苑廣輝, 張鐳, 李遙, 梁捷寧
半干旱氣候變化教育部重點(diǎn)實(shí)驗(yàn)室, 蘭州大學(xué)大氣科學(xué)學(xué)院, 蘭州 730000
?
黃土高原復(fù)雜地形上高質(zhì)量湍流通量數(shù)據(jù)獲取方法
苑廣輝, 張鐳*, 李遙, 梁捷寧
半干旱氣候變化教育部重點(diǎn)實(shí)驗(yàn)室, 蘭州大學(xué)大氣科學(xué)學(xué)院, 蘭州730000
摘要利用蘭州大學(xué)半干旱氣候與環(huán)境觀測(cè)站(Semi-Arid Climate and Environment Observatory of Lanzhou University,SACOL)湍流觀測(cè)資料,分析了二次坐標(biāo)旋轉(zhuǎn)(double rotation,DR)、平面擬合(planar fit,PF)和分風(fēng)區(qū)平面擬合(fetch planar fit,F(xiàn)PF)在復(fù)雜地形上的適用性,總結(jié)出一套適用于SACOL的總體湍流特征參數(shù)化方案.經(jīng)過超聲虛溫訂正、坐標(biāo)旋轉(zhuǎn)、空氣密度脈動(dòng)訂正以及平穩(wěn)性檢驗(yàn)、總體湍流特征檢驗(yàn)、總體質(zhì)量分級(jí)處理,摩擦速度(u*)、感熱通量、潛熱通量、CO2通量高質(zhì)量數(shù)據(jù)所占比例分別為45%~62%、66%~68%、62%~65%、52%~54%.采用DR得到的高質(zhì)量數(shù)據(jù)比例與采用PF相比,u*提高了17%,后三種通量略降低2%~3%.PF和FPF兩種結(jié)果的差別主要體現(xiàn)在u*上,只考慮主導(dǎo)風(fēng)向數(shù)據(jù)DR得到的u*質(zhì)量仍最好.綜合兼顧數(shù)據(jù)質(zhì)量和計(jì)算工作量,在復(fù)雜地形上處理湍流觀測(cè)資料的最優(yōu)坐標(biāo)旋轉(zhuǎn)方法是DR.
關(guān)鍵詞黃土高原; 渦動(dòng)相關(guān); 通量訂正; 質(zhì)量控制; 分風(fēng)區(qū)平面擬合
1引言
在近地層,湍流是大氣運(yùn)動(dòng)的主要形式,引起各物理屬性在地-氣之間的交換輸送,地表熱量、水汽、CO2等物質(zhì)的傳輸過程受到廣泛關(guān)注(Jiang et al.,2013;劉樹華等,2005a, 2005b;徐自為等,2008),截至2014年4月全球通量觀測(cè)站網(wǎng)絡(luò)(FLUXNET)已有683個(gè)站點(diǎn)(http:∥fluxnet.ornl.gov/).渦動(dòng)相關(guān)法(eddy covariance,EC)可以用來長(zhǎng)期連續(xù)觀測(cè)CO2、水汽和熱通量,廣泛應(yīng)用于地氣間通量交換的測(cè)量,已成為FLUXNET測(cè)量通量的主要技術(shù)手段(Baldocchi et al.,2001).EC建立在一定的假設(shè)之上,如湍流平穩(wěn)、下墊面水平均勻、湍流充分發(fā)展、存在常通量層等(Foken and Wichura,1996),而在黃土高原復(fù)雜下墊面上,這些假設(shè)條件通常難以得到滿足,地形起伏對(duì)EC測(cè)量通量有重要影響(王介民等,2007).如何準(zhǔn)確地計(jì)算近地層通量一直受到地球科學(xué)界的重視(丁一匯,1997;姜海梅等,2013;劉樹華等,2005c, 2009),已有不少學(xué)者對(duì)湍流資料處理和質(zhì)量控制進(jìn)行研究:Mauder等(2006)通過對(duì)LITFASS-2003實(shí)驗(yàn)中14個(gè)測(cè)點(diǎn)的數(shù)據(jù)進(jìn)行總體質(zhì)量檢驗(yàn),發(fā)現(xiàn)80%的潛熱通量為高質(zhì)量數(shù)據(jù);G?ckede等(2008)將拉格朗日隨機(jī)足跡模型與質(zhì)量評(píng)價(jià)相結(jié)合應(yīng)用到CarboEurope的25個(gè)森林測(cè)站來研究通量測(cè)量的空間代表性、儀器以及坐標(biāo)旋轉(zhuǎn)方法對(duì)湍流通量的影響;王少影等(2009)討論了在綠洲和戈壁測(cè)站不同坐標(biāo)旋轉(zhuǎn)方法對(duì)摩擦速度、感熱、潛熱通量和湍流平穩(wěn)性檢驗(yàn)以及總體湍流特征檢驗(yàn)的影響;朱治林等(2004)討論了在非平坦、非均勻下墊面上,儀器安裝不垂直在EC計(jì)算通量時(shí)可能產(chǎn)生的誤差及其校正方法,對(duì)比分析了不同坐標(biāo)旋轉(zhuǎn)方法的校正效果和適用條件;在平坦均勻下墊面上,諶志剛等(2008)的分析發(fā)現(xiàn),平面擬合方法優(yōu)于三次坐標(biāo)旋轉(zhuǎn)方法;姜海梅等(2012)運(yùn)用EBEX-2000實(shí)驗(yàn)的湍流、凈輻射和土壤觀測(cè)資料,運(yùn)用渦動(dòng)相關(guān)方法分析了非均勻灌溉引起的熱內(nèi)邊界層發(fā)展條件下近地層感熱、潛熱通量特征,并對(duì)有無灌溉兩種條件下的能量閉合度進(jìn)行了對(duì)比分析.黃土高原半干旱地區(qū)面積廣闊,其陸氣相互作用不僅對(duì)西北干旱氣候的形成以及東亞季風(fēng)環(huán)流有著不可忽視的影響,同時(shí)對(duì)全球氣候和大氣環(huán)流的變化也可能產(chǎn)生比較重要的作用(楊文治和邵明安,2000).這一區(qū)域的陸氣相互作用問題已經(jīng)成為我國(guó)迫切需要研究的重要基礎(chǔ)性科學(xué)問題之一.在黃土高原復(fù)雜下墊面上,地形起伏,溝壑縱橫,植被稀疏,湍流更為復(fù)雜,而關(guān)于湍流資料處理和質(zhì)量控制的研究較少,獲取高質(zhì)量通量數(shù)據(jù)對(duì)深入認(rèn)識(shí)該地區(qū)地氣交換特征非常必要.
本文主要討論在黃土高原復(fù)雜地形上各種湍流資料處理方法對(duì)EC觀測(cè)結(jié)果的影響,應(yīng)用超聲虛溫訂正、坐標(biāo)旋轉(zhuǎn)、空氣密度脈動(dòng)訂正以及平穩(wěn)性檢驗(yàn)、總體湍流特征檢驗(yàn)、總體質(zhì)量分級(jí)處理方法,對(duì)蘭州大學(xué)半干旱氣候與環(huán)境觀測(cè)站(Semi-Arid Climate and Environment Observatory of Lanzhou University,SACOL)2008年11月1日至21日的10 Hz原始湍流觀測(cè)數(shù)據(jù)進(jìn)行了質(zhì)量控制,有效地減少了因地形等原因造成的湍流觀測(cè)數(shù)據(jù)附加誤差,使其湍流觀測(cè)數(shù)據(jù)質(zhì)量得到提高.根據(jù)SACOL風(fēng)向特點(diǎn)使用分風(fēng)區(qū)平面擬合方法,著重關(guān)注二次坐標(biāo)旋轉(zhuǎn)、平面擬合及分風(fēng)區(qū)平面擬合的適用性,進(jìn)而分析SACOL所代表的黃土高原復(fù)雜地形上近地層湍流特征.
2觀測(cè)資料
SACOL建立于2005年,位于海拔高度為1965.8 m的萃英山頂(35.95°N,104.13°E),距蘭州市中心約48 km,位于中國(guó)黃土高原半干旱區(qū),下墊面為典型的黃土高原殘塬地貌,溝壑縱橫,土壤為第四紀(jì)黃土風(fēng)蝕形成的灰鈣土.擁有國(guó)際先進(jìn)的觀測(cè)儀器,是繼中國(guó)科學(xué)院吉林通榆站之后,第二個(gè)由我國(guó)自主建設(shè)的半干旱區(qū)長(zhǎng)期觀測(cè)站.已被批準(zhǔn)加入國(guó)際協(xié)同觀測(cè)計(jì)劃項(xiàng)目(The Coordinated Enhan-ced Observing Period),并作為此計(jì)劃的全球協(xié)同加強(qiáng)觀測(cè)站之一(Huang et al.,2008;梁捷寧等,2014).
通量觀測(cè)場(chǎng)地較為平坦,東西方向約200 m,南北方向約1000 m.地表為長(zhǎng)芒草、冷蒿、賴草等短小植被覆蓋,冬季地表植被高約0.10 m(Huang et al.,2008;梁捷寧等,2014).
渦動(dòng)相關(guān)系統(tǒng)分別利用三維超聲風(fēng)溫儀(CSAT3,Campbell)測(cè)量u,v,w三維風(fēng)速和超聲虛溫Ts,開路紅外CO2/H2O氣體分析儀(LI7500,LI-COR)測(cè)量CO2和H2O密度,感應(yīng)器采樣頻率為10 Hz,觀測(cè)高度為3 m,數(shù)據(jù)采集器(CR5000,Campbell).
2008年夏季對(duì)觀測(cè)儀器進(jìn)行校準(zhǔn),此后數(shù)據(jù)可信度較高.冬季下墊面植被低矮稀疏,對(duì)湍流通量影響較小,故選取2008年11月1日至21日的10 Hz原始觀測(cè)數(shù)據(jù),資料完好率高,由于11月3日數(shù)據(jù)中有大量異常值出現(xiàn),所以剔除11月3日全天數(shù)據(jù).
3分析方法
3.1渦動(dòng)相關(guān)方法
渦動(dòng)相關(guān)方法由澳大利亞微氣象學(xué)家Swinbank于1951年提出(Swinbank,1951),某物理量X的垂直湍流通量定義為
(1)
(2)
(3)
(4)
(5)
3.2.1野點(diǎn)剔除和插補(bǔ)
3.2.2超聲虛溫訂正
超聲風(fēng)速計(jì)測(cè)得的溫度為超聲虛溫Ts,受濕度影響.計(jì)算溫度和感熱通量時(shí)應(yīng)考慮濕度訂正.Schotanus等(1983)提出超聲虛溫的訂正方法,Aubinet等(2011)對(duì)其進(jìn)行簡(jiǎn)化,
(6)
(7)
3.2.3坐標(biāo)旋轉(zhuǎn)
坐標(biāo)旋轉(zhuǎn)方法主要有二次坐標(biāo)旋轉(zhuǎn)(double rotation,DR)、三次坐標(biāo)旋轉(zhuǎn)(triple rotation,TR)和平面擬合(planar fit,PF),三次坐標(biāo)旋轉(zhuǎn)在計(jì)算應(yīng)力時(shí)誤差較大,已不推薦使用(Kaimal and Finnigan,1994).
(1)二次坐標(biāo)旋轉(zhuǎn)
(8)
u1=u0cosγ+v0sinγ,
(9)
v1=-u0sinγ+v0cosγ,
(10)
w1=w0,
(11)
(12)
u2=u1cosα+w1sinα,
(13)
w2=-u1sinα+w1cosα,
(14)
v2=v1,
(15)
(2)平面擬合
PF(Wilczak et al.,2001)是根據(jù)一個(gè)較長(zhǎng)的時(shí)段,本文選取2008年1日至21日(3日除外)20天的數(shù)據(jù),確定一個(gè)與地面平行的平均風(fēng)場(chǎng),并將各時(shí)次的u,v,w旋轉(zhuǎn)到該平面上.利用u,v,w的30 min平均值計(jì)算方程組,
(16)
(17)
(19)
(20)
3.2.4WPL訂正
溫度和濕度擾動(dòng)會(huì)引起關(guān)注的微量氣體濃度變化,影響湍流通量測(cè)量,對(duì)水汽通量(Fv)和CO2通量(Fc)需進(jìn)行WPL訂正以消除密度效應(yīng)的影響.
(21)
(22)
其中μ=1.6,為干空氣與水汽分子量之比,σ=ρv/ρa(bǔ),為水汽和干空氣密度之比,ρa(bǔ)為干空氣密度(Webb et al.,1980).WPL訂正在水汽通量上是加一個(gè)感熱通量訂正項(xiàng),在CO2通量上是加一個(gè)水汽通量和一個(gè)感熱通量訂正.
4結(jié)果與討論
4.1超聲虛溫訂正和WPL訂正
表1 超聲虛溫訂正結(jié)果(百分比為)
圖1為WPL訂正前后潛熱通量和碳通量對(duì)比.由圖1a, 1c可知,潛熱通量日變化為白天高,最高可達(dá)120 W·m-2,夜間基本低于5 W·m-2.WPL訂正使?jié)摕嵬靠傮w增加了7.4%,白天增加5.6%,夜間降低3.4%,這與感熱輸送方向的晝夜差異有關(guān).白天,向上輸送的感熱加熱空氣,使觀測(cè)高度處水汽密度減小,導(dǎo)致EC對(duì)水汽通量的觀測(cè)值偏低,夜間則相反.由圖1b, 1d可看出,向下的CO2通量在正午前后達(dá)到最高,向上的最高值出現(xiàn)在0時(shí)左右.白天,植物光合作用吸收大氣中的CO2,形成向下的CO2通量,并于正午達(dá)到最強(qiáng);夜間,植物呼吸作用釋放出CO2,使得CO2通量向上傳遞,形成一峰一谷的日變化趨勢(shì).總體上,WPL訂正使CO2通量降低了72.2%,白天向下的CO2通量降低64.7%,夜間向上的CO2通量降低23.4%.
4.2DR和PF得到的通量
圖2A為原始、DR和PF得到的觀測(cè)資料經(jīng)過超聲虛溫訂正和WPL訂正后的u*、Fc、LvE和H的對(duì)比.不同坐標(biāo)旋轉(zhuǎn)方法對(duì)Fc、LvE和H的結(jié)果影響很?。蛔鴺?biāo)旋轉(zhuǎn)剔除了儀器傾斜引起的側(cè)向應(yīng)力的影響,DR和PF分別使u*減小6%和3%.圖2B比較了兩種坐標(biāo)旋轉(zhuǎn)方法得到的通量值,可以看出,兩種方法的H和LvE相差不多,PF得到的Fc較DR偏低,而PF得到的u*比DR高6.18%,這表明兩種坐標(biāo)旋轉(zhuǎn)方法得到的三維風(fēng)速有較大差異.
4.3分風(fēng)區(qū)平面擬合
4.3.1分風(fēng)區(qū)平面擬合
利用20天的風(fēng)向做風(fēng)向玫瑰圖(圖3),可知SACOL主導(dǎo)風(fēng)向?yàn)闁|南風(fēng)和西北風(fēng).沿不同風(fēng)向,地形有較大差異,為此分別選取風(fēng)向范圍為100°~150°和280°~330°的觀測(cè)資料做平面擬合,稱為分風(fēng)區(qū)平面擬合法(fetch planar fit,F(xiàn)PF).
4.3.2三種坐標(biāo)旋轉(zhuǎn)的比較
圖1 潛熱通量(a, c)和碳通量(b, d)的WPL訂正(2008年11月1—6日,3日除外)Fig.1 WPL correction of latent heat flux (a, c) and CO2 flux (b, d) (1—6 Nov 2008 except 3rd)
圖2 DR、PF得到的各通量對(duì)比(2008年11月1—21日,3日除外)Fig.2 Comparison of DR and PF fluxes during 1—21 Nov 2008 (except 3rd)
4.4質(zhì)量控制
4.4.1湍流平穩(wěn)性檢驗(yàn)
根據(jù)Foken和Wichura(1996)提出的方法,將30 min長(zhǎng)度的時(shí)間窗區(qū)分成M個(gè)(M=6)時(shí)長(zhǎng)為5 min的子窗區(qū),每個(gè)子窗區(qū)有N個(gè)(N=3000)數(shù)據(jù)點(diǎn),計(jì)算每個(gè)子窗區(qū)的協(xié)方差,
(23)
圖3 SACOL 2008年11月1—21日風(fēng)向頻數(shù)分布Fig.3 Frequency distribution of wind directions during 1—21 Nov 2008
6個(gè)子窗區(qū)的平均協(xié)方差為:
(24)
(25)定義湍流平穩(wěn)性檢驗(yàn)指數(shù):
(26)
表2 湍流平穩(wěn)性和ITC檢驗(yàn)質(zhì)量劃分
圖4 三種坐標(biāo)旋轉(zhuǎn)對(duì)比(a) 未訂正、PF訂正、FPF訂正垂直速度比較; (b) DR、(c)PF、(d)FPF對(duì)u*訂正結(jié)果.Fig.4 Comparison of three coordinate rotations(a) Vertical velocity without correction, with PF correction and PDF correction; (b) u* with DR correction; (c) u* with PF correction; (d) u* with FPF correction.
4.4.2總體湍流特征檢驗(yàn)(ITC)
由于u*<0.1 m·s-1時(shí)EC對(duì)湍流通量觀測(cè)存在較大誤差(Zuo et al.,2009),在考察無量綱標(biāo)準(zhǔn)差與大氣穩(wěn)定度關(guān)系時(shí),剔除了u*<0.1 m·s-1時(shí)的資料.由圖6,無論是采用哪種坐標(biāo)旋轉(zhuǎn)方法,垂直速度、溫度的無量綱標(biāo)準(zhǔn)差對(duì)穩(wěn)定度的擬合情況較好.張宏升等(2004)認(rèn)為σw/u*和σT/T*主要受近地層局地特征尺度影響,尺度相對(duì)較小,而σu/u*并不完全取決于近地層局地特征尺度,在強(qiáng)不穩(wěn)定條件下,其影響尺度為混合層尺度.Wyngaard和Coté(1971)、Kaimal等(1982)的研究也表明σw/u*能較好地滿足相似性關(guān)系且與地形無關(guān).這是由于垂直方向以小尺度高頻湍渦為主,尺度小的湍渦對(duì)地形變化的適應(yīng)較快,地形起伏變化及下墊面物理特性差異對(duì)垂直風(fēng)速的統(tǒng)計(jì)量影響較小,即黃土高原復(fù)雜下墊面不穩(wěn)定條件下的σw/u*與平坦下墊面接近且較好地滿足相似性關(guān)系(Moraes,2000;Al-Jiboori,2001).水平方向的風(fēng)速脈動(dòng)主要由尺度較大的準(zhǔn)水平湍流產(chǎn)生,一般為幾百米甚至更大,對(duì)地形的適應(yīng)較慢,觀測(cè)到的氣流一般會(huì)“記憶”著上風(fēng)方向的地形特點(diǎn),產(chǎn)生較大的方差(趙鳴等,1991).根據(jù)兩種坐標(biāo)旋轉(zhuǎn)方法得到的相似性關(guān)系得出SOCAL的無量綱參數(shù)和穩(wěn)定度的關(guān)系,即c1,c2的值(表3).
根據(jù)Foken和擬合出SACOL的c1,c2分別計(jì)算模擬出的歸一化標(biāo)準(zhǔn)差,得出ITC指數(shù),進(jìn)行質(zhì)量分類如圖7.采用DR進(jìn)行坐標(biāo)旋轉(zhuǎn)時(shí),SACOL參數(shù)化方案得到u,w,T相對(duì)于Foken參數(shù)化方案得到的質(zhì)量明顯提高,即高質(zhì)量頻率分布增大,低質(zhì)量頻率分布減?。捎肞F進(jìn)行坐標(biāo)旋轉(zhuǎn)時(shí),SACOL參數(shù)化方案得到的w和T質(zhì)量有明顯提高,但u的質(zhì)量無明顯變化.SACOL參數(shù)化方案對(duì)兩種坐標(biāo)旋轉(zhuǎn)方法的適用性較好.不管是采用哪種坐標(biāo)旋轉(zhuǎn)方法和參數(shù)化方案,w的質(zhì)量都要比u和T高,這說明湍流方差相似理論對(duì)w的適用性最好.
4.4.3總體質(zhì)量
將資料進(jìn)行湍流平穩(wěn)性檢驗(yàn)和ITC檢驗(yàn)是為了篩選出高質(zhì)量數(shù)據(jù),以用于進(jìn)一步的研究.為了方便使用,Lee等(2005)提出了一套總體質(zhì)量的劃分方法,見表4.質(zhì)量等級(jí)為1~3的為高質(zhì)量數(shù)據(jù),可用于基本研究,例如參數(shù)化方案的發(fā)展;質(zhì)量等級(jí)為4~6的為中等質(zhì)量數(shù)據(jù),可用于長(zhǎng)期觀測(cè)資料處理;質(zhì)量等級(jí)為7~9的為低質(zhì)量數(shù)據(jù),應(yīng)舍棄,必要時(shí)對(duì)缺失數(shù)據(jù)做插補(bǔ).
圖6 不穩(wěn)定條件下T、u、w的無量綱標(biāo)準(zhǔn)差與大氣穩(wěn)定度z/L在(a,b,c)DR和(d,e,f)PF兩種坐標(biāo)旋轉(zhuǎn)方法下的相似性關(guān)系Fig. 6 Standard deviations of temperature normalized by T* , and horizontal (u) , vertical velocity (w) normalized by u* as a function of stability (z/L) under unstable stratifications of DR (a,b,c) and PF (d,e,f)
表5給出了分別采用DR、PF和FPF進(jìn)行坐標(biāo)變換時(shí),所得湍流通量總體質(zhì)量分布情況.66%~68%的感熱通量、62%~65%的潛熱通量和52%~54%的CO2通量為高質(zhì)量數(shù)據(jù),坐標(biāo)旋轉(zhuǎn)對(duì)這三者的總體質(zhì)量影響不大,PF相比DR得到的高質(zhì)量數(shù)據(jù)所占比例提高2%~3%,但對(duì)于摩擦速度,PF得到的高質(zhì)量u*只占45%,這與Zuo等(2009)的研究結(jié)果一致:復(fù)雜地形導(dǎo)致PF得到的u*質(zhì)量不高,需進(jìn)一步研究以提高u*質(zhì)量;而DR得到的高質(zhì)量u*占到62%,相較于PF,DR能夠?qū)⒏哔|(zhì)量數(shù)據(jù)所占比例提高17%.為了與FPF得到的u*數(shù)據(jù)質(zhì)量進(jìn)行比較,選取主導(dǎo)風(fēng)向資料進(jìn)行分析.由于使用DR和PF兩種坐標(biāo)旋轉(zhuǎn)方法時(shí),利用全部風(fēng)向數(shù)據(jù)確定旋轉(zhuǎn)角度,即便有非主導(dǎo)風(fēng)向的影響,但主導(dǎo)風(fēng)向在決定旋轉(zhuǎn)角度時(shí)仍占主導(dǎo)地位,因此當(dāng)剔除非主導(dǎo)風(fēng)向時(shí),PF和DR得到的u*質(zhì)量也得到提高.FPF得到的高質(zhì)量u*占61%,比PF有明顯提高,但DR得到的u*質(zhì)量仍然是最高的.Wilczak等(2001)指出:平均垂直速度的抽樣誤差可能導(dǎo)致DR的傾角估計(jì)誤差,增加縱向應(yīng)力的隨機(jī)噪聲,從而導(dǎo)致應(yīng)力計(jì)算的不確定性,PF使用的數(shù)據(jù)量增加,有效減小了隨機(jī)誤差.朱治林等(2004)研究表明:在復(fù)雜的地形條件下,PF方法是不合適的.綜合兼顧數(shù)據(jù)質(zhì)量和計(jì)算工作量,在復(fù)雜地形上處理湍流觀測(cè)資料的最優(yōu)坐標(biāo)旋轉(zhuǎn)方法是DR.
表3 不同參數(shù)化方案各穩(wěn)定度對(duì)應(yīng)的c1,c2
表4 總體湍流質(zhì)量分級(jí)
圖7 不同的參數(shù)化方案下兩種坐標(biāo)旋轉(zhuǎn)的ITC檢驗(yàn)質(zhì)量等級(jí)頻率分布(a, b)Foken參數(shù)化方案;(c, d) SACOL參數(shù)化方案. (a, c) DR; (b, d) PF.Fig.7 Frequency distributions of quality level for ITC test using different parameterization schemes(a, b) Foken parameterization scheme; (c, d) SACOL parameterization scheme.
質(zhì)量等級(jí)H(%)LvE(%)Fc(%)u*(%)主導(dǎo)風(fēng)區(qū)u*(%)DRPFDRPFDRPFDRPFFPFPFDR1~34~67~966.69.124.468.18.223.762.222.615.265.220.913.952.527.719.954.126.519.561.819.918.345.026.828.261.120.818.156.219.724.274.513.511.9
5結(jié)論
利用SACOL的湍流通量觀測(cè)資料,比較分析了DR、PF、FPF坐標(biāo)旋轉(zhuǎn)方法在黃土高原復(fù)雜地形上的適用性.應(yīng)用超聲虛溫訂正、坐標(biāo)旋轉(zhuǎn)、空氣密度脈動(dòng)訂正以及平穩(wěn)性檢驗(yàn)、總體湍流特征檢驗(yàn)、總體質(zhì)量分級(jí)處理對(duì)原始觀測(cè)數(shù)據(jù)進(jìn)行處理和質(zhì)量控制,有效地減少了因地形等原因造成的湍流觀測(cè)數(shù)據(jù)附加誤差,使湍流觀測(cè)數(shù)據(jù)質(zhì)量得到提高.
(1) DR和PF得到的感熱通量經(jīng)過超聲虛溫訂正分別減小了7.3%和5.9%,且穩(wěn)定度會(huì)影響超聲虛溫訂正效果.WPL訂正使?jié)摕嵬吭黾恿?.4%、CO2通量減小72.2%.
(2) 經(jīng)過DR和PF訂正,u*分別減小6%和3%.只考慮主導(dǎo)風(fēng)向,DR對(duì)u*的訂正效果與風(fēng)向無關(guān),隨著湍流交換強(qiáng)度增大(u*>0.3 m·s-1),PF和FPF逐漸呈現(xiàn)出SE風(fēng)區(qū)的訂正值高于NW風(fēng)區(qū)的訂正值,PF在SE風(fēng)區(qū)使u*增大了9.23%,在NW風(fēng)區(qū)使u*減小3.86%;而FPF在SE風(fēng)區(qū)使u*增大了10.09%,在NW風(fēng)區(qū)使u*減小1.18%.
(3) 在ITC檢驗(yàn)中得到的SACOL參數(shù)化方案對(duì)兩種坐標(biāo)旋轉(zhuǎn)方法的適用性都比較好.
(4) 采用DR得到的高質(zhì)量數(shù)據(jù)比例與采用PF相比,u*提高了17%,感熱通量、潛熱通量、CO2通量略降低2%~3%.PF和FPF兩種結(jié)果的差別主要體現(xiàn)在u*上,只考慮主導(dǎo)風(fēng)向數(shù)據(jù)DR得到的u*質(zhì)量仍最好.綜合兼顧數(shù)據(jù)質(zhì)量和計(jì)算工作量,在復(fù)雜地形上處理湍流觀測(cè)資料的最優(yōu)坐標(biāo)旋轉(zhuǎn)方法是DR.
致謝感謝蘭州大學(xué)半干旱氣候與環(huán)境觀測(cè)站(SACOL)為本文提供渦動(dòng)相關(guān)等數(shù)據(jù)資料.感謝審稿專家的評(píng)議意見.
References
Al-Jiboori M H, Xu Y M, Qian Y F. 2001. Turbulence characteristics over complex terrain in west China.Boundary-LayerMeteorology, 101(1): 109-126.
Aubinet M, Vesala T, Papale D. 2011. Eddy Covariance: A Practical Guide to Measurement and Data Analysis. New York: Springer.
Baldocchi D, Falge L, Gu L H, et al. 2001. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities.Bull.Amer.Meteor.Soc., 82(11): 2415-2434.
Bao J. 2012. Study on land-atmosphere interaction in surface layer over semi-arid Loess Plateau of China [Ph. D. thesis] (in Chinese). Lanzhou: Lanzhou University.
Chen Z G, Bian L G, Lu L H, et al. 2008. Contrast and application of tilt correction methods for eddy covariance measurement.Meteor.Sci.Technol. (in Chinese), 36(3): 355-359.
Ding Y H. 1997. On some aspects of estimates of the surface fluxes.QuarterlyJournalofAppliedMeteorology(in Chinese), 8(S): 29-35.
Foken T, Wichura B. 1996. Tools for quality assessment of surface-based flux measurements.AgriculturalandForestMeteorology, 78(1-2): 83-105.Foken T. 2008. The energy balance closure problem: An overview.Ecol.Appl., 18(6): 1351-1367.
G?ckede M, Foken T, Aubinet M, et al. 2008. Quality control of CarboEurope flux data-Part 1: Coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems.Biogeosciences, 5(2): 433-450.
Huang J P, Zhang W, Zuo J Q, et al. 2008. An overview of the semi-arid climate and environment research observatory over the loess plateau.Adv.Atmos.Sci., 25(6): 906-921.
Jiang H M, Liu S H, Liu H P. 2012. A study on energy budget characteristics over a heterogeneously irrigated cotton field.ChineseJ.Geophys. (in Chinese), 55(2): 428-440, doi: 10.6038/j.issn.0001-5733.2012.02.007.
Jiang H M, Liu S H, Zhang L, et al. 2013. A study of turbulent heat flux corrections and energy balance closure problem on the surface layer in EBEX-2000.ActaScientiarumNaturaliumUniversitatisPekinensis(in Chinese), 49(3): 443-451.
Jiang H M, Liu S H, Liu H P. 2013. Spectra and cospectra of turbulence in an internal boundary layer over a heterogeneously irrigated cotton field.ActaMeteor.Sin., 27(2): 233-248.
Kaimal J C, Finnigan J J. 1994. Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford: Oxford University Press.
Kaimal J C, Eversole R A, Lenschow D H, et al. 1982. Spectral characteristics of the convective boundary layer over uneven terrain.J.Atmos.Sci., 39(5): 1098-1114. Lee X H, Massman W, Law B. 2005. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis. Netherlands: Springer.Liang J N, Zhang L, Tian P F, et al. 2014. Impact of low-level jets on turbulent in nocturnal boundary layer over complex terrain of the Loess Plateau.ChineseJ.Geophys. (in Chinese), 57(5): 1387-1398, doi: 10.6038/cjg20140504.
Liu H P, Peters G, Foken T. 2001. New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer.Boundary-LayerMeteorology, 100(3): 459-468. Liu S H, Li J, Liu H P, et al. 2005a. Characteristics of macroturbulence variables in EBEX-2000.Chin.J.Atmos.Sci. (in Chinese), 29(4): 503-509.
Liu S H, Liu H P, Li J, et al. 2005b. Characteristics of turbulence dissipation rates, characteristic length scales and structure parameters in EBEX-2000.Chin.J.Atmos.Sci. (in Chinese), 29(3): 475-481.
Liu S H, Hu Y, Hu F, et al. 2005c. Numerical simulation of land-atmosphere interaction and oasis effect over oasis-desert.ChineseJ.Geophys. (in Chinese), 48(5): 1019-1027, doi: 10.3321/j.issn:0001-5733.2005.05.007.
Liu S H, Mao Y H, Hu F, et al. 2009. A comparative study of computing methods of turbulent fluxes on different underling surfaces.ChineseJ.Geophys. (in Chinese), 52(3): 616-629.
Mauder M, Liebethal C, G?ckede M, et al. 2006. Processing and quality control of flux data during LITFASS-2003.Boundary-LayerMeteorology, 122(1): 67-88.
Moraes O L L. 2000. Turbulence characteristics in the surface boundary layer over the South American Pampa.Boundary-LayerMeteorology, 96(3): 317-335.
Schotanus P, Nieuwstadt F T M, De Bruin H A R. 1983. Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes.Boundary-LayerMeteorology, 26(1): 81-93.
Swinbank W C. 1951. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere.J.Meteor., 8(3): 135-145.
Vickers D, Mahrt L. 1997. Quality control and flux sampling problems for tower and aircraft data.J.Atmos.Oceanic.Technol., 14(3): 512-526.Wang J M, Wang W Z, Ao Y H, et al. 2007. Turbulence flux measurements under complicated conditions.Adv.EarthSci. (in Chinese), 22(8): 791-797, doi: 10.3321/j.issn:1001-8166.2007.08.004.
Wang S Y, Zhang Y, Lü S H, et al. 2009. The preliminary study on turbulence data quality control of Jinta oasis.PlateauMeteorology(in Chinese), 28(6): 1260-1273.
Webb E K, Pearman G I, Leuning R. 1980. Correction of flux measurements for density effects due to heat and water vapour transfer.Quart.J.Roy.Meteor.Soc., 106(447): 85-100.
Wilczak J M, Oncley S P, Stage S A. 2001. Sonic anemometer tilt correction algorithms.Boundary-LayerMeteorology, 99(1): 127-150.
Wyngaard J C, Coté O R. 1971. The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer.J.Atmos.Sci., 28(2): 190-201.
Xu Z W, Liu S M, Gong L J, et al. 2008. A study on the data processing and quality assessment of the eddy covariance system.Adv.EarthSci. (in Chinese), 23(4): 357-370, doi: 10.3321/j.issn:1001-8166.2008.04.005.
Yang W Z, Shao M A. 2000. The Research of the Loess Plateau Soil Moisture (in Chinese). Beijing: Science Press.
Zhang H S, Li F Y, Chen J Y. 2004. Statistical characteristics of atmospheric turbulence in different underlying surface conditions.PlateauMeteorology(in Chinese), 23(5): 598-604.Zhao M, Miao M Q, Wang Y C. 1991. Boundary-Layer Meteorology (in Chinese). Beijing: China Meteorological Press.Zhu Z L, Sun X M, Yuan G F, et al. 2004. Correcting method of eddy covariance fluxes over non-flat surfaces and its application in China FLUX.Sci.ChinaSer.D:EarthSci., 48(S1): 42-50. Zuo J Q, Huang J P, Wang J M, et al. 2009. Surface turbulent flux measurements over the loess plateau for a semi-arid climate change study.Adv.Atmos.Sci., 26(4): 679-691.
附中文參考文獻(xiàn)
鮑婧. 2012. 黃土高原半干旱區(qū)近地層陸氣相互作用研究[博士論文]. 蘭州: 蘭州大學(xué). 諶志剛, 卞林根, 陸龍驊等. 2008. 渦度相關(guān)儀傾斜訂正方法的比較及應(yīng)用. 氣象科技, 36(3): 355-359.
丁一匯. 1997. 地表通量的計(jì)算問題. 應(yīng)用氣象學(xué)報(bào), 8(S): 29-35.
姜海梅, 劉樹華, 劉和平. 2012. 非均勻灌溉棉田能量平衡特征研究. 地球物理學(xué)報(bào), 55(2): 428-440, doi: 10.6038/j.issn.0001-5733.2012.02.007.
姜海梅, 劉樹華, 張磊等. 2013. EBEX-2000湍流熱通量訂正和地表能量平衡閉合問題研究. 北京大學(xué)學(xué)報(bào)(自然科學(xué)版), 49(3): 443-451.
梁捷寧, 張鐳, 田鵬飛等. 2014. 黃土高原復(fù)雜地形上邊界層低空急流對(duì)近地層湍流的影響. 地球物理學(xué)報(bào), 57(5): 1387-1398, doi: 10.6038/cjg20140504.
劉樹華, 李潔, 劉和平等. 2005a. 在EBEX-2000實(shí)驗(yàn)資料中的湍流宏觀量特征. 大氣科學(xué), 29(4): 503-509.
劉樹華, 劉和平, 李潔等. 2005b. 在EBEX-2000實(shí)驗(yàn)資料中湍流耗散率、長(zhǎng)度尺度和結(jié)構(gòu)參數(shù)特征. 大氣科學(xué), 29(3): 475-481.
劉樹華, 胡予, 胡非等. 2005c. 沙漠-綠洲-陸-氣相互作用和綠洲效應(yīng)的數(shù)值模擬. 地球物理學(xué)報(bào), 48(5): 1019-1027, doi: 10.3321/j.issn:0001-5733.2005.05.007.
劉樹華, 茅宇豪, 胡非等. 2009. 不同下墊面湍流通量計(jì)算方法的
比較研究. 地球物理學(xué)報(bào), 52(3): 616-629.
王介民, 王維真, 奧銀煥等. 2007. 復(fù)雜條件下湍流通量的觀測(cè)與分析. 地球科學(xué)進(jìn)展, 22(8): 791-797, doi: 10.3321/j.issn:1001-8166.2007.08.004.
王少影, 張宇, 呂世華等. 2009. 金塔綠洲湍流資料的質(zhì)量控制研究. 高原氣象, 28(6): 1260-1273.
徐自為, 劉紹民, 宮麗娟等. 2008. 渦動(dòng)相關(guān)儀觀測(cè)數(shù)據(jù)的處理與質(zhì)量評(píng)價(jià)研究. 地球科學(xué)進(jìn)展, 23(4): 357-370, doi: 10.3321/j.issn:1001-8166.2008.04.005. 楊文治, 邵明安. 2000. 黃土高原土壤水分研究. 北京: 科學(xué)出版社. 張宏升, 李富余, 陳家宜. 2004. 不同下墊面湍流統(tǒng)計(jì)特征研究. 高原氣象, 23(5): 598-604. 趙鳴, 苗曼倩, 王彥昌. 1991. 邊界層氣象學(xué)教程. 北京: 氣象出版社. 朱治林, 孫曉敏, 袁國(guó)富等. 2004. 非平坦下墊面渦度相關(guān)通量的校正方法及其在ChinaFLUX中的應(yīng)用. 中國(guó)科學(xué)D輯: 地球科學(xué), 34(S2): 37-45.
(本文編輯何燕)
doi:10.6038/cjg20160604 中圖分類號(hào)P401, P404
收稿日期2015-04-28,2016-03-03收修定稿
基金項(xiàng)目國(guó)家自然科學(xué)基金項(xiàng)目(41475008)和國(guó)家重大科學(xué)研究計(jì)劃項(xiàng)目(2012CB955302)資助.
作者簡(jiǎn)介苑廣輝,女,1991年生,主要從事大氣邊界層和大氣湍流研究.E-mail:yuangh09@lzu.edu.cn
*通訊作者張鐳,教授,博士生導(dǎo)師,主要從事大氣物理與大氣環(huán)境研究.E-mail:zhanglei@lzu.edu.cn
Method of acquiring high-quality surface turbulent fluxes over the Loess Plateau
YUAN Guang-Hui, ZHANG Lei*, LI Yao, LIANG Jie-Ning
KeyLaboratoryforSemi-AridClimateChangeoftheMinistryofEducation,CollegeofAtmosphericSciences,LanzhouUniversity,Lanzhou730000,China
AbstractThe eddy covariance (EC) technique measuring the turbulent exchanges of heat, moisture, CO2 and momentum between surface and atmosphere has been used widely. However, the use of EC is based on some assumptions which do not exist in practice. So the results are not accurate without necessary corrections. Using data collected at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL), this work studies a method of acquiring high quality surface turbulent flux. In this approach, eddy covariance data processing includes eliminating despikes, coordinate rotations, sonic temperature correction, and WPL correction (correction for density fluctuations). Double rotation and planar fit are used to do coordinate rotations. The fluctuations of sonic temperature include the effect of humidity on the speed of sound, and should be converted into actual temperature. WPL correction was required to latent heat flux and CO2 flux for the density effects due to heat and water vapor transfer on turbulent flux measurements. Quality control is performed by the stationarity test, integral turbulent characteristics (ITC) test and overall quality is controlled to permit selecting high quality data. The results show that sonic temperature correction decreases sensible heat flux by about 7.3% when using DR, but 5.9% when using PF. The stability can influence the results of sonic temperature correction. WPL increases latent heat flux by 7.4% and decreases CO2 flux by 72.2%, respectively. Three coordinate rotations have great influence on momentum but little on scalar fluxes. The values of u* obtained from DR and PF are decreased by 6% and 3%, respectively. Only considering the dominant wind direction, the wind direction has no relationship with the correction of u* by DR which reduces u* by 5%. As the turbulent exchange strengthened (u*> 0.3 m·s-1), PF and FPF gradually exhibit that the corrected values in southeast are bigger than the northwest area, PF in the southeast wind area increases u* by 9.23%, yet decreases 3.86% in the northwest area and FPF in southeast wind area increases u* by 10.09%, yet decreases 1.18% in the northwest area. The differences of the steady state tests between DR and PF are mainly in u*. A parameterization scheme of DR and PF for SACOL provided in the ITC test works well. The overall quality shows that about 45%~62% of the total data is higher for u*, 66%~68% for sensible heat flux, 62%~65% for latent flux and 52%~54% for CO2 flux. The proportion of the high quality of u* obtained by DR is 17% higher than PF, while that of the latter three kinds of fluxes obtained by PF is 2%~3% higher than DR. The difference between PF and FPF is mainly in u*. Comparing the three coordinate rotations in the dominant wind direction, DR still obtains the best quality of u*. The use of DR is recommended in the complex terrain for reducing calculation and improving the data quality.
KeywordsLoess Plateau; Eddy covariance; Flux correction; Quality control; Fetch planar fit
苑廣輝, 張鐳, 李遙等. 2016. 黃土高原復(fù)雜地形上高質(zhì)量湍流通量數(shù)據(jù)獲取方法. 地球物理學(xué)報(bào),59(6):1971-1982,doi:10.6038/cjg20160604.
Yuan G H, Zhang L, Li Y,et al. 2016. Method of acquiring high-quality surface turbulent fluxes over the Loess Plateau.ChineseJ.Geophys. (in Chinese),59(6):1971-1982,doi:10.6038/cjg20160604.