李 進(jìn),孫 杰,趙 楠,吳 鈞,劉 俊,馬 鋼
(云南省昆明市第一人民醫(yī)院神經(jīng)外科,云南 昆明 650011)
?
·論著·
3種不同腦區(qū)定點(diǎn)注射6-OHDA單側(cè)損傷大鼠帕金森病模型的比較研究
李進(jìn),孫杰,趙楠,吳鈞,劉俊*,馬鋼
(云南省昆明市第一人民醫(yī)院神經(jīng)外科,云南 昆明 650011)
目的從神經(jīng)行為學(xué)、組織病理和生化方面對(duì)3種不同腦區(qū)單側(cè)定點(diǎn)注射6-羥基多巴胺(6-hydroxydopamine,6-OHDA)損傷大鼠帕金森病(Parkinson disease,PD)模型進(jìn)行比較研究。方法健康雄性SD大鼠隨機(jī)分為3組(n=10):紋狀體組、黑質(zhì)組、黑質(zhì)+中腦腹側(cè)被蓋區(qū)組。根據(jù)腦立體定位圖譜,將微量6-OHDA單點(diǎn)定位注入大鼠中腦黑質(zhì)區(qū)、紋狀體區(qū)和雙點(diǎn)定位注入黑質(zhì)區(qū)與中腦腹側(cè)被蓋區(qū)。觀察阿樸嗎啡誘發(fā)大鼠旋轉(zhuǎn)行為, 免疫組織化學(xué)檢測(cè)大鼠黑質(zhì)區(qū)酪氨酸(tyrosinehydroxy-lase,TH+)陽性神經(jīng)元數(shù)目,電化學(xué)高效液相色譜法檢測(cè)紋狀體中多巴胺(dopamine,DA)及其代謝產(chǎn)物3,4-二羥苯乙酸(dihydroxy-phenyl acetic acid,DOPAC)和高香草酸(homovanillic acid,HVA)含量。結(jié)果紋狀體組3周后模型穩(wěn)定,黑質(zhì)組與黑質(zhì)+中腦腹側(cè)被蓋區(qū)組大鼠2周后穩(wěn)定, 3組30 min內(nèi)向健側(cè)轉(zhuǎn)圈數(shù)均呈升高趨勢(shì),黑質(zhì)+中腦腹側(cè)被蓋區(qū)組高于紋狀體組和黑質(zhì)組,組間·時(shí)點(diǎn)間交互作用差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。紋狀體組和黑質(zhì)+中腦腹側(cè)被蓋區(qū)組造模成功率高于黑質(zhì)組(P<0.05)。3組大鼠注射6-OHDA損傷側(cè)紋狀體中DA、DOPAC、HVA含量和TH+神經(jīng)元數(shù)目均明顯低于非損傷側(cè)(P<0.05)。結(jié)論紋狀體單點(diǎn)注射6-OHDA損傷建立PD模型成功率高,可作為研究PD的一種穩(wěn)定可靠的動(dòng)物模型。
帕金森??;羥基多巴胺類;大鼠
10.3969/j.issn.1007-3205.2016.06.013
帕金森病(Parkinson disease,PD)是常見于老年人并有向中年移行趨勢(shì)的一種神經(jīng)退行性疾病,其典型的病理特征為中腦黑質(zhì)多巴胺(dopamine,DA)能神經(jīng)元缺失以及黑質(zhì)紋狀體通路中DA數(shù)量降低。在PD的研究中,研究者創(chuàng)建和發(fā)展了諸多模型,主要有1-甲基-4-苯基-1,2,3,6-四氫吡啶(1- methyl-4-phenyl-1,2,3,6-tetrahydropyritine, MPTP) 模型、6-羥基多巴胺(6-hydroxydopamine,6-OHDA) 模型、百草枯模型和魚藤酮、模型等[1]。6-OHDA誘發(fā)的PD動(dòng)物模型在神經(jīng)生化、病理和行為學(xué)方面與人類PD具有很大相似性,已被廣泛用于PD的研究。然而,6-OHDA誘導(dǎo)PD神經(jīng)退行性變性的程度和特點(diǎn)明顯受注射部位的影響[2]。因此,本研究通過3種不同腦區(qū)定點(diǎn)注射6-OHDA單側(cè)損傷建立大鼠PD模型,從行為學(xué)、組織病理和生化方面進(jìn)行比較,旨在為PD研究提供穩(wěn)定可靠的動(dòng)物模型。報(bào)告如下。
1.1動(dòng)物來源及分組無特定病原體級(jí)雄性SD大鼠,體質(zhì)量(270±20) g,購(gòu)于并飼養(yǎng)于昆明醫(yī)學(xué)院實(shí)驗(yàn)動(dòng)物中心,室內(nèi)溫度保持在(23±2) ℃,房間保持12 h晝夜節(jié)律,動(dòng)物自由進(jìn)食水。實(shí)驗(yàn)中所有操作均遵循美國(guó)國(guó)立衛(wèi)生研究院及昆明醫(yī)學(xué)院實(shí)驗(yàn)動(dòng)物倫理委員會(huì)的規(guī)定。健康雄性SD大鼠隨機(jī)分為3組(n=10):紋狀體組、黑質(zhì)組、黑質(zhì)+中腦腹側(cè)被蓋區(qū)組。
1.2實(shí)驗(yàn)儀器和試劑倒置熒光顯微鏡(OLYMPUS);高效液相庫(kù)侖陣列電化學(xué)檢測(cè)系統(tǒng)(ESA公司,美國(guó));Agilent C18反相色譜柱、臺(tái)式高速冷凍離心機(jī)、冰凍切片機(jī)、嚙齒類動(dòng)物腦立體定位儀(瑞沃德生命科技有限公司)。6-OHDA、阿撲嗎啡均購(gòu)自Sigma公司;Anti-TH兔抗鼠單克隆抗體、MPTP、GTVisionTM Ⅲ抗鼠/兔通用型免疫組織化學(xué)檢測(cè)試劑盒購(gòu)自基因科技(上海)有限公司;多聚甲醛、二甲苯、無水乙醇等購(gòu)自廣州化學(xué)試劑廠。
1.3模型建立手術(shù)前饑餓12 h,大鼠稱體質(zhì)量、編號(hào)后用10%水合氯醛腹腔注射麻醉,頭顱水平位固定在腦立體定位儀上,頭頂部去毛,碘液清潔消毒頭部皮膚,沿正中線切開大鼠顱頂皮膚,剝離骨膜,暴露前囟,以前囟為準(zhǔn),依SD大鼠立體定向腦圖譜[2]確定注射坐標(biāo)。紋狀體組坐標(biāo)確定:A/P(距前囟中心后)0 mm; L/R(距前囟中心左右)-3 mm;O/V(距腦膜表面深度):-5.5 mm、-4.5 mm。黑質(zhì)組坐標(biāo)確定:A/P -5.2 mm; L/R -1.8 mm;O/V -7.8 mm。黑質(zhì)+中腦腹側(cè)被蓋區(qū)組坐標(biāo)確定:AP -5.2 mm; L/R 1.8 mm;O/V -7.8 mm;A/P -4.6 mm; L/R -0.9 mm;O/V -7.8 mm。
按照上述坐標(biāo)用10 L微量進(jìn)樣器向3個(gè)實(shí)驗(yàn)組坐標(biāo)注射6-OHDA(溶于0.1%維生素C中,濃度為4 g/L)。紋狀體組:?jiǎn)吸c(diǎn)注射2.5 L。黑質(zhì)組:?jiǎn)吸c(diǎn)注射4 L。黑質(zhì)+中腦腹側(cè)被蓋組:雙位點(diǎn)注射,每點(diǎn)注射2 L。注射速度為1 L/min。注射完畢后留針10 min,以1 mm/min 速度緩慢旋轉(zhuǎn)退針,止血,縫合皮膚, 碘酒消毒。術(shù)后連續(xù)3 d肌內(nèi)注射青霉素納50萬U預(yù)防感染。大鼠清醒后置于籠內(nèi)正常環(huán)境飼養(yǎng)。
1.4行為學(xué)轉(zhuǎn)圈實(shí)驗(yàn)手術(shù)后2周腹腔注射阿撲嗎啡(0.5 mg/kg),在空曠處預(yù)觀察10 min,如果大鼠開始向健側(cè)轉(zhuǎn)圈,記錄30 min內(nèi)的轉(zhuǎn)圈數(shù),每周1次,連續(xù)測(cè)量3周,如果30 min 內(nèi)轉(zhuǎn)圈數(shù)大于210次,則模型視為成功,記錄3種模型大鼠在每周的轉(zhuǎn)圈次數(shù)。
1.5電化學(xué)高壓液相系統(tǒng)檢測(cè)采用電化學(xué)高壓液相系統(tǒng)檢測(cè)腦組織中DA、3,4-二羥苯乙酸(dihydroxy-phenyl acetic acid,DOPAC)和高香草酸(Homovanillic acid,HVA)含量[3-4]。每組大鼠按照以上方法造模和給藥,水合氯醛麻醉,斷頭后迅速取出大腦。在冰浴條件下分離取出雙側(cè)紋狀體。組織稱質(zhì)量后每一組織加入 0.1 mol/L高氯酸提取液,冰浴勻漿后12 000 r/min離心15 min,取上清備用。采用Agilent C18反相色譜柱(150 mm×3 mm,4.6 μm), 流動(dòng)相為甲醇/水=10∶90,水相中每升含有0.05 mol/L NaH2PO47.8 g,0.027 mmol/L乙二胺四乙酸(ethylenediaminetetraacetic acid,EDTA)8 mg,0.74 mmol/L辛烷磺酸鈉,2 mmol/L氯化鉀,流量1 mL/min,柱溫33 ℃,檢測(cè)電壓0.52 V,流動(dòng)相pH調(diào)節(jié)為3.5,精確吸取20 μL注入色譜儀分析,以各標(biāo)準(zhǔn)品的濃度為橫坐標(biāo)(X)、各組分的峰面積為縱坐標(biāo)(Y)進(jìn)行回歸分析,得到標(biāo)準(zhǔn)曲線。
1.6免疫組織化學(xué)檢測(cè)檢測(cè)腦黑質(zhì)致密部中酪氨酸陽性(tyrosinehydroxy-lase,TH+)神經(jīng)元數(shù)目。實(shí)驗(yàn)結(jié)束時(shí),用10%水合氯醛麻醉動(dòng)物,灌流、固定。從左心室進(jìn)針,右心耳剪“V”形切口,先灌注血管沖洗液(磷酸鹽緩沖液 1 000 mL,1 % NaNO22 mL,肝素0.02 g和NaCl 9 g)沖洗至流出的液體為無色,換冰冷的4%多聚甲醛(溶解于0.1 mol/L 磷酸鹽緩沖液)繼續(xù)灌流固定。取出預(yù)固定的全腦組織,按照質(zhì)量/體積比(10∶1)置于4%多聚甲醛溶液中4 ℃后固定過夜。然后經(jīng)磷酸鹽緩沖液洗凈后,逐步放入10%、20%、30%的梯度sucrose溶液中,待組織完全沉底后,將包埋劑包埋的腦組織進(jìn)行冰凍切片(黑質(zhì)區(qū)取前囟后3.3~5.3 mm區(qū)域),厚度25 μm,整個(gè)黑質(zhì)可切片80張左右。0.05 mol/L檸檬酸緩沖液(pH=6.0)微波抗原修復(fù),高火5 min,中低火10 min,自然冷卻后,3% H2O2避光反應(yīng) 10 min去除內(nèi)源性的過氧化物酶, 1%TritonX-100通透切片 30 min,10% 馬血清封閉 1 h,TH+一抗4 ℃孵育過夜;辣根過氧化物酶標(biāo)記的二抗,室溫孵育1 h;DAB工作液顯色,自來水終止顯色反應(yīng)。70%、80%、90%、100% 梯度酒精依次脫水,每次3 min;二甲苯透明2次,每次5 min。最后用中性樹脂封片。倒置顯微鏡下計(jì)算小鼠TH+神經(jīng)元的數(shù)目。每只大鼠從前往后選10張位置對(duì)應(yīng)的切片用體視學(xué)網(wǎng)格計(jì)數(shù)黑質(zhì)致密部TH+神經(jīng)元數(shù)目,作為評(píng)價(jià)指標(biāo)。
1.7統(tǒng)計(jì)學(xué)方法應(yīng)用SPSS 19.0 統(tǒng)計(jì)軟件包進(jìn)行數(shù)據(jù)分析。計(jì)量資料比較分別采用單因素方差分析、q檢驗(yàn)、配對(duì)t檢驗(yàn)及重復(fù)測(cè)量設(shè)計(jì)資料的方差分析;計(jì)數(shù)資料比較采用χ2檢驗(yàn)。P<0.05 為差異有統(tǒng)計(jì)學(xué)意義。
2.13組大鼠轉(zhuǎn)圈比較紋狀體組大鼠手術(shù)2周后轉(zhuǎn)圈行為不明顯,大鼠轉(zhuǎn)圈時(shí)間< 30min或者轉(zhuǎn)圈時(shí)容易停頓很久,但是3周后模型基本穩(wěn)定,轉(zhuǎn)圈很穩(wěn)定。黑質(zhì)+中腦腹側(cè)被蓋區(qū)組和黑質(zhì)組大鼠模型2周后已經(jīng)穩(wěn)定。3組30 min內(nèi)向健側(cè)轉(zhuǎn)圈數(shù)均呈升高趨勢(shì),黑質(zhì)+中腦腹側(cè)被蓋區(qū)組高于紋狀體組和黑質(zhì)組,組間、時(shí)點(diǎn)間差異無統(tǒng)計(jì)學(xué)意義(P>0.05),組間·時(shí)點(diǎn)間交互作用差異有統(tǒng)計(jì)學(xué)意義(P<0.05),見表1。
4周時(shí)紋狀體組大鼠造模成功率為100.0%,黑質(zhì)+中腦腹側(cè)被蓋區(qū)組為60.0%,黑質(zhì)組為30.0%,紋狀體組和黑質(zhì)+中腦腹側(cè)被蓋區(qū)組造模成功率高于黑質(zhì)組,差異有統(tǒng)計(jì)學(xué)意義(χ2=10.622,P=0.005)。
表13組大鼠手術(shù)2~4周30 min內(nèi)向健側(cè)轉(zhuǎn)圈數(shù)比較
組別 轉(zhuǎn)圈數(shù)2周3周4周紋狀體組237.6±156.6351.8±157.5360.8±99.1黑質(zhì)組334.3±17.8349.0±50.9359.5±38.9黑質(zhì)+中腦腹側(cè)被蓋區(qū)組390.3±50.2392.0±31.2423.7±103.5組間F=0.950 P=0.413時(shí)點(diǎn)間F=1.450 P=0.253組間·時(shí)點(diǎn)間F=3.370 P=0.006
2.23組大鼠紋狀體中DA、DOPAC、HVA含量和TH+神經(jīng)元數(shù)目比較3組大鼠注射6-OHDA損傷側(cè)紋狀體中DA、DOPAC、HVA含量和TH+神經(jīng)元數(shù)目均明顯低于非損傷側(cè)(P<0.05)。3組間非損傷側(cè)和損傷側(cè)DA含量和TH+神經(jīng)元數(shù)目比較差異均無統(tǒng)計(jì)學(xué)意義(P>0.05);黑質(zhì)組非損傷側(cè)DOPAC含量高于紋狀體組和黑質(zhì)+中腦腹側(cè)被蓋區(qū)組,黑質(zhì)組和黑質(zhì)+中腦腹側(cè)被蓋區(qū)組損傷側(cè)DOPAC含量高于紋狀體組,黑質(zhì)組和黑質(zhì)+中腦腹側(cè)被蓋區(qū)組非損傷側(cè)HVA含量高于紋狀體組,黑質(zhì)組損傷側(cè)HVA含量高于紋狀體組和黑質(zhì)+中腦腹側(cè)被蓋區(qū)組,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。見表2。
表23組DA、DOPAC、HVA、TH+神經(jīng)元數(shù)目比較
組別 DA(ng/mg)非損傷側(cè)損傷側(cè)DOPAC(ng/mg)非損傷側(cè)損傷側(cè)HVA(ng/mg)非損傷側(cè)損傷側(cè)TH+神經(jīng)元數(shù)目(個(gè)/切片)非損傷側(cè)損傷側(cè)紋狀體組16.8±7.40.5±0.1*3.1±0.70.2±0.1*1.6±0.50.1±0.1*152±1018±10*黑質(zhì)組22.3±5.60.6±0.2*5.8±0.7#0.4±0.1*#2.1±0.3#0.4±0.1*#162±2713±4* 黑質(zhì)+中腦腹側(cè)被蓋區(qū)組17.9±7.20.6±0.8*3.6±0.2△0.3±0.1*#2.1±0.1#0.1±0.0*△153±619±10* F1.8420.14560.68610.0007.14330.0001.0521.435 P0.1780.8660.0000.0000.0030.0000.3630.256
*P<0.05與非損傷側(cè)比較(配對(duì)t檢驗(yàn))#P<0.05與紋狀體組比較△P<0.05與黑質(zhì)組比較(q檢驗(yàn))
PD為繼阿爾茨海默病后第2個(gè)常見的神經(jīng)退行性疾病,65歲以上的人群發(fā)病率為1%~2%[5]。這種疾病的特點(diǎn)是黑質(zhì)致密部的多巴胺能神經(jīng)元損毀50%~70%,即紋狀體DA嚴(yán)重缺失[6]。開展動(dòng)物模型研究可以更好地了解PD的病因、發(fā)病機(jī)制、分子機(jī)制和潛在的治療策略。
PD動(dòng)物模型最相關(guān)的包括:選擇性地破壞兒茶酚胺系統(tǒng)的神經(jīng)毒性化學(xué)作用劑如6-OHDA、1-甲基-1,2,3,6-四氫呋喃、魚藤酮和百草枯(農(nóng)藥殺蟲劑)、炎癥調(diào)節(jié)劑、泛素-蛋白酶體系統(tǒng)抑制劑等模型;幾個(gè)基因操控模型如α突觸核蛋白、DJ-1、PINK1 (PTEN induced putative kinase 1)、Parkin、富含亮氨酸報(bào)告激酶2轉(zhuǎn)基因或基因敲除動(dòng)物[7]。到目前為止,應(yīng)用神經(jīng)毒素選擇性破壞兒茶酚胺系統(tǒng)引起動(dòng)物DA能神經(jīng)元損毀是研究PD的動(dòng)物模型復(fù)制使用最廣泛的方法。
6-OHDA是一種DA羥基化類似物。Tranzer 等[8]發(fā)現(xiàn)6-OHDA能夠選擇性誘導(dǎo)交感腎上腺素能神經(jīng)未梢變性,由此引導(dǎo)出“化學(xué)去神經(jīng)”的神經(jīng)生物學(xué)新概念。目前,這種神經(jīng)毒性分子在神經(jīng)生物學(xué)中被廣泛用于損毀黑質(zhì)紋狀體DA系統(tǒng),作為PD模型復(fù)制最常用的一種工具[1]。6-OHDA在大腦中能誘導(dǎo)DA能和去甲腎上腺素能神經(jīng)元變性[9]。因?yàn)?-OHDA在結(jié)構(gòu)上與DA和去甲腎上腺素類似,在質(zhì)膜上的轉(zhuǎn)運(yùn)體、DA轉(zhuǎn)運(yùn)體和去甲腎上腺素轉(zhuǎn)運(yùn)體都對(duì)6-OHDA具有高度親和力[10]。一旦進(jìn)入神經(jīng)元內(nèi),6-OHDA積聚在胞漿被快速氧化產(chǎn)成活性氧,最終引起氧化應(yīng)激相關(guān)的細(xì)胞毒性[11-12]。因此,這2種神經(jīng)元特別容易受到損毀。在使用6-OHDA之前給予選擇性去甲腎上腺素再攝取抑制劑(去甲丙咪嗪或丙咪嗪),阻止這些動(dòng)物發(fā)生去甲腎上腺素能神經(jīng)元損傷[ 10]。本研究結(jié)果顯示,電化學(xué)高效液相色譜法檢測(cè)紋狀體中DA及其代謝產(chǎn)物DOPAC和HVA含量顯著減少。
單側(cè)注射6-OHDA后能引起明顯的黑質(zhì)紋狀體通路的順行性變性[11-12]。這個(gè)變性首先開始在黑質(zhì)TH+神經(jīng)元,隨后TH+紋狀體的DA能接頭損失,以及相關(guān)的DA耗竭[12]。紋狀體退行性變性時(shí)顯示TH+紋狀體末梢死亡先于黑質(zhì)TH+神經(jīng)元,表明復(fù)制了人類PD的病理過程[12]。一些證據(jù)表明在PD的初始病理部位始于紋狀體,“未梢死亡”的軸突病變導(dǎo)致黑質(zhì)退行性病變和神經(jīng)細(xì)胞損失[13]。6-OHDA模型可導(dǎo)致DA耗竭、黑質(zhì)DA神經(jīng)元損失和行為缺陷[14]。本研究結(jié)果顯示,免疫組織化學(xué)檢測(cè)大鼠損傷側(cè)黑質(zhì)區(qū)TH+神經(jīng)元數(shù)目顯著減少,表明DA神經(jīng)元死亡增加,其數(shù)目嚴(yán)重缺失。
6-OHDA不能通過血腦屏障,通常需要通過立體定向頭架定點(diǎn)直接局部注射到黑質(zhì)致密區(qū)或內(nèi)側(cè)前腦束,這區(qū)域由黑質(zhì)神經(jīng)細(xì)胞體到紋狀體或紋狀體的傳出纖維構(gòu)成,在那里6-OHDA特異性地殺死DA 和去甲腎上腺素神經(jīng)元[11]。通常在6-OHDA損毀神經(jīng)元幾周后,大鼠出現(xiàn)自發(fā)性旋轉(zhuǎn)[10,15],繼這種單側(cè)毀損后,全身注射DA受體激動(dòng)劑(阿樸嗎啡)、3,4-二羥基苯丙氨酸(左旋多巴,DA的前體)或DA釋放化合物(苯丙胺)誘導(dǎo)發(fā)生不對(duì)稱旋轉(zhuǎn)。黑質(zhì)紋狀體病變的大小與旋轉(zhuǎn)運(yùn)動(dòng)的行為有關(guān)[16]。因此,動(dòng)物出現(xiàn)自發(fā)性旋轉(zhuǎn)是評(píng)價(jià)PD動(dòng)物模型成功建立的一項(xiàng)重要指標(biāo)。
6-OHDA 誘導(dǎo)神經(jīng)退行性變性的程度和特點(diǎn)顯著受到注射部位的影響[4],最常在單側(cè)被注射到黑質(zhì)、內(nèi)側(cè)前腦束或紋狀體3個(gè)區(qū)域。一般神經(jīng)末梢對(duì)6-OHDA毒性比軸突和細(xì)胞體更敏感[17],當(dāng)注射到黑質(zhì)或前腦內(nèi)側(cè)束時(shí),6-OHDA在黑質(zhì)紋狀體通路產(chǎn)生完整且快速的損傷病變。當(dāng)6-OHDA被注射到黑質(zhì),DA神經(jīng)元變性發(fā)生在12 h內(nèi),而紋狀體的末梢明顯損失出現(xiàn)在2~3 d后[18]。6-OHDA注射到內(nèi)側(cè)前腦束時(shí),6-OHDA誘導(dǎo)紋狀體末梢變性,先于DA細(xì)胞發(fā)生死亡前[19]。與黑質(zhì)和內(nèi)側(cè)前腦束相比,6-OHDA到達(dá)紋狀體時(shí)誘導(dǎo)緩慢、漸進(jìn)和部分的黑質(zhì)紋狀體結(jié)構(gòu)損傷,持續(xù)3周時(shí)間[20]。本研究結(jié)果顯示,紋狀體單點(diǎn)注射大鼠3周后出現(xiàn)穩(wěn)定轉(zhuǎn)圈且造模成功率高,黑質(zhì)單位點(diǎn)注射及黑質(zhì)與中腦腹側(cè)被蓋區(qū)雙位點(diǎn)注射大鼠2周后出現(xiàn)穩(wěn)定轉(zhuǎn)圈,但造模成功率低。表明6-OHDA紋狀體單點(diǎn)注射大鼠模型建立成功率高,可作為建立PD動(dòng)物模型穩(wěn)定可靠的方法。
綜上所述,6-OHDA紋狀體單點(diǎn)注射方法主要優(yōu)點(diǎn):①進(jìn)展性和廣泛損失病變與PD有關(guān);②這種方案可以產(chǎn)生PD的運(yùn)動(dòng)神經(jīng)癥狀;③立體定向注射到紋狀體,增加PD模型成功的可能性;④對(duì)動(dòng)物量化異常轉(zhuǎn)圈運(yùn)動(dòng)具有獨(dú)特效果;⑤單側(cè)注射損傷一個(gè)大腦半球,剩下另一未有損傷病變的大腦半球可作為內(nèi)部對(duì)照。因此,6-OHDA注射單側(cè)損傷大鼠PD模型廣泛用于臨床前抗PD作用、新的藥物治療神經(jīng)保護(hù)作用以及臨床改善細(xì)胞移植作用的評(píng)估研究。
[1]Yun JW,Ahn JB,Kang BC. Modeling Parkinson's disease in the common marmoset(Callithrix jacchus): overview of models,methods,and animal care[J]. Lab Anim Res,2015,31(4):155-165.
[2]Bil M,Huybrechts R. Pharmacological regulation of digestion in the anautogenous flesh fly,Sarcophaga crassipalpis,by simple injection of 6-ydroxydopamine[J]. Arch Insect Biochem Physiol,2016,91(3):137-151.
[3]Gal S,Zheng H,Fridkin M,et al. Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases. In vivo selective brain monoamine oxidase inhibition and prevention of MPTP-induced striatal dopamine depletion[J]. J Neurochem,2005,95(1):79-88.
[4]李軍偉,胡國(guó)新,王萍. HPLC-ECD 法檢測(cè)小鼠體內(nèi)多巴胺及其代謝產(chǎn)物[J].廣東微量元素科學(xué),2012,18(11):32-36.
[5]Recasens A,Dehay B. Alpha-synuclein spreading in Parkinson's disease[J]. Front Neuroanat,2014,8:159.
[6]Klingelhoefer L,Reichmann H. Pathogenesis of Parkinson disease-the gut-brain axis and environmental factors[J]. Nat Rev Neurol,2015,11(11):625-636.
[7]Morroni F,Tarozzi A,Sita G,et al.Neuroprotective effect of sulforaphane in 6-hydroxydopamine-lesioned mouse model of Parkinson's disease[J]. Neurotoxicology,2013,36:63-71.
[8]Tranzer JP,Thoenen H. Selective destruction of adrenergic nerve terminals by chemical analogues of 6-hydroxydopamine [J]. Experientia,1973,29(3):314-315.
[9]Matheus FC,Rial D,Real JI,et al. Decreased synaptic plasticity in the medial prefrontal cortex underlies short-term memory deficits in 6-OHDA-lesioned rats[J]. Behav Brain Res,2016,301:43-54.
[10]Bar-Am O,Amit T,Kupershmidt L,et al. Neuroprotective and neurorestorative activities of a novel iron chelator-brain selective monoamine oxidase-A/monoamine oxidase-B inhibitor in animal models of Parkinson's disease and aging[J]. Neurobiol Aging,2015,36(3):1529-1542.
[11]Dias V,Junn E,Mouradian MM.The role of oxidative stress in Parkinson's disease[J]. J Parkinsons Dis,2013,3(4):461-491.
[12]Wei X,He S,Wang Z,et al. Fibroblast growth factor 1attenuates 6-hydroxydopamine-induced neurotoxicity: an in vitro and in vivo investigation in experimental models of Parkinson's disease[J]. Am J Transl Res,2014,6(6):664-677.
[13]Chu Y,Morfini GA,Langhamer LB,et al. Alterations in axonal transport motor proteins in sporadic and experimental Parkinson's disease[J]. Brain,2012,135(Pt 7):2058-2073.
[14]Schwarting RK,Huston P. Unilateral 6-hydroxydopamine lesions ofmeso-striatal dopamine neurons and their physiological sequelae[J]. Prog Neurobiol,1996,49(3):215-266.
[15]Blandini F,Armentero MT. Animal models of Parkinson's disease[J]. FEBS J,2012,279(7):1156-1166.
[16]Singh A,Liang L,Kaneoke Y,et al. Dopamine regulates distinctively the activity patterns of striatal output neurons in advanced parkinsonian primates[J]. J Neurophysiol,2015,113(5):1533-1544.
[17]Paumier KL,Sortwell CE,Madhavan L,et al.Chronic amitriptyline treatment attenuates nigrostriatal degeneration and significantly alters trophic support in a rat model of parkinsonism[J]. Neuropsychopharmacology,2015,40(4):874-883.
[18]Wang JY,Yang JY,Wang F,et al. Neuroprotective effect of pseudoginsenoside-f11 on a rat model of Parkinson's disease induced by 6-hydroxydopamine[J]. Evid Based Complement Alternat Med,2013,2013:152798.
[19]Roseberry AG. Acute fasting increases somatodendritic dopamine release in the ventral tegmental area[J]. J Neurophysiol,2015,114(2):1072-1082.
[20]Segura-Aguilar J,Muoz P.Paris I.Aminochrome as new preclinical model to find new pharmacological treatment that stop the development of Parkinson's disease[J]. Curr Med Chem,2015,23(4):346-359.
(本文編輯:趙麗潔)
Comparative study of Parkinson disease rat model via unilateral injection of6-OHDA into three different brain regions
LI Jin, SUN Jie, ZHAO Nan, WU Jun, LIU Jun*, MA Gang
(Department of Neurosurgery, the First People's Hospital of Kunming City,Yunnan Province, Kunming 650011, China)
ObjectiveTo compare Parkinson disease(PD) rat models via unilateral injection of 6-hydroxydopamine(6-OHDA) into three different brain regions from the aspects of neurobehavior, histopathology and biochemistry. MethodsHealthy male SD rats were randomly divided into three groups(n=10):striatum group, substantia nigra group,substantia nigra+ midbrain ventral tegmental area group. According to the stereotaxic atlas of the brain, the trace 6-OHDA unilateral injection into rat substantia nigra and striatum were performed via single point position in striatum group and in substantia nigra group, and 6-OHDA injection into rat substantia nigra and midbrain ventral tegmental area were performed by double point position in substantia nigra+midbrain ventral tegmental area group.The rotation behavior induced by apomorphine was observed in rats. The tyrosine positive neurons in the rat substantia nigra were detected by immunohistochemistry. The dopamine(DA) and its metabolic products 3, 4 dihydroxy phenyl acetic acid(DOPAC) and homovanillic acid(HVA) were measured by electrochemical high-performance liquid phase chromatography in rat striatum. ResultsIn the rats with unilateral injection 6-OHDA into striatum viasingle point position, stablerotation appeared at 3 weeks, and a high rate of success in animal model was obtained. In the rats with substantia nigra injection model viasingle point and in the rats with substantia nigra + midbrain ventral tegmental area via double point position injection model, stable rotation appeared after 2 weeks, but animal model success rate is low. Three types of PD rat models in different brain regions injected by 6-OHDA showed that the number of tyrosinehydroxy-lase neurons in substantia nigra area was severely deficient, and that the contents of DA and its metabolites(DOPAC, HVA) in striatum were significantly decreased. ConclusionRat model with unilateral injection 6-OHDA into striatum via single point position is highly successful, which can be used as a stable and reliable animal model for the study on PD.
Parkinson disease; hydroxydopamines; rats
2016-01-25;
2016-02-15
云南省教育廳科學(xué)研究基金(2013C227)
李進(jìn)(1978-),男,湖北黃岡人,云南省昆明市第一人民醫(yī)院主治醫(yī)師,醫(yī)學(xué)碩士,從事神經(jīng)外科疾病診治研究。
。E-mail:15877991837@163.com
R7742.5
A
1007-3205(2016)06-0667-05