溫振庶(華僑大學(xué)數(shù)學(xué)科學(xué)學(xué)院,福建泉州362021)
經(jīng)典的Drinfel′d-Sokolov-Wilson方程的非線性波解
溫振庶
(華僑大學(xué)數(shù)學(xué)科學(xué)學(xué)院,福建泉州362021)
利用(G′/G)-展開(kāi)法,構(gòu)造經(jīng)典的Drinfel′d-Sokolov-Wilson方程的新的非線性波解.這些非線性波解分別以雙曲函數(shù)、三角函數(shù)和分式函數(shù)的形式表達(dá).結(jié)果表明:(G′/G)-展開(kāi)法是研究數(shù)學(xué)物理方程的非線性波解的一種有效工具.
Drinfel′d-Sokolov-Wilson方程;(G′/G)-展開(kāi)法;非線性波解;顯式表達(dá)式
數(shù)學(xué)物理方程的解有助于加深對(duì)其所描述的自然現(xiàn)象或過(guò)程的理解和認(rèn)識(shí).因此,尋找數(shù)學(xué)物理方程的非線性波解是數(shù)學(xué)物理工作者研究的熱點(diǎn)問(wèn)題.
經(jīng)典的Drinfel′d-Sokolov-Wilson(DSW)方程
被引入后,它及其變體得到了人們的廣泛關(guān)注[1-7].式(1)中:p,q,r,s都是非零常數(shù).
Hirota等[1]給出了DSW方程(1)的一種特殊形式的孤子結(jié)構(gòu).文獻(xiàn)[4-6]分別用代數(shù)方法、改進(jìn)的廣義Jacobi橢圓函數(shù)方法和改進(jìn)的F-展開(kāi)法找到了方程(2)的一些精確行波解.對(duì)于DSW方程(1),文獻(xiàn)[2-3]分別利用直接的代數(shù)方法獲得了一些精確行波解.此外,Wen等[7]利用微分方程定性理論和動(dòng)力系統(tǒng)分支方法[7-17]給出了DSW方程(1)的30個(gè)精確行波解.前面的工作已找到了一部分解,但新的解仍有待發(fā)現(xiàn).本文利用(G′/G)-展開(kāi)法[18-19]研究DSW方程(1)的非線性波解,得到了一些新的解.
對(duì)方程(1)進(jìn)行替換,u(x,t)=u(ξ),v(x,t)=v(ξ),ξ=x-ct,可得
假定u(ξ)和v(ξ)可以展開(kāi)成關(guān)于(G′/G)的多項(xiàng)式,即
式(4),(5)中:a0,a1,…,am和b0,b1,…,bn是待確定的常數(shù),且G=G(ξ)滿足二階常微分方程
式(6)中:λ和μ是常數(shù).
利用u′與vv′,以及u′v,uv′與v之間的齊次平衡,得到m=2,n=1.式(4),(5)可以表示為
把式(7),(8)代入方程(3)中,可得
令式(9),(10)中,(G′/G)k(k=0,1,2,3,4)的系數(shù)為零,得到
為方便起見(jiàn),令θ=c(r+2s)-q(λ2(r+s)-2μ(r+2s)),則方程組(11)的解為
或把式(12),(13)分別代入式(7),(8),得到方程(1)的一般形式的解,即
定理1 方程(1)有如下形式的顯式非線性波解.1)當(dāng)λ2-4μ=0時(shí),有
2)當(dāng)λ2-4μ>0時(shí),有
3)當(dāng)λ2-4μ<0時(shí),有
式(15)~(17)中:c1和c2是任意常數(shù).
證明 根據(jù)常微分方程理論,易得方程(6)的解.
1)當(dāng)λ2-4μ=0時(shí),有
2)當(dāng)λ2-4μ>0時(shí),有
3)當(dāng)λ2-4μ<0時(shí),有
將式(18)~(20)分別代入方程(14),即得到非線性波解(15)~(17).證畢.
利用(G′/G)-展開(kāi)法,構(gòu)造了經(jīng)典的Drinfel′d-Sokolov-Wilson方程的新的非線性波解.這些非線性波解具有豐富的結(jié)構(gòu),分別以雙曲函數(shù)、三角函數(shù)和分式函數(shù)的形式給出.此外,當(dāng)參數(shù)取一些特殊的值時(shí),這些非線性波解展現(xiàn)出不同類型的波形,包括孤立波、奇異波、周期奇異波等.
[1] HIROTA R,GRAMMATICOS B,RAMANI A.Soliton structure of the Drinfel′d-Sokolov-Wilson equation[J].Journal of Mathematical Physics,1986,27(6):1499-1505.
[2] YAO Ruoxia,LI Zhibin.New exact solutions for three nonlinear evolution equations[J].Physics Letters A,2002,297(3):196-204.
[3] LIU Chunping,LIU Xiaoping.Exact solutions of the classical Drinfel′d-Sokolov-Wilson equations and the relations among the solutions[J].Physics Letters A,2002,303(2):197-203.
[4] FAN Engui.An algebraic method for finding a series of exact solutions to integrable and nonintegrable nonlinear evolution equations[J].Journal of Physics A:Mathematical and General,2003,36(25):7009-7026.
[5] YAO Yuqin.Abundant families of new traveling wave solutions for the coupled Drinfel′d-Sokolov-Wilson equation [J].Chaos,Solitons &Fractals,2005,24(1):301-307.
[6] ZHAO Xueqin,ZHI Hongyan.An improved F-expansion method and its application to coupled Drinfel′d-Sokolov-Wilson equation[J].Communications in Theoretical Physics,2008,50(2):309-314.
[7] WEN Zhenshu,LIU Zhengrong,SONG Ming.New exact solutions for the classical Drinfel′d-Sokolov-Wilson equation[J].Applied Mathematics and Computation,2009,215(6):2349-2358.
[8] 劉正榮,唐昊.KdV方程和mKdV方程的新奇異解[J].華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,40(10):96-101.
[9] WEN Zhenshu.Extension on peakons and periodic cusp waves for the generalization of the Camassa-Holm equation [J].Mathematical Methods in the Applied Sciences,2015,38(11):2363-2375.
[10] 溫振庶.耦合的修正變系數(shù)KdV方程的非線性波解[J].華僑大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,35(5):597-600.
[11] WEN Zhenshu,LIU Zhengrong.Bifurcation of peakons and periodic cusp waves for the generalization of the camassa-h(huán)olm equation[J].Nonlinear Analysis:Real World Applications,2011,12(3):1698-1707.
[12] WEN Zhenshu.Bifurcations and nonlinear wave solutions for the generalized two-component integrable Dullin-Gottwald-Holm system[J].Nonlinear Dynamics,2015,82(1/2):767-781.
[13] WEN Zhenshu.Bifurcation of traveling wave solutions for a two-component generalizedθ-equation[J].Mathematical Problems in Engineering,2012,2012(2):1-17.
[14] WEN Zhenshu.Extension on bifurcations of traveling wave solutions for a two-component fornberg-whitham equation[J].Abstract and Applied Analysis,2012,2012:1-15.
[15] WEN Zhenshu.New exact explicit nonlinear wave solutions for the Broer-Kaup equation[J].Journal of Applied Mathematics,2014,2014(5):1-7.
[16] WEN Zhenshu.Bifurcation of solitons,peakons,and periodic cusp waves forθ-equation[J].Nonlinear Dynamics,2014,77(1/2):247-253.
[17] WEN Zhenshu.Several new types of bounded wave solutions for the generalized two-component Camassa-Holm equation[J].Nonlinear Dynamics,2014,77(3):849-857.
[18] WANG Mingliang,LI Xiangzheng,ZHANG Jinliang.The(G′/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics[J].Physics Letters A,2008,372(4):417-423.
[19] WANG Mingliang,ZHANG Jinliang,LI Xiangzheng.Application of the(G′/G)-expansion to travelling wave solutions of the Broer-Kaup and the approximate long water wave equations[J].Applied Mathematics and Computation,2008,206(1):321-326.
(責(zé)任編輯:黃曉楠 英文審校:黃心中)
Nonlinear Wave Solutions for the Classical Drinfel′d-Sokolov-Wilson Equation
WEN Zhenshu
(School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China)
We constructed new nonlinear wave solutions for the classical Drinfel′d-Sokolov-Wilson Equation by exploiting(G′/G)-expansion method.These nonlinear wave solutions are expressed in the forms of the hyperbolic functions,the trigonometric functions and the rational functions.The results show that(G′/G)-expansion method is an efficient tool for studying nonlinear wave solutions of mathematical physics equations.
Drinfel′d-Sokolov-Wilson equation;(G′/G)-expansion method;nonlinear wave solutions;explicit expressions
O 175.29
A
1000-5013(2016)04-0519-04
10.11830/ISSN.1000-5013.201604026
2016-03-16
溫振庶(1984-),男,副教授,博士,主要從事微分方程與動(dòng)力系統(tǒng)的研究.E-mail:wenzhenshu@hqu.edu.cn.
國(guó)家自然科學(xué)基金資助項(xiàng)目(61573004,11401230);福建省自然科學(xué)基金資助項(xiàng)目(2015J05008);福建省教育廳科技項(xiàng)目(JA14023)