張 悅,吳韶華,張弘楠,覃小紅
(東華大學 a. 上海市微納米紡織重點實驗室;b. 紡織學院,上海 201620)
?
PAN/SWCNTs復合納米纖維紗線的制備及其性能
張悅a, b,吳韶華a, b,張弘楠a, b,覃小紅a, b
(東華大學 a. 上海市微納米紡織重點實驗室;b. 紡織學院,上海 201620)
摘要:采用改進的靜電紡絲裝置,分別制備了純聚丙烯腈(PAN)納米纖維紗線和不同單壁碳納米管(SWCNTs)質量分數(shù)的PAN/SWCNTs復合納米纖維紗線.利用掃描電子顯微鏡、透射電子顯微鏡、傅里葉紅外-拉曼光譜儀和X射線多晶衍射儀分別對復合納米纖維紗線進行了形貌和直徑表征、分子結構分析、結晶結構分析,并測試了不同SWCNTs質量分數(shù)對復合納米纖維紗線力學性能的影響. 結果表明:不同SWCNTs質量分數(shù)的PAN/SWCNTs復合納米纖維紗線均具有良好的形態(tài)且沿著紗線軸向有序排列;隨著SWCNTs質量分數(shù)的增加,紗線和纖維的直徑均呈現(xiàn)減小的趨勢,并且纖維中的串珠增多;碳納米管沿纖維軸向均勻分布;碳納米管的加入沒有產(chǎn)生新的特征峰,但PAN的峰值有所減弱或增強;碳納米管的加入改變了PAN的結晶性能;當SWCNTs質量分數(shù)為5%時,復合納米纖維紗線的拉伸強度達到最高值為24.25 MPa.
關鍵詞:靜電紡; 聚丙烯腈/單壁碳納米管(PAN/SWCNTs)復合納米纖維紗線; 取向; 拉伸強度
靜電紡絲是一種當前較常用紡制微納米纖維的技術[1-3],其產(chǎn)品具有優(yōu)異的性能,可應用于組織工程、藥物釋放、傷口修復、過濾材料等領域[4-7].但是到目前為止,大部分靜電紡納米纖維是以隨機排列的納米纖維氈的形式收集到的,具有不易于操作和控制、黏附性差、不穩(wěn)定和力學性能差等缺點,限制了靜電紡納米纖維在傳感器、組織工程、光電器件等領域的應用[8].
為了拓寬納米材料的應用,研究者們開始關注納米纖維紗線的制備,并研發(fā)了不同接收形式的納米紗線制備方法,如雙電極法[9]、水浴法[10-11]、自捆式[12]、漏斗式[13]、一定一轉的兩圓盤接收方式[14]等.筆者課題組研發(fā)了一種連續(xù)制備高度取向納米纖維紗線的有效方法[15-17],目前該裝置可連續(xù)紡紗4 h 以上不斷頭,紡紗速度可調,基本可以滿足實驗室需求.
碳納米管具有良好的電學性能、高比表面積和很高的拉伸強度和剛度,是很好的增強和導電材料[18-22],被廣泛應用于電學器件和傳感器等領域[23-27].碳納米管是由同軸圓柱面套構成的空心小管,尺寸很小[28],碳納米管的圓柱面是由六邊形碳環(huán)結構組成的,其碳環(huán)結構中的C—C是自然界中最穩(wěn)定的化學鍵,所以碳納米管具有極高的拉伸強度,可達鋼的100倍,楊氏模量高達5 TPa,但密度卻只有鋼的1/6,在高聚物中加入碳納米管可以改善復合材料的力學性能[29].碳納米管按照其組成中的石墨烯片的層數(shù)可分為單壁碳納米管(SWCNTs)和多壁碳納米管(MWCNTs), 且SWCNTs較MWCNTs的長徑比更小,缺點更少,是良好的增強和導電材料.
聚丙烯腈(PAN)是一種靜電紡絲常用的高分子材料,具備價格便宜、耐一般溶劑、化學穩(wěn)定性好、抗氧化、熱穩(wěn)定性好、制備的納米纖維粗細均勻和力學性能高等特點.
本文采用一種連續(xù)制備高度取向納米纖維紗線的有效方法[15-17],以SWCNTs和PAN為原料,首次制得了不同SWCNTs質量分數(shù)的PAN/SWCNTs復合納米纖維紗線,并分析了SWCNTs對PAN/SWCNTs復合納米纖維紗線的表觀形態(tài)、分子結構、結晶度以及力學性能的影響.
1試驗部分
1.1試驗材料
PAN粉末,相對分子質量為75 000,上海金山石化有限公司;N-N二甲基甲酰胺(DMF),分析純,上海凌峰化學試劑有限公司;SWCNTs,外徑為1~2 nm, 長為30 μm,純度約為90%,南京先豐納米科技有限公司.
1.2試樣制備
首先將一定質量的PAN粉末置于DMF溶劑中,常溫攪拌12 h,配制質量分數(shù)為10%的PAN溶液. 然后在PAN溶液中加入一定質量的SWCNTs,先攪拌8 h,再放入超聲波清洗器中超聲振蕩1h,分別配制SWCNTs占PAN粉末的質量分數(shù)為0%、5%、10%和15%的PAN/SWCNTs 混合溶液待用.
為了紡制不同SWCNTs質量分數(shù)的PAN/SWCNTs復合納米纖維紗線,采用改進的靜電紡絲裝置[15-17]. 首先使用10 mL的注射器抽取不同SWCNTs質量分數(shù)的PAN/SWCNTs溶液,用內(nèi)徑為0.5 mm的針頭與高壓發(fā)生器的正極和負極相連,設置兩個針頭間的距離為20 cm、紡絲電壓為±10 kV,紡絲液流量為0.8 mL/h,金屬盤和導紗桿間的距離為7 cm, 金屬盤轉速為250 r/min. 在電場作用下,由噴絲頭噴出納米纖維,在中空金屬盤和導紗桿的作用下引導納米纖維進行取向,并通過金屬盤的轉動對取向納米纖維束進行加捻形成紗線.
1.3測試方法
采用S-4800型場發(fā)射掃描電子顯微鏡(FE-SEM)觀察PAN/SWCNTs復合納米纖維紗線的表觀形態(tài),并使用Photoshop CS5軟件對得到的掃描電子顯微鏡(SEM)圖像分別測量納米纖維和紗線的直徑(隨機抽取納米纖維和紗線的50個不同部位).采用JEM-2100型透射電子顯微鏡(TEM)觀察SWCNTs在PAN/SWCNTs復合納米纖維中的分布狀態(tài). 采用Nicolet 6700型傅里葉變紅外-拉曼光譜儀(FTIR)分析不同SWCNTs質量分數(shù)的PAN/SWCNTs復合納米纖維紗線的分子基團變化. 采用D/max-2550 PC型X射線多晶衍射儀 (XRD)分析PAN/SWCNTs復合納米纖維紗線的結晶結構變化. 采用XQ-2型纖維拉伸強度儀(隨機抽取20根不同的紗線),紗線長度為10 mm,拉伸速度為10 mm/min,測試不同SWCNTs質量分數(shù)的PAN/SWCNTs復合納米纖維紗線的拉伸強度.
2結果和討論
2.1PAN/SWCNTs復合納米纖維紗線形態(tài)分析
不同SWCNTs質量分數(shù)的PAN/SWCNTs復合納米纖維紗線的SEM圖如圖1所示. 由圖1可知,純PAN納米纖維紗線以及不同SWCNTs質量分數(shù)的PAN/SWCNTs復合納米纖維紗線沿著纖維軸向,均具有良好的取向和形態(tài).隨著SWCNTs的加入,復合納米纖維開始出現(xiàn)串珠,當加入的SWCNTs質量分數(shù)為5%時,串珠較少,大部分PAN/SWCNTs復合納米纖維沿著紗線軸向取向,但是隨著SWCNTs質量分數(shù)的進一步增大,串珠的個數(shù)增多且體積增大,并且PAN/SWCNTs復合納米纖維的取向度降低. 這主要是由于隨著SWCNTs質量分數(shù)的增大,SWCNTs更容易團聚,SWCNTs不能均勻地分散在溶液中,團聚的碳管在靜電場作用下,隨著射流噴出,使得PAN/SWCNTs復合納米纖維形成更多的串珠.
(a) 0%(純PAN)
(b) 5%
(d) 15%
PAN/SWCNTs復合納米纖維和紗線的平均直徑如圖2所示. 由圖2可知,隨著SWCNTs質量分數(shù)的增大,由于聚合物導電性增大,溶液中電荷密度增大,纖維分化程度提高,復合納米纖維以及紗線的直徑均呈現(xiàn)減少的趨勢. 且在聚合物溶液中SWCNTs質量分數(shù)從0%增大到5%時,納米纖維的直徑變化比較明顯. 對于PAN/SWCNTs復合納米纖維紗線,在SWCNTs質量分數(shù)由10%增大到15%時,其直徑變化不明顯.
圖2 不同SWCNTs質量分數(shù)的PAN/SWCNTs復合納米纖維及紗線平均直徑Fig.2 Average diameters of PAN/SWCNTs composite nanofibers and yarns produced from different mass fraction of SWCNTs
2.2SWCNTs在 PAN/SWCNTs復合納米纖維中的分布
為了了解SWCNTs在復合納米纖維中的分布情況,通過TEM分別對SWCNTs質量分數(shù)為5%、10%、15%的樣品進行測試,結果如圖3所示. 由圖3可知,當SWCNTs質量分數(shù)為5%時,SWCNTs沿著復合納米纖維軸向有著良好的取向;當溶液中SWCNTs質量分數(shù)增大到10%時,SWCNTs有些許團聚但是不明顯;當SWCNTs質量分數(shù)達到15%時,SWCNTs開始出現(xiàn)明顯的團聚現(xiàn)象.
(a) 5% (b) 10% (c) 15%
2.3PAN/SWCNTs復合納米纖維的FTIR分析
圖4 不同SWCNTs質量分數(shù)的PAN/SWCNTs復合納米纖維的FTIR圖譜Fig.4 FTIR spectra of PAN/SWCNTs composite nanofibers produced from different mass fraction of SWCNTs
2.4PAN/SWCNTs復合納米纖維的XRD分析
不同SWCNTs質量分數(shù)的PAN/SWCNTs復合納米纖維紗線的XRD圖如圖5所示. 由圖5可知,在2θ=16.8°和26.3°的衍射峰分別對應的是PAN的100和110晶面.在純PAN中加入SWCNTs[29],降低了100結晶面的衍射峰,表明SWCNTs的加入影響了PAN的結晶性能. 通過軟件分析不同SWCNTs質量分數(shù)的PAN/SWCNTs復合納米纖維的結晶度,純 PAN納米纖維結晶度為45.63%.由于SWCNTs的加入,PAN結晶度改變,SWCNTs質量分數(shù)為15%的PAN/SWCNTs復合納米纖維的結晶度只有28.75%, 說明SWCNTs影響了復合納米纖維的結晶度.
圖5 不同SWCNTs質量分數(shù)的PAN/SWCNTs復合納米纖維的XRD圖Fig.5 XRD patterns of PAN/SWCNTs composite nanofibers produced from different mass fraction of SWCNTs
2.5PAN/SWCNTs復合納米纖維紗線力學性能分析
不同SWCNTs質量分數(shù)的PAN/SWCNTs復合納米纖維紗線的力學性能如圖6所示.由圖6可知,純PAN納米纖維紗線的拉伸強度為14.47 MPa. 當SWCNTs的質量分數(shù)從0%增大到5%時,由于SWCNTs本身優(yōu)良的剛度和拉伸強度,使紗線的拉伸強度達到最大為24.25 MPa,紗線的力學性能越好,越容易操作,且更適合于編織. 繼續(xù)增大溶液中SWCNTs的質量分數(shù)達到10%時,纖維中SWCNTs有少量團聚,PAN/SWCNTs復合納米纖維和紗線中出現(xiàn)結構缺陷,造成紗線的拉伸強度和斷裂伸長率開始下降. 其中SWCNTs質量分數(shù)為15%時,紗線拉伸強度下降比較明顯,主要是由于當SWCNTs質量分數(shù)達到15%時,由于出現(xiàn)較多的團聚現(xiàn)象,嚴重影響了納米纖維本身的結構,所以紗線拉伸強度明顯降低.
圖6 不同SWCNTs質量分數(shù)的PAN/SWCNTs復合納米纖維紗線的力學性能Fig.6 Mechanical properties of PAN/SWCNTs composite nanofiber yarns produced from different mass fraction of SWCNTs
3結語
本文以靜電紡為理論基礎,采用一種新穎的連續(xù)制備取向納米纖維紗線的方法,分別制備了純PAN納米纖維紗線和不同SWCNTs質量分數(shù)的PAN/SWCNTs復合納米纖維紗線. 由SEM圖像可知,純PAN納米纖維紗線和不同SWCNTs質量分數(shù)的PAN/SWCNTs復合納米纖維紗線均具有良好的取向,但是隨著SWCNTs質量分數(shù)的增加,復合納米纖維中的串珠個數(shù)增多且體積增大,復合納米纖維和紗線的直徑均有下降的趨勢.由TEM分析可知,SWCNTs在纖維中沿軸向分布,隨著SWCNTs質量分數(shù)的增加,SWCNTs會出現(xiàn)團聚.由FTIR分析可知,SWCNTs的加入并不影響PAN中的分子基團,沒有產(chǎn)生新的化學鍵,但對PAN本身的結晶結構有影響,降低了結晶度. 由力學性能分析可知,當SWCNTs質量分數(shù)為5%時,PAN/SWCNTs復合納米纖維紗線的拉伸強度達到24.25 MPa,繼續(xù)增大SWCNTs的質量分數(shù),拉伸強度和斷裂伸長率開始下降.
參考文獻
[1] RENEKER D H, CHUN I. Nanometre diameter fibres of polymer produced by electrospinning[J]. Nanotechnology,1996, 7(3):216-223.
[2] HUANG Z M, ZHANG Y Z, KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J].Composites Science and Technology, 2003, 63(15):2223-2253.
[3] LI D, XIA Y N. Electrospinning of nanofibers: Reinventing the wheel[J]. Advanced Materials, 2004,16(14):1151-1170.
[4] FANG J, NIU H, LIN T, et al. Applications of electrospun nanofibers[J]. Chinese Science Bulletin, 2008, 53(15):2265-2286.
[5] LI W J, DANIELSON K G, ALEXANDER P G, et al. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds[J]. Journal of Biomedical Materials Research Part A, 2003, 67(4):1105-1114.
[6] GIBSON P, SCHREUDER-GIBSON H, RIVIN D. Transport properties of porous membranes based on electrospun nanofibers[J].Colloid and Surfaces A-Physicochem and Engineering Aspects, 2001, 187/188:469-481.
[7] VERRECK G, CHUN I, ROSENBLATT J, et al. Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer[J]. Journal of Controlled Release, 2003, 92(3):349-360.
[8] CHAUREY V, BLOCK F, SU Y H, et al. Nanofiber size-dependent sensitivity of fibroblast directionality to the methodology for scaffold alignment[J].Acta Biomaterialia, 2012, 8(11):3982-3990.
[9] LI X S, YAO C, SUN F Q,et al. Conjugate electrospinning of continuous nanofiber yarn of poly(L-lactide)/nanotricalcium phosphate nanocomposite[J]. Journal of Applied Polymer Science,2008,107(6):3756-3764.
[10] SMIT E, BUTTNER U, SANDERSON R D. Continuous yarns from electrospun fibers[J]. Polymer, 2005, 46(8):2419-2423.
[11] LI J, TIAN L, PAN N,et al.Mechanical and electrical properties of the PA6/SWNTs nanofiber yarn by electrospinning[J].Polymer Engineering and Science, 2014, 54 (7):1618-1624.
[12] WANG X F, ZHANG K, ZHU M F, et al. Continuous polymer nanofiber yarns prepared by self-bundling electrospinning method[J]. Polymer, 2008, 49 (11):2755-2761.
[13] AFIFI A M, NAKANO S, YAMANE H,et al. Electrospinning of continuous aligning yarns with a 'funnel' target[J]. Macromolecular Materials and Engineering, 2010, 295(7):660-665.
[14] DALTON P D, KLEE D, MOLLER M.Electrospinning with dual collection rings[J]. Polymer, 2005, 46(3):611-614.
[15] WU S H, QIN X H. Effects of the stabilization temperature on the structure and properties of polyacrylonitrile-based stabilized electrospun nanofiber microyarns[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116(1):303-308.
[16] 吳韶華,張彩丹,覃小紅,等.靜電紡取向納米纖維束及納米纖維紗線的研究進展[J]. 高分子材料科學與工程, 2014 (6):182-186.
[17] WU S H, QIN X H. Uniaxially aligned polyacrylonitrile nanofiber yarns prepared by a novel modified electrospinning method[J]. Materials Letters, 2013, 106:204-207.
[18] YU Q W, JI H H, JIAN Y Y. Carbon nanotube-reinforced polyacrylonitrile nanofibers by vibration-electrospinning[J]. Polymer International, 2007, 56(11):1367-1370.
[19] BERBER S, KWON Y K,TOMANEK D.Unusually high thermal conductivity of carbon nanotubes[J]. Physical Review Letters, 2000, 84(20):4613-4616.
[20] ZHOU C W, KONG J, DAI H J. Intrinsic electrical properties of individual single-walled carbon nanotubes with small band gaps[J].Physical Review Letters, 2000, 84(24):5604-5607.
[21] DRESSELHAUS M S, DRESSELHAUS G, CHARLIER J C,et al. Electronic, thermal and mechanical properties of carbon nanotubes[J]. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2004, 362(1823):2065-2098.
[22] JAVEY A,TU R, FARMER D B, et al. High performance n-type carbon nanotube field-effect transistors with chemically doped contacts[J]. Nano Letters, 2005, 5(2):345-348.
[23] LU Y J, LI J, HAN J, et al. Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors[J]. Chemical Physics Letters, 2004, 391(4/5/6):344-348.
[24] LU Y J, LI J, HONG H P. Electrical resistivity of pristine and functional single-wall carbon nanotubes[J].Journal of Nanomaterials, 2013, doi: 10.1155/2013/635673.
BANDARU N M, SAINT C P, et al.Tailored carbon nanotube immunosensors for the detection of microbial contaminatio[J].Biosensors & Bioelectronics, 2015, 67:642-648.
[26] IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354 (6348):56-58.
[27] 陳衛(wèi)祥,陳文錄,徐鑄德,等.碳納米管的特性及其高性能的復合材料[J].復合材料學報, 2001, 18(4):1-3.
[28] 孫曉剛,曾效舒,程國安.碳納米管的特性及應用[J].中國粉體技術,2001,7(6):29-33.
[29] WANG K T, GU M B, WANG J J,et al. Functionalized carbon nanotube/polyacrylonitrile composite nanofibers: Fabrication and properties[J]. Polymers for Advanced Technologies, 2012, 23(2):262-271.
文章編號:1671-0444(2016)03-0313-05
收稿日期:2015-03-10
基金項目:國家自然科學基金資助項目(50973014,11172064);教育部霍英東基金資助項目(121071);上海市曙光計劃資助項目(11SG33);中央高?;究蒲袠I(yè)務費專項資金資助項目;東華大學“勵志計劃”資助項目
作者簡介:張悅(1989—),女,河北保定人,碩士研究生,研究方向為靜電紡絲. E-mail: zhangyue1989@163.com 覃小紅(聯(lián)系人),女,教授,E-mail: xhqin@dhu.edu.cn
中圖分類號:TQ 342. 31
文獻標志碼:A
Preparation and Properties of PAN/SWCNTs Composite Nanofiber Yarns
ZHANGYuea, b,WUShao-huaa, b,ZHANGHong-nana, b,QINXiao-honga, b
(a. Key Laboratory of Micro-nano Textile of Shanghai; b. College of Textiles,Donghua University, Shanghai 201620, China)
Abstract:Polyacrylonitrile/single-wall carbon nanotube(PAN/ SWCNTs) composite nanofiber yarns with different mass fraction of SWCNTs were fabricated successfully by a modified electrospinning setup. The morphology, diameter, molecular structure and crystal structure of PAN/ SWCNTs composite nanofiber yarns were tested by SEM(scanning electron microscopy)、TEM(transmission electron microscopy)、FTIR(Fourier transform infrared spectroscopy) and XRD(X-ray diffraction), respectively. The effects of SWCNTs with different mass fraction on mechanical properties of PAN/ SWCNTs composite nanofiber yarns were also investigated. It is found that PAN/ SWCNTs composite nanofiber yarns show great morphology and are uniaxially aligned along the axial yarn. With the mass fraction of SWCNTs increasing, the diameters of the composite nanofibers and yarns reduce, but the quantity of beaded nanofibers increases. The SWCNTs distribute along the long axis of composite nanofiber. The addition of SWCNTs doesn’t generate new characteristic peak, but weakens or enhances some peaks. Moreover, the addition of SWCNTs changes the crystallization of PAN. The tensile strength of the PAN/SWCNTs composite nanofiber yarns reachs the maximum value 24.25 MPa when the mass fraction of SWCNTs is 5%.
Key words:electrospinning; polyacrylonitrile/single-wall carbon nanotube (PAN/ SWCNTs) composite nanofiber yarn; alignment; tensile strength