀場地對平面入射SH波的響應(yīng)分析. 振動(dòng)與沖擊, 19(4): 54-56.
薛松濤, 謝麗宇, 陳镕等. 2004. 平面P-SV波入射時(shí)TI層狀自由場地的響應(yīng). 巖石力學(xué)與工程學(xué)報(bào), 23(7): 1163-1168.
(本文編輯胡素芳)
基金項(xiàng)目國家自然科學(xué)基金(51578373,51578372),天津市應(yīng)用基礎(chǔ)及前沿技術(shù)研究計(jì)劃(12JCQNJC04700)資助.
作者簡介巴振寧,男,1980年生,博士,副教授,主要從事地震工程研究.E-mail:bazhenning_001@163.com
doi:10.6038/cjg20160218 中圖分類號P315
收稿日期2015-01-24,2015-08-17收修定稿
Free-field responses of spherical SH-, P- and SV-wave sources in a layered visco-elastic half space
BA Zhen-Ning1,2, LIANG Jian-Wen1,2, ZHANG Yan-Ju1
1DepartmentofCivilEngineering,TianjinUniversity,Tianjin300072,China2KeyLaboratoryofCoastalStructuresinCivilEngineeringandSafetyofMinistryofEducation,Tianjin300072,China
AbstractFree-field responses of spherical sources embedded in a half-space, especially in a layered half-space is of fundamental importance in studying various wave scattering problem and soil-structures interaction problem. However, few studies have been reported to investigate the free-field responses of spherical sources. In this paper, dynamic responses of spherical SH-, P- and SV-wave sources embedded in a layered visco-elastic half-space are studied.
KeywordsSpherical sources; Free-field response; Direct stiffness method; Layered visco-elastic half-space; Hankel transformation
巴振寧,梁建文,張艷菊. 2016. 三維層狀黏彈性半空間中球面SH、P和SV波源自由場.地球物理學(xué)報(bào),59(2):606-623,doi:10.6038/cjg20160218.
Ba Z N, Liang J W, Zhang Y J. 2016. Free-field responses of spherical SH-, P- and SV-wave sources in a layered visco-elastic half space.ChineseJ.Geophys. (in Chinese),59(2):606-623,doi:10.6038/cjg20160218.