范冬梅 張曉龍 張 晴 盧 楊 楊圓圓 袁向飛 張硯君 熊冬生
(中國(guó)醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院血液病醫(yī)院血液研究所,國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津300020)
?
·基礎(chǔ)免疫學(xué)·
臍帶間充質(zhì)干細(xì)胞運(yùn)載scFvCD20:sTRAIL 融合蛋白對(duì)B-淋巴瘤細(xì)胞的生長(zhǎng)抑制作用①
范冬梅張曉龍張晴盧楊楊圓圓袁向飛張硯君熊冬生
(中國(guó)醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院血液病醫(yī)院血液研究所,國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津300020)
[摘要]目的:探討臍帶間充質(zhì)干細(xì)胞運(yùn)載scFvCD20:sTRAIL融合蛋白的新型雙重靶向系統(tǒng)對(duì)CD20+ BJAB細(xì)胞的生長(zhǎng)抑制作用。方法:采用傳統(tǒng)分子生物學(xué)技術(shù)構(gòu)建pLenR.scFvCD20:sTRAIL、pLenR.ISZ-sTRAIL、pLenR.scFvCD20 及pLenR.copGFP四種慢病毒表達(dá)載體,利用四質(zhì)粒慢病毒包裝系統(tǒng)于293T細(xì)胞中包裝慢病毒顆粒,并感染人臍帶組織來源的MSCs(HUMSCs),使其穩(wěn)定表達(dá)融合蛋白。于體外采用CCK8細(xì)胞增殖抑制實(shí)驗(yàn)檢測(cè)scFvCD20:sTRAIL融合蛋白對(duì)CD20陽(yáng)性BJAB細(xì)胞和Raji細(xì)胞、CD20陰性Jurkat細(xì)胞以及正常人外周血單個(gè)核細(xì)胞(PBMCs)的生長(zhǎng)抑制作用。建立NOD/SCID鼠BJAB細(xì)胞皮下移植瘤模型,將MSC.scFvCD20:sTRAIL 經(jīng)尾靜脈注射入小鼠體內(nèi),每3 d測(cè)量瘤體積,根據(jù)腫瘤體積計(jì)算抑瘤率。結(jié)果:成功構(gòu)建了慢病毒表達(dá)載體pLenR.scFvCD20:sTRAIL、 pLenR.ISZ-sTRAIL、pLenR.scFvCD20及pLenR.copGFP,且經(jīng)慢病毒感染可在HUMSCs中穩(wěn)定表達(dá)。體外實(shí)驗(yàn)顯示,scFvCD20:sTRAIL融合蛋白可不同程度地提高對(duì)CD20陽(yáng)性BJAB和Raji細(xì)胞的生長(zhǎng)抑制作用,而對(duì)CD20陰性Jurkat細(xì)胞的生長(zhǎng)抑制作用降低;而且不影響PBMCs的生長(zhǎng)。體內(nèi)實(shí)驗(yàn)表明,MSC.scFvCD20:sTRAIL可顯著抑制BJAB淋巴瘤的生長(zhǎng),初始治療后第24 天,抑瘤率達(dá)65.2%,與MSC.ISZ:sTRAIL治療組比較(抑瘤率為52.7%),具統(tǒng)計(jì)學(xué)差異(P<0.05)。結(jié)論:建立了HUMSCs運(yùn)載scFvCD20:sTRAIL融合蛋白的雙重靶向治療系統(tǒng),HUMSCs可向BJAB淋巴瘤部位歸巢并表達(dá)分泌scFvCD20:sTRAIL融合蛋白,后者在局部經(jīng)scFvCD20的二次導(dǎo)向發(fā)揮CD20特異性抑瘤作用。為MSCs作為腫瘤靶向治療載體在臨床中的應(yīng)用提供了理論依據(jù)。
[關(guān)鍵詞]間充質(zhì)干細(xì)胞;CD20;TRAIL;非霍奇金氏淋巴瘤;腫瘤免疫
非霍奇金氏淋巴瘤(Non-Hodgkin’s lymphoma,NHL)是一組起源于淋巴結(jié)或其他淋巴組織的惡性腫瘤。NHL 的發(fā)病率和流行病率隨年齡增長(zhǎng)而增加,約70% 以上的NHL 病人在55 歲后被診斷,5年總生存率為68%。近年來NHL新發(fā)病率迅速上升,雖然傳統(tǒng)放化療治療效率高,但毒副作用明顯,且部分初治有效病人發(fā)生復(fù)發(fā)。
腫瘤分子生物學(xué)和分子克隆技術(shù)的飛速發(fā)展為臨床腫瘤治療開創(chuàng)了新領(lǐng)域。目前,基于特異性靶點(diǎn)的分子、細(xì)胞治療已成為腫瘤治療的熱點(diǎn)。據(jù)統(tǒng)計(jì),B細(xì)胞淋巴瘤占NHL的85%,其中95%以上的B細(xì)胞NHL表達(dá)CD20抗原,因此,CD20是治療NHL的理想靶點(diǎn)[1,2]。正常情況下,CD20是B細(xì)胞的重要分化抗原,分子量為33~37 kD,主要表達(dá)于前B 淋巴細(xì)胞、未成熟B 淋巴細(xì)胞、成熟B 淋巴細(xì)胞以及活化的B 淋巴細(xì)胞中,而在漿細(xì)胞、淋巴多能干細(xì)胞以及其他組織均無表達(dá)[3,4]。
另一方面,腫瘤壞死因子(Tumor necrosis factor,TNF)超家族成員是凋亡途徑中關(guān)鍵的細(xì)胞外調(diào)控因子,其與細(xì)胞表面死亡受體結(jié)合,活化下游信號(hào)傳導(dǎo)分子,從而誘導(dǎo)細(xì)胞發(fā)生凋亡[5]。TNF相關(guān)的凋亡誘導(dǎo)配體(TNF-related apoptosis-induing ligand,TRAIL)屬于TNF 超家族,卻不同于TNF 及Fas L(CD95 ligand),其對(duì)腫瘤細(xì)胞具有選擇性,對(duì)正常組織細(xì)胞沒有毒副作用,因此在基礎(chǔ)和臨床研究中受到廣泛關(guān)注。
間充質(zhì)干細(xì)胞(MSCs)具有腫瘤靶向性、分離純化方便、可在體外進(jìn)行大量擴(kuò)增、能較容易地利用病毒載體進(jìn)行基因改造、具有較低的免疫原性和內(nèi)在突變頻率等優(yōu)點(diǎn)[6-8],利用MSCs作為載體體內(nèi)運(yùn)輸?shù)鞍姿幬镞M(jìn)行腫瘤治療已成為臨床靶向治療最具希望的手段之一。
本研究工作將可溶性TRAIL片段(sTRAIL)與具有B-NHL特異性的抗CD20抗體scFv(single-chain Fv antibody fragment)融合形成scFvCD20:sTRAIL融合蛋白,并將其表達(dá)框利用慢病毒載體摻入人臍帶組織WJ來源的MSC(HUMSC)基因組。通過HUMSC的歸巢作用,將scFvCD20:sTRAIL分泌在淋巴瘤組織局部,實(shí)現(xiàn)抗腫瘤的目的。
1材料與方法
1.1材料
1.1.1細(xì)胞系與培養(yǎng)基人B細(xì)胞淋巴瘤細(xì)胞系BJAB、Raji及人急性T淋巴細(xì)胞白血病細(xì)胞系Jurkat由本室保存;正常人外周血單個(gè)核細(xì)胞PBMCs 由中國(guó)醫(yī)學(xué)科學(xué)院血液學(xué)研究所曹善楠博士饋贈(zèng),以上細(xì)胞均培養(yǎng)于含10% FCS及2 mmol/L L-谷氨酰胺的RPMI1640培養(yǎng)基。293T細(xì)胞用含10% FCS及2 mmol/L L-谷氨酰胺的DMEM培養(yǎng)基培養(yǎng),HUMSCs用含10%FCS(Gibco)的DF-12培養(yǎng)基培養(yǎng)。以上細(xì)胞均于5% CO2,37℃,飽和濕度條件下培養(yǎng)。
1.1.2載體及感受態(tài)載體pYAZ-anti-CD20Fab、T-sTRAIL由本室構(gòu)建;pGL3- basic載體(Promega)由本室保存;慢病毒表達(dá)載體pCDH1-MSC1-EF1-copGFP (Cat.# CD511A-1)及包裝載體pPACKH1-GAG、pPACKH1-REV、pVSV-G 由中國(guó)醫(yī)學(xué)科學(xué)院血液學(xué)研究所馬曉彤教授饋贈(zèng);大腸桿菌DH5α購(gòu)自北京索萊寶科技有限公司。
1.2方法
1.2.1HUMSCs 的分離及擴(kuò)增本實(shí)驗(yàn)所使用MSCs來源于人臍帶組織WJ。從手術(shù)臺(tái)上取下的臍帶在24 h內(nèi)進(jìn)行處理,具體分離過程如下:臍帶用含雙抗的PBS沖洗,將臍帶剪成1 cm長(zhǎng)的小塊,繼續(xù)沖洗干凈。剝離臍帶動(dòng)靜脈血管壁,取膠凍狀的WJ部分,剪碎至0.5 cm3大小組織塊,依次擺放于預(yù)先潤(rùn)濕的T-75 cm 塑料培養(yǎng)瓶中倒置培養(yǎng)。4~8 h后翻轉(zhuǎn)培養(yǎng)瓶,次日添加1 ml含10% FCS及2 mmol/L L-谷氨酰胺的DF-12培養(yǎng)基,連續(xù)添加3 d,每次1 ml,第4天全量換液,以后每周換液2次。分離10~14 d后,去除組織塊,用含0.125%胰酶-0.01%EDTA細(xì)胞消化液消化細(xì)胞,進(jìn)行初次原瓶傳代(P1),待細(xì)胞長(zhǎng)至60%~70%融合度時(shí),二次傳代(3 000 個(gè)細(xì)胞/cm2)或凍存。取3~5代HUMSCs 用于實(shí)驗(yàn)。
1.2.2慢病毒表達(dá)載體的構(gòu)建cDNA片段scFvCD20-sTRAIL,ISZ-sTRAIL,scFvCD20及CopGFP通過PCR擴(kuò)增后克隆入慢病毒載體pCDH1-MSC1-EF1-copGFP(Cat.No.CD511A-1,System Biosciences,SBI,USA)。ScFvCD20序列是由嵌合抗體anti-CD20 Fab的輕重鏈可變區(qū)通過柔性肽(G4S)3利用重疊PCR技術(shù)融合。人sTRAIL胞外區(qū)序列(114-281氨基酸殘基)由PBMCs的mRNA通過RT-PCR擴(kuò)增獲得。并將編碼序列為ATGAAGCAGATCGAGGACAAAATTGAGGAAATCCTG-TCCAAGATTTACCACATCGAGAACGAGATCGCCCG-GATTAAGAAACTCATTGGCGAGAGGGAA的異亮氨酸拉鎖序列(Isoleucine zipper,ISZ)通過PCR連入sTRAIL序列N端(ISZ-sTRAIL)。CopGFP序列克隆自慢病毒表達(dá)載體pCDH1-MSC1-EF1-copGFP,并將此序列插入scFvCD20與sTRAIL間,作為熒光及Western blot 檢測(cè)標(biāo)記。所構(gòu)建載體均由上海英濰捷基測(cè)序確認(rèn)。
1.2.3慢病毒表達(dá)載體瞬時(shí)轉(zhuǎn)染293T細(xì)胞根據(jù)Lipofectamine 2000 (Invitrogen)說明書的操作步驟將慢病毒表達(dá)載體pLenR.scFvCD20:sTRAIL、 pLenR.ISZ-sTRAIL、pLenR.scFvCD20及pLenR.cop GFP分別轉(zhuǎn)染至293T細(xì)胞中,48 h后收集培養(yǎng)上清,并于4℃離心,去除殘留細(xì)胞后用于后續(xù)體外實(shí)驗(yàn)。
1.2.4包裝慢病毒及感染HUMSCs高效表達(dá)融合蛋白ScFvCD20:sTRAIL根據(jù)SBI慢病毒包裝手冊(cè)的指導(dǎo)于293T細(xì)胞中包裝慢病毒顆粒。具體過程如下,在轉(zhuǎn)染前17 h將數(shù)量為6×106的 293T細(xì)胞接種至10 cm 培養(yǎng)皿中。將20 μl(10 μg)pPACK-Packaging plasmid mix和2 μg慢病毒表達(dá)載體共同加入至400 μl 無血清培養(yǎng)基Opti-MEM(Gibco)中;同時(shí)將30 μl Lipofectamin 2000轉(zhuǎn)染試劑加至另外400 μl 無血清培養(yǎng)基Opti-MEM,混勻后室溫放置5 min;接著將稀釋后的Lipofectamine 2000加入DNA復(fù)合物中,輕柔倒置混勻,室溫孵育20 min后將轉(zhuǎn)染復(fù)合物加入培養(yǎng)皿中的293T細(xì)胞。轉(zhuǎn)染后48 h收集培養(yǎng)上清,并將含病毒顆粒的上清于4℃離心,并經(jīng)0.45 μm孔徑濾膜(Millipore)過濾去除細(xì)胞碎片后直接用于感染HUMSCs或于-80℃條件下保存。
將HUMSCs按每瓶2×105的密度接種于T-25塑料培養(yǎng)瓶中,第二天將培養(yǎng)基換成3 ml含慢病毒顆粒及終濃度為8 μg/ml Polybrene(Sigma)的新鮮培養(yǎng)基(MOI=8),8 h后再換成新鮮含10%FCS的DF-12培養(yǎng)基以終止感染。感染48 h后于熒光顯微鏡下觀察HUMSCs,并在感染后第5天通過蛋白免疫印跡檢測(cè)目的蛋白的表達(dá)水平。細(xì)胞收集后用含PMSF的RIPA(碧云天)裂解液裂解細(xì)胞提取蛋白,通過BCA蛋白定量試劑盒測(cè)定蛋白濃度。不同分子量蛋白變性后通過SDS聚丙烯酰胺凝膠電泳分離,進(jìn)而通過電轉(zhuǎn)移至NC膜。再將膜上的蛋白分別與一抗anti-copGFP(CST)以及偶聯(lián)辣根過氧化酶的二抗孵育,膜最后于暗室中曝光至X-膠片中以顯示目的條帶。
1.2.5融合蛋白ScFvCD20:sTRAIL對(duì)細(xì)胞增殖的抑制作用將細(xì)胞按每孔8×103的密度接種于96孔板過夜培養(yǎng),將293T瞬轉(zhuǎn)上清的目的蛋白按照不同濃度加入培養(yǎng)基中,作用72 h后通過CCK-8(Dojindo)試驗(yàn)檢測(cè)細(xì)胞的存活,于synergy H4酶標(biāo)儀(BioTek,USA)中測(cè)定每孔在450 nm處的吸光度。細(xì)胞存活率=(OD測(cè)量組-OD零孔)/(OD空白組-OD零孔)×100% 。
1.2.6MSC.scFvCD20:sTRAIL對(duì)NOD/SCID小鼠移植性CD20+BJAB 細(xì)胞淋巴瘤模型的治療作用選用NOD/SCID小鼠,雌性,5~6周齡,以260 cGy/只劑量進(jìn)行γ射線照射。實(shí)驗(yàn)分為6組,每組5只NOD/SCID鼠。收集對(duì)數(shù)生長(zhǎng)期的BJAB細(xì)胞,冷PBS洗滌2次后,按每只1×107細(xì)胞數(shù)(200 μl)的劑量接種至NOD/SCID小鼠右前肢根部背側(cè)皮下。待腫瘤長(zhǎng)至一定體積時(shí)進(jìn)行如下分組給藥:(a) 5×105MSC.scFvCD20-sTRAIL,i.v.(b) 5×105MSC.ISZ-sTRAIL,i.v.(c) 5×105MSC.scFvCD20,i.v.(d) 5×105MSC.CON,i.v.(e) 5×105HUMSCs,i.v.(f) PBS,i.v.自開始治療起,每隔3 d用游標(biāo)卡尺測(cè)量小鼠移植瘤模型的腫瘤直徑,動(dòng)態(tài)觀察藥物的抗腫瘤效應(yīng)。腫瘤體積的計(jì)算公式如下:V=1/2×a×b2(a和b分別為腫瘤的長(zhǎng)徑和短徑)。同時(shí)在結(jié)束治療后小鼠眼眶取血,檢測(cè)各組中ALT及AST水平。
2結(jié)果
2.1慢病毒表達(dá)載體的構(gòu)建成功構(gòu)建了慢病毒表達(dá)載體pLentR.scFvCD20:sTRAIL、pLenR.ISZ-sTRAIL、pLenR.scFvCD20及pLenR.copGFP(圖1A)。sTRAIL片段由編碼TRAIL蛋白的第114~281個(gè)氨基酸殘基構(gòu)成的具有分泌和功能性的結(jié)構(gòu)部分,我們還在其N末端加上了一個(gè)異亮氨酸拉鎖以促進(jìn)sTRAIL形成具有活性的三聚體。為促進(jìn)目的蛋白的分泌,所有載體均連接有編碼鼠源κ輕鏈的信號(hào)肽序列。為檢測(cè)目的蛋白的表達(dá),我們將所構(gòu)建的表達(dá)載體瞬轉(zhuǎn)至293T細(xì)胞。通過TRAIL ELISA試劑盒檢測(cè)結(jié)果表明pLentR.scFvCD20:sTRAIL及pLenR.ISZ-sTRAIL均表達(dá)高水平的sTRAIL[pLentR.scFvCD20:sTRAIL,(2 529±363)pg/ml;pLenR.ISZ-sTRAIL,(9 475±786)pg/ml],而在不轉(zhuǎn)染或者轉(zhuǎn)染其他載體的293T上清均未檢測(cè)到sTRAIL(圖1B)。融合蛋白scFvCD20:sTRAIL在自然狀態(tài)下大多為三聚體形式,加入β-巰基乙醇(β-ME)后還原成單體形式(圖1C)。
圖1 慢病毒表達(dá)載體的構(gòu)建及融合蛋白scFvCD20:sTRAIL的表達(dá)Fig.1 Construction of lentivirus expression vectors and expression of fusion protein scFvCD20:sTRAILNote: A.Schematic representation of various DNA constructs employed in this study; B.The level of sTRAIL in 293T cells after 48 hours of transient transfection; C.Identification of trimeric scFvCD20-sTRAIL fusion protein.
2.2慢病毒感染的HUMSCs高效表達(dá)融合蛋白scFvCD20:sTRAIL 將以上慢病毒表達(dá)載體分別與包裝質(zhì)粒共轉(zhuǎn)染293T細(xì)胞,所得病毒上清以MOI 8 感染HUMSCs。感染后48 h,熒光顯微鏡下觀察可見綠色熒光(圖2A)。感染后5 d,流式檢測(cè)感染效率達(dá)83.7%(圖2B)。此時(shí)收集被感染的HUMSCs的胞漿蛋白進(jìn)行Western blot 檢測(cè),結(jié)果表明目的蛋白scFvCD20:sTRAIL、ISZ-sTRAIL、scFvCD20、CopGFP(Control)均在其相應(yīng)的被感染的HUMSCs中表達(dá)(圖2C),而且目的蛋白在上清中的分泌量在感染后第5天達(dá)到最大值(圖2D)。
圖2 HUMSCs高效表達(dá)融合蛋白scFvCD20:sTRAILFig.2 Transduced HUMSCs expressed fusion protein scFvCD20:sTRAIL efficienthyNote: A.Fluorescence of CopGFP was observed after 48 hours of transduction; B.Efficiency of transduction was assayed by flow cytometry; C.Expression of scFvCD20:sTRAIL,IST-sTRAIL and scFvCD20 protein which was fused with CopGFP gene in transduced HUMSCs was tested by Western blot using anti-CopGFP antibody after 5 days of transduction; D.MSC.scFv CD20:sTRAIL and MSC.IST-sTRAIL expressed the desired protein scFvCD20:sTRAIL or IST-sTRAIL constantly.The sTRAIL protein in MSC.scFvCD20,MSC.CopGFP or un-transduced HUMSCs was not detectable.
圖3 不同濃度的融合蛋白scFvCD20:sTRAIL 在體外對(duì)細(xì)胞增殖的抑制作用Fig.3 Proliferation inhibition of fusion protein scFvCD20:sTRAIL with different concentrations in vitroNote: A.HUMSCs cells;B.BJAB cells;C.Raji cells;D.Jurkat cells;E.PBMC cells.*.P< 0.05;**.P< 0.01;#.P< 0.05;##.P<0.01.
圖4 MSC.scFvCD20:sTRAIL對(duì)NOD/SCID小鼠移植性CD20+BJAB細(xì)胞淋巴瘤模型的治療作用Fig.4 Treatment of MSC.scFvCD20:sTRAIL in NOD/SCID mice bearing tumor with CD20+BJAB cellsNote: A.Effect of MSC.scFvCD20:sTRAIL on tumor growth; B.Safety of engineered HUMSCs infusion.Columns,mean; bars,SD.**.P<0.01 compared with PBS group;#.P<0.05 compared with MSC.IST-sTRAIL treated group;ALT.Alanine aminotransferase;AST.Aspartate aminotransferase.
2.3融合蛋白scFvCD20:sTRAIL在體外對(duì)細(xì)胞增殖的抑制作用CCK8細(xì)胞增殖抑制實(shí)驗(yàn)表明,scFvCD20:sTRAIL 及ISZ-sTRAIL對(duì)HUMSCs生長(zhǎng)無明顯抑制作用,與對(duì)照組(CopGFP組)比較,不存在統(tǒng)計(jì)學(xué)差異(P>0.05)(圖3A)。ScFvCD20:sTR-AIL可呈濃度依賴性地抑制CD20陽(yáng)性TRAIL敏感的BJAB細(xì)胞的生長(zhǎng),高中低三個(gè)濃度的scFvCD20:sTRAIL 處理細(xì)胞后細(xì)胞生存率分別從ISZ-sTRAIL處理的56.8%、76.8% 和80.7%下降至scFvCD20:sTRAIL 處理的40.0%、49.2% 和65.2%,分別兩兩比較,均具有高度統(tǒng)計(jì)學(xué)差異(P<0.01)(圖3B)。同時(shí)ScFvCD20:sTRAIL可在一定程度上改善CD20 陽(yáng)性TRAIL耐受的Raji 細(xì)胞對(duì)TRAIL的敏感性,使其生長(zhǎng)抑制率提高,與空載體組比較,具有顯著性意義(P<0.05),但與ISZ-sTRAIL 組比較,無顯著性意義(P>0.05)(圖3C)。而對(duì)于CD20 陰性TRAIL 敏感的Jurkat細(xì)胞,與ISZ-sTRAIL 組比較,scFvCD20:sTRAIL處理細(xì)胞后其生長(zhǎng)抑制率反而下降,兩者比較具有統(tǒng)計(jì)學(xué)差異(P<0.01)(圖3D)。此外,為檢測(cè)scFvCD20:sTRAIL 是否對(duì)血液系統(tǒng)細(xì)胞具有潛在毒性,我們用scFvCD20:sTRAIL處理正常人PBMCs,結(jié)果顯示scFvCD20:sTRAIL對(duì)PBMCs生長(zhǎng)無明顯影響(P>0.05)(圖3E)。
2.4MSC.scFvCD20:sTRAIL 對(duì)CD20+BJAB 細(xì)胞移植性淋巴瘤模型的治療當(dāng)腫瘤長(zhǎng)至一定體積時(shí),感染了不同慢病毒顆粒的HUMSCs經(jīng)尾靜脈注射入小鼠體內(nèi),每隔3 d測(cè)量腫瘤。結(jié)果表明,治療后第3 天,即可見MSC.scFvCD20:sTRAIL與MSC.ISZ-sTRAIL 治療組腫瘤體積較對(duì)照組減小,隨著飼養(yǎng)時(shí)間的延長(zhǎng),這一趨勢(shì)更為明顯(P<0.01),且MSC.scFvCD20:sTRAIL對(duì)腫瘤增殖的抑制作用較MSC.ISZ-sTRAIL 更強(qiáng)(P<0.05)(圖4A)。在治療后第24天,MSC.scFvCD20:sTRAIL治療組的腫瘤抑制率為65.2%,高于MSC.ISZ-sTRAIL(52.7%)、MSC.scFvCD20(13.9%)、MSC.CON(10.7%)及PBS(10.5%)對(duì)照組。曾有報(bào)道表明TRAIL能導(dǎo)致正常肝臟細(xì)胞的死亡[9],因此為了進(jìn)一步評(píng)價(jià)此雙重靶向系統(tǒng)在體內(nèi)應(yīng)用中可能造成的肝毒性。在治療后第24天,各治療組及PBS組小鼠血漿中ALT及AST未發(fā)生明顯改變(P>0.05)(圖4B、C),說明MSC.scFvCD20:sTRAIL治療系統(tǒng)對(duì)肝臟無毒副作用。
3討論
近年來,隨著對(duì)腫瘤發(fā)病機(jī)制、信號(hào)傳導(dǎo)通路的不斷深入研究和基因工程技術(shù)的飛速發(fā)展,不斷涌現(xiàn)出針對(duì)腫瘤治療的新靶點(diǎn)和新策略。研究發(fā)現(xiàn)位于體內(nèi)組織特定龕中的MSCs 能夠被招募至組織損傷或是炎癥部位[10],這一特點(diǎn)使得MSCs 已被作為基因治療的運(yùn)輸工具,MSCs可將抗腫瘤藥物如細(xì)胞因子、凋亡誘導(dǎo)劑、干擾素、前藥等運(yùn)送至腫瘤部位從而抑制腫瘤生長(zhǎng)[11,12]。目前,已有幾個(gè)研究小組報(bào)道了將骨髓、脂肪以及臍帶血來源的MSCs通過病毒感染的方法使其表達(dá)凋亡誘導(dǎo)基因TRAIL用于腦膠質(zhì)瘤、宮頸癌以及胰腺癌等的治療,并取得了良好效果[13-16]。而對(duì)于人臍帶組織WJ來源的MSCs介導(dǎo)的腫瘤靶向治療知之甚少。HUMSCs 除具有傳統(tǒng)骨髓來源的MSCs(BMMSCs)的特點(diǎn)外還擁有其自身的優(yōu)點(diǎn)。HUMSCs的使用不涉及倫理學(xué)問題,且能非常方便地進(jìn)行大批量分離,HUMSCs具有相對(duì)快速的增殖速度,廣泛的分化潛能,能在體外較長(zhǎng)的培養(yǎng)時(shí)間內(nèi)(9~10代)保持干性,較低的免疫原性,無致瘤性[17-20]。HUMSCs 越來越受到臨床應(yīng)用及基礎(chǔ)研究的重視。根據(jù)HUMSCs可向腫瘤部位歸巢以及融合了特異性抗體scFv 片段的sTRAIL (scFvCD20:sTRAIL)具有靶向性殺傷作用的特點(diǎn),本實(shí)驗(yàn)設(shè)計(jì)了一種全新的雙重靶向治療體系——具有分泌scFvCD20:sTRAIL 融合蛋白能力的HUMSCs。在此體系中,一方面,HUMSCs可高效準(zhǔn)確地定位于腫瘤部位(另文發(fā)表),在局部分泌融合蛋白scFvCD20:sTRAIL;另一方面,局部濃度升高的scFvCD20:sTRAIL 發(fā)揮其強(qiáng)大的CD20 特異性的抗腫瘤作用,而對(duì)正常組織器官不造成毒副作用。本研究的意義在于:在以HUMSC作為靶向治療的載體的基礎(chǔ)上設(shè)計(jì)了一種新型的能誘導(dǎo)抗原特異性腫瘤細(xì)胞發(fā)生凋亡的融合蛋白scFvCD20:sTRAIL表達(dá)的雙重靶向治療體系。
ScFvCD20:sTRAIL、ISZ-sTRAIL、scFvCD20、CopGFP四種蛋白來自相應(yīng)的慢病毒表達(dá)載體瞬轉(zhuǎn)293T細(xì)胞后48 h收集的細(xì)胞培養(yǎng)基上清。CCK8細(xì)胞增殖抑制實(shí)驗(yàn)表明,scFvCD20:sTRAIL對(duì)HUMSCs生長(zhǎng)無明顯抑制作用,并可呈濃度依賴性地抑制CD20陽(yáng)性TRAIL敏感的BJAB細(xì)胞的生長(zhǎng),還可在一定程度上改善CD20陽(yáng)性TRAIL耐受的Raji細(xì)胞對(duì)TRAIL的敏感性,使其生長(zhǎng)抑制率提高,而對(duì)于CD20陰性TRAIL敏感的Jurkat細(xì)胞,經(jīng)scFvCD20:sTRAIL 處理后其生長(zhǎng)抑制率反而下降。此外,為了檢測(cè)ScFvCD20:sTRAIL 是否對(duì)血液系統(tǒng)細(xì)胞具有潛在毒性,用ScFvCD20:sTRAIL 處理正常人PBMCs,結(jié)果顯示ScFvCD20:sTRAIL 對(duì)PBMCs生長(zhǎng)無明顯影響。由HUMSCs 運(yùn)載到達(dá)腫瘤部位的融合蛋白scFvCD20:sTRAIL 避免了對(duì)其他正常組織器官的不良反應(yīng)。同時(shí),局部富集的scFvCD20:sTRAIL 在scFvCD20特異的導(dǎo)向作用下既提高了抑瘤效率又避免了對(duì)瘤旁正常細(xì)胞的毒副作用。與ISZ-sTRAIL相比,scFvCD20:sTRAIL 對(duì)CD20陽(yáng)性的BJAB細(xì)胞移植瘤的生長(zhǎng)抑制與已報(bào)道的scFv:sTRAIL融合蛋白抑瘤作用的特點(diǎn)相似。
本研究利用真核細(xì)胞表達(dá)抗腫瘤蛋白,同時(shí)又利用了HUMSCs 的歸巢性。一方面HUMSCs 靶向腫瘤部位,既降低了給藥濃度(所需注射細(xì)胞數(shù)量),又避免了凋亡誘導(dǎo)因子對(duì)正常組織器官的影響;另一方面局部釋放的scFvCD20:sTRAIL 由于其抗原特異性使瘤旁正常組織細(xì)胞免受損傷,從而達(dá)到高效、安全的目的。MSC.scFvCD20:sTRAIL強(qiáng)大的抑瘤作用歸功于雙重靶向治療系統(tǒng)的巧妙設(shè)計(jì),這一系統(tǒng)使整個(gè)治療過程得到了最佳優(yōu)化。
參考文獻(xiàn):
[1]Van Meerten T,Hagenbeek A.CD20-targeted therapy:a breakthrough in the treatment of non-Hodgkin’s lymphoma[J].Neth J Med,2009,67(7):251-259.
[2]Cragg MS,Glennie MJ.Antibody specificity controls in vivo effector mechanisms of anti-CD20 reagents[J].Blood,2004,103(7):2738-2743.
[3]Stashenko P,Nadler LM,Hardy R,etal.Characterization of a human B lymphocyte-specific antigen[J].J Immunol,1980,125(4):1678-1685.
[4]Nadler LM,Korsmeyer SJ,Anderson KC,etal.B cell origin of non-T cell acute lymphoblastic leukemia:a model for distance stages of neoplastic and normal pre-B cell differentiation[J].J Clin Invest,1984,74(2):332-340.
[5]Atkins GJ,Bouralexis S,Evdokiou A,etal.Human osteoblasts are resistance to Apo2L/TRAIL-mediated apoptosis[J].Bone,2002,31(4):448-456.
[6]Roura S,Pujal JM,Bayes-Genis A.Umbilical cord blood for cardiovascular cell therapy:from promise to fact[J].Ann N Y Acad Sci,2012,1254:66-70.
[7]Vilalta M,Degano IR,Bago J,etal.Biodistribution,long-term survival,and safety of human adipose tissue-derived mesenchymal stem cells transplanted in nude mice by high sensitivity non-invasive bioluminescence imaging[J].Stem Cells Dev,2008,17(5):993-1003.
[8]Gotherstrom C,Ringden O,Tammik C,etal.Immunologic properties of human fetal mesenchymal stem cells[J].Am J Obstet Gynecol,2004,190(1):239-245.
[9]Jo M,Kim TH,Seol DW,etal.Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand[J].Nat Med,2000,6(5):564-567.
[10]Chamberlain G,Fox J,Ashton B,etal.Concise review:mesenchymal stem cells:their phenotype,differentiation capacity,immunological features,and potential for homing[J].Stem Cells,2007,25(11):2739-2749.
[11]Fritz V,Jorgencen C.Mesenchymal stem cells:an emerging tool for cancer targeting and therapy[J].Curr Stem Cell Ther,2008,3(1):32-42.
[12]Prockop DJ.Repair of tissues by adult stem/progenitor cells(MSCs):controversies,myths,and changing paradigms[J].Mol Ther,2009,17(6):939-946.
[13]Choi SA,Hwang SK,Wang KC,etal.Therapeutic efficacy and safety of TRAIL-producing human adipose tissue-derived mesenchymal stem cells against experimental brainstem glioma [J].Neur Oncol,2011,13(1):61-69.
[14]Grisendi G,Bussolari R,Cafarelli L,etal.Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy[J].Cancer Res,2010,70(9):3718-3729.
[15]Loebinger MR,Eddaoudi A,Davies D,etal.Mesenchymal stem cells delivery of TRAIL can eliminate metastatic cancer[J].Cancer Res,2009,69(10):4134-4142.
[16]Kim SM,Lim JY,Park SI,etal.Gene therapy using TRAIL-secreting human umbilical cord blood-derived mesenchymal stem cells against intracranial glioma[J].Cancer Res,2008,68(23):9614-9623.
[17]Fong CY,Subramanian A,Biswas A,etal.Derivation efficiency,cell proliferation,freeze-thaw survival,stem-cell properties and differentiation of human wharton’s jelly stem cells[J].Reprod Biomed Online,2010,21(3):391-401.
[18]Fong CY,Richards M,Manasi N,etal.Comparative growth behaviour and characterization of stem cells from human Wharton′s jelly[J].Reprod Biomed Online,2007,15(6):708-718.
[19]Gauthaman K,Fong CY,Suganya CA,etal.Extra-embryonic human Wharton′s jelly stem cells do not induce tumorigenesis,unlike human embryonic stem cells[J].Reprod Biomed Online,2012,24(2):235-246.
[20]Fong CY,Chak LL,Biswas A,etal.Human Wharton′s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells[J].Stem Cell Rev,2011,7(1):1-16.
[收稿2015-09-21修回2015-10-16]
(編輯許四平)
doi:10.3969/j.issn.1000-484X.2016.07.002
作者簡(jiǎn)介:范冬梅(1969年-),女,副主任技師,主要從事腫瘤免疫學(xué)方面研究,E-mail:fdm19691217@163.com。 通訊作者及指導(dǎo)教師:熊冬生(1961年-),男,碩士,教授,博士生導(dǎo)師,主要從事腫瘤免疫學(xué)研究,E-mail:dsxiong@ihcams.ac.cn。
中圖分類號(hào)R735.7
文獻(xiàn)標(biāo)志碼A
文章編號(hào)1000-484X(2016)07-0939-06
Human umbilical cord-drived mesenchymal stem cells as vehicles of CD20 specific-TRAIL fusion protein against non-Hodgkin’s lymphoma
FAN Dong-Mei,ZHANG Xiao-Long,ZHANG Qing,LU Yang,YANG Yuan-Yuan,YUAN Xiang-Fei,ZHANG Yan-Jun,XIONG Dong-Sheng .
State Key Laboratory of Experimental Hematology,Insitute of Hematology & Hospital of Blood Diseases,Chinese Academy of Medical Sciences & Peking Union Medical College,Tianjin 300020,China
[Abstract]Objective:To study the therapeutic effect of a novel double-target system,in which human umbilical cord-derived MSCs were used as vehicles to deliver fusion protein scFvCD20:sTRAIL to non-Hodgkin’s lymphoma.Methods: The traditional methods in molecular biology were used to construct lentivirus expression vectors pLenR.scFvCD20:sTRAIL and contrast vectors.Human umbilical cord-derived MSCs (HUMSCs) were labeled with the copGFP by transducing with pseudo viral particles which had been packaged in 293T cells with four plasmid-lentivirus packaging system.Fusion protein scFvCD20:sTRAIL were secreted from MSC.scFvCD20:sTRAIL after that HUMSCs were infected by pseudo viral particles.CCK8 assay was applied to detect the antigen-restricted cell death induced by scFvCD20:sTRAIL in CD20-positive BJAB and Raji cells as well as CD20-negtive Jurkat cells and human normal peripheral blood mononuclear cells (PBMCs).To evaluate the therapeutic effect of MSC.scFvCD20:sTRAIL in vivo,genetically modified HUMSCs were intravenously injected into tumor-bearing mice with BJAB cells.The volume of tumor was measured every three days,and the inhibition ratio of tumor was calculated according to tumor volume.Results: Lentivirus expression vectors pLenR.scFvCD20:sTRAIL,pLenR.ISZ:sTRAIL,pLenR.scFvCD20 and pLenR.CopGFP were successfully constructed and these constructs could be expressed stably in HUMSCs by lentivirus transduction.scFvCD20:sTRAIL fusion protein produced a potent inhibition of cell proliferation in CD20-positive BJAB cells,moderate inhibition of the growth of Raji cells,and weak inhibition in CD20-negtive Jurkat cells when compared with ISZ-sTRAIL treatment,and it had no effect on normal human peripheral blood mononuclear cells (PBMCs). The MSC.scFvCD20:sTRAIL treatment significantly inhibited the tumor growth when compared with those treated with MSC.ISZ-sTRAIL. Conclusion: A double-target therapeutic system is well established,in which HUMSCs migrated to tumor site,secreted a novel fusion protein scFvCD20:sTRAIL,and thus locally concentrated scFvCD20:sTRAIL extended antigen-restricted anti-tumor activity.The engineered HUMSCs secreting scFvCD20:sTRAIL showed potent effect on inhibiting tumor growth in BJAB lymphoma malignancy,which may play an essential role in the clinical research .
[Key words]Mesenchymal stem cell; CD20; TRAIL; Non-Hodgkin’s lymphoma;Tumor immunity
①本文受國(guó)家自然科學(xué)基金項(xiàng)目資助(81400176)和天津市應(yīng)用基礎(chǔ)與前沿技術(shù)研究計(jì)劃資助項(xiàng)目(14JCYBJC23700)。