劉建新,王金成,王瑞娟,賈海燕(隴東學(xué)院生命科學(xué)與技術(shù)學(xué)院,甘肅省高校隴東生物資源保護與利用省級重點實驗室,甘肅慶陽745000)
外源過氧化氫提高燕麥耐鹽性的生理機制
劉建新*,王金成,王瑞娟,賈海燕
(隴東學(xué)院生命科學(xué)與技術(shù)學(xué)院,甘肅省高校隴東生物資源保護與利用省級重點實驗室,甘肅慶陽745000)
以燕麥品種‘定莜6號'為材料,采用水培法,研究噴施過氧化氫(H2O2)對鹽脅迫下燕麥幼苗生長、滲透調(diào)節(jié)物質(zhì)積累和活性氧代謝的影響。結(jié)果表明:1)150 mmol/L NaCl脅迫顯著抑制燕麥幼苗生長,提高葉片游離氨基酸和脯氨酸水平,降低谷胱甘肽(GSH)和可溶性糖含量;噴施0.01 mmol/L H2O2對NaCl脅迫引起的生長抑制有明顯的緩解作用,并提高了幼苗葉片可溶性蛋白質(zhì)、可溶性糖和脯氨酸含量,降低了游離氨基酸含量。2)NaCl脅迫下,雖然燕麥葉片超氧化物歧化酶、過氧化氫酶、過氧化物酶和抗壞血酸過氧化物酶活性提高,但O2·-、H2O2和丙二醛(MDA)積累;噴施H2O2進一步提高了NaCl脅迫下燕麥的上述抗氧化酶活性和GSH含量,卻降低了O2·-產(chǎn)生速率及H2O2和MDA含量,說明外施H2O2能夠增強鹽脅迫燕麥的抗氧化能力,減輕氧化傷害。以上結(jié)果表明,外源H2O2可通過調(diào)控滲透調(diào)節(jié)物質(zhì)積累和活性氧代謝提高燕麥耐鹽性。
鹽脅迫;過氧化氫;燕麥;活性氧代謝;滲透調(diào)節(jié)物質(zhì)
http://cyxb.lzu.edu.cn
劉建新,王金成,王瑞娟,賈海燕.外源過氧化氫提高燕麥耐鹽性的生理機制.草業(yè)學(xué)報,2016,25(2):216-222.
LIU Jian-Xin,WANG Jin-Cheng,WANG Rui-Juan,JIA Hai-Yan.The physiological mechanisms through which exogenous H2O2increases the resistance of Avena nuda to salt stress.Acta Prataculturae Sinica,2016,25(2):216-222.
鹽害是農(nóng)業(yè)生產(chǎn)的主要障害之一,通過對作物滲透調(diào)節(jié)和離子平衡的破壞,造成活性氧積累和生長抑制,甚至死亡[1]。作物能通過感受刺激和信號轉(zhuǎn)導(dǎo)啟動各種生理生化反應(yīng)適應(yīng)鹽脅迫[2]。過氧化氫(hydrogen peroxide,H2O2)是細(xì)胞代謝過程中產(chǎn)生的一種具有毒害作用的活性氧[3]。但近來的研究表明,H2O2也是植物體內(nèi)一種重要的信號分子[4],參與調(diào)控植物的生長發(fā)育[5]及對各種非生物逆境脅迫的應(yīng)答過程[6-8]。H2O2作為第二信使參與了ABA誘導(dǎo)的擬南芥(Arabidopsis thaliana)氣孔關(guān)閉過程[9];外源H2O2預(yù)處理通過提高抗氧化系統(tǒng)活性緩解了干旱對黃瓜(Cucumis sativus)葉綠體膜的傷害[7],提高了玉米(Zea mays)[10]和小麥(Triticum aestivum)[6]的耐鹽性。張波和張懷剛[11]研究表明,外源H2O2通過提高葉綠素、可溶性糖和谷胱甘肽含量有效增強了小麥幼苗的耐鹽性。Uchida等[2]研究證明,H2O2能夠誘導(dǎo)細(xì)胞抗氧化機制提高水稻(Oryza sativa)對鹽脅迫的耐受性。谷文英等[12]研究發(fā)現(xiàn),H2O2處理對菊苣(Cichorium intybus)幼苗鹽脅迫的緩解效應(yīng)與其上調(diào)抗氧化酶活性和逆境蛋白表達(dá)有關(guān)。此外,H2O2還在寄主-病原物互作過程中的過敏反應(yīng)[13]、細(xì)胞程序性死亡[14]和誘導(dǎo)植物抗病性[15]等過程中發(fā)揮著重要作用。
燕麥(Avena nuda)是中國北方廣泛種植的一種糧飼作物,但種植區(qū)較高的土壤含鹽量往往是其生長發(fā)育和產(chǎn)量提高的重要限制因子之一,尤其在春季返鹽季節(jié)對幼苗期生長的影響更大。不同品種燕麥對鹽脅迫的生理響應(yīng)及耐鹽性存在很大差異[16]?!ㄝ?號'是甘肅省定西市旱作農(nóng)業(yè)科研推廣中心選育的燕麥新品種,具有抗旱性強、豐產(chǎn)性好、品質(zhì)優(yōu)和抗堅黑穗病強等特點。然而,‘定莜6號'對鹽脅迫的響應(yīng)機制及H2O2的調(diào)節(jié)作用目前尚不了解,也未見有關(guān)H2O2對燕麥鹽脅迫生理影響的報道。本研究通過滲透調(diào)節(jié)物質(zhì)含量和活性氧代謝的變化探討外源H2O2對‘定莜6號'響應(yīng)鹽脅迫生理機制的調(diào)節(jié)作用,以期為應(yīng)用化學(xué)調(diào)控提高燕麥耐鹽性提供依據(jù)。
1.1供試材料和處理
試驗于2013年3-8月在甘肅省高校隴東生物資源保護與利用省級重點實驗室生物科技園進行。供試燕麥品種‘定莜6號'種子(由甘肅省定西市旱作農(nóng)業(yè)科研推廣中心提供)經(jīng)3%NaClO表面消毒10 min后催芽,選露白一致的種子播種在裝有珍珠巖的底部帶孔塑料缽(口徑20 cm,高14 cm)中,澆水后置溫室培養(yǎng),晝/夜溫度(26±5)℃/(20±6)℃,相對濕度70%~80%,光照強度520~710μmol/(m2·s),常規(guī)管理。幼苗2葉1心期進行疏苗,每缽保留一致壯苗約100株,3葉1心期進行處理:1)CK(對照),根部澆灌Hoagland營養(yǎng)液,葉面噴霧蒸餾水;2)NaCl,根部澆灌含150 mmol/L NaCl的Hoagland溶液,葉面噴霧蒸餾水;3)NaCl+H2O2,根部澆灌含150 mmol/L NaCl的Hoagland溶液,葉面噴霧0.01 mmol/L H2O2;4)H2O2,根部澆灌Hoagland營養(yǎng)液,葉面噴霧0.01 mmol/L H2O2(根據(jù)預(yù)試驗0.01 mmol/L H2O2對150 mmol/L NaCl脅迫下燕麥生長抑制的緩解作用最明顯)。葉面噴霧于每天7:00和19:00進行,為降低表面張力,噴霧溶液配制時加入2滴吐溫-80,噴霧量以葉面滴液為限,約8 m L/盆。根部澆灌每天19:00進行,澆施量為珍珠巖持水量的2倍(約1000 m L)以保持處理濃度的恒定。每個處理3盆,重復(fù)3次,隨機排列。處理5 d后取全缽所有幼苗的倒數(shù)第2~3片展開葉[11]用液氮速凍后-70℃保存,及時測定相關(guān)生理指標(biāo)。
1.2測定指標(biāo)與方法
1.2.1植株干重的測定處理10 d后,每個處理取30株幼苗,洗凈后在105℃殺青30 min,70℃烘干至恒重,稱干重。
1.2.2可溶性蛋白質(zhì)、可溶性糖、游離氨基酸和脯氨酸含量的測定分別按李合生[17]的考馬斯亮藍(lán)法、蒽酮比色法、茚三酮染色法和磺基水楊酸法測定可溶性蛋白質(zhì)、可溶性糖、游離氨基酸和脯氨酸含量。
1.2.3O2·-產(chǎn)生速率、H2O2和MDA含量的測定O2·-產(chǎn)生速率按陳建勛和王曉峰[18]的方法測定。H2O2含量參照Sergiev等[19]的方法測定;丙二醛(MDA)含量采用硫代巴比妥酸法測定[18]。
1.2.4抗壞血酸(ASA)和谷胱甘肽(GSH)含量的測定稱取0.20 g葉片,分別用2.0 m L 15%偏磷酸和5%三氯乙酸溶液研磨,將勻漿液14470 r/min離心20 min,上清液定容至2.0 m L。按Arakawa等[20]的方法測定ASA含量;采用Ellman[21]的方法測定GSH含量。
1.2.5SOD、CAT、POD和APX活性的測定采用陳建勛和王曉峰[18]的方法測定超氧化物歧化酶(SOD)、過氧化氫酶(CAT)、過氧化物酶(POD)、抗壞血酸過氧化物酶(APX)活性。
1.3統(tǒng)計分析
所有數(shù)據(jù)以單位材料干重計算,平均值±標(biāo)準(zhǔn)誤表示,SPSS 19.0方差分析和Duncan法多重比較(P<0.05)。
2.1外源H2O2對NaCl脅迫下燕麥幼苗生長的影響
圖1表明,150 mmol/L NaCl脅迫10 d導(dǎo)致燕麥植株干重下降20.5%,噴施0.01 mmol/L H2O2顯著提高了NaCl脅迫下燕麥的植株干重,比單獨NaCl處理提高了12.6%。而單獨H2O2處理的植株干重與CK無顯著差異。
2.2外源H2O2對NaCl脅迫下燕麥幼苗葉片滲透調(diào)節(jié)物質(zhì)含量的影響
從表1可見,與CK相比,單獨NaCl脅迫顯著降低了燕麥葉片中可溶性糖的含量,下降幅度達(dá)55.9%,卻明顯提高了游離氨基酸和脯氨酸含量,分別提高了31.4%和145.4%,而可溶性蛋白質(zhì)含量無明顯改變;NaCl+H2O2處理的可溶性蛋白質(zhì)、可溶性糖和脯氨酸含量比單獨NaCl處理分別提高了39.5%、135.2%和39.3%,游離氨基酸含量下降了43.1%,差異顯著。單獨H2O2處理與CK相比,可溶性蛋白質(zhì)和脯氨酸含量分別提高了17.8%和39.7%,而可溶性糖和游離氨基酸含量變化不大。
圖1 外源H2O2對NaCl脅迫下燕麥幼苗干重的影響Fig.1 Effect of exogenous H2O2on dry weight of oat seedlings under NaCl stress
2.3外源H2O2對NaCl脅迫下燕麥幼苗葉片O2·-產(chǎn)生速率、H2O2和MDA含量的影響O2·-和H2O2是2種主要的細(xì)胞質(zhì)膜過氧化活性氧,MDA是膜脂過氧化的產(chǎn)物之一。圖2結(jié)果表明,單獨NaCl處理顯著提高了燕麥葉片的O2·-產(chǎn)生速率及H2O2和MDA含量,分別比CK提高了87.2%、64.5%和53.2%;NaCl+H2O2處理與單獨NaCl處理相比,O2·-產(chǎn)生速率、H2O2和MDA含量分別下降了40.4%、24.7%和16.4%,差異顯著,說明外源H2O2能夠降低鹽脅迫誘導(dǎo)的活性氧積累對膜脂的氧化傷害。與CK相比,單獨H2O2處理顯著提高了燕麥葉片內(nèi)源H2O2的含量,但O2·-產(chǎn)生速率和MDA含量無明顯差異。
2.4外源H2O2對NaCl脅迫下燕麥幼苗葉片抗氧化物質(zhì)含量的影響
ASA和GSH是2種重要的活性氧清除抗氧化物質(zhì)。圖3顯示,不同處理并沒有引起燕麥葉片ASA含量的顯著改變,但GSH含量卻發(fā)生了明顯變化。與CK相比,單獨NaCl處理下GSH含量降低了39.6%,單獨H2O2處理GSH含量無顯著變化;而NaCl+H2O2處理的GSH含量比單獨NaCl處理提高了132.8%。
表1 外源H2O2對NaCl脅迫下燕麥幼苗葉片滲透調(diào)節(jié)物質(zhì)含量的影響Table1 Effects of exogenous H2O2on content of osmotica in leaves of oat seedlings under NaCl stress mg/g
圖2 外源H2O2對NaCl脅迫下燕麥幼苗葉片O2·—產(chǎn)生速率及H2O2和MDA含量的影響Fig.2 Effects of exogenous H2O2on O2·—production rate,contents of H2O2and MDA in leaves of oat seedlings under NaCl stress
圖3 外源H2O2對NaCl脅迫下燕麥幼苗葉片ASA和GSH含量的影響Fig.3 Effects of exogenous H2O2on contents of ASA and GSH in leaves of oat seedlings under NaCl stress
2.5外源H2O2對NaCl脅迫下燕麥幼苗葉片抗氧化酶活性的影響
SOD、CAT、POD和APX是植物體內(nèi)清除活性氧的主要抗氧化酶。由表2可見,與CK相比,單獨NaCl處理使燕麥幼苗葉片SOD、CAT、POD和APX活性均顯著提高,NaCl+H2O2處理進一步提高了上述4種抗氧化酶的活性,與單獨NaCl處理比較,SOD、CAT、POD和APX活性分別提高了30.3%、71.1%、32.5%和22.4%,差異顯著。單獨H2O2處理的CAT和APX活性分別比CK提高了64.3%和40.0%,而SOD和POD活性則無明顯差異。
表2 外源H2O2對NaCl脅迫下燕麥幼苗葉片抗氧化酶活性的影響Table2 Effects of exogenous H2O2on anti-oxidative enzyme activities in oat seedling leaves under NaCl stress U/g
植物在鹽脅迫下首先遭受滲透脅迫和離子毒害,進而引起活性氧代謝失調(diào),造成細(xì)胞代謝紊亂和生長受抑[22]。本研究結(jié)果顯示,燕麥幼苗在150 mmol/L NaCl脅迫10 d后植株干重明顯降低,葉面噴施0.01 mmol/L H2O2能夠有效減輕NaCl脅迫對燕麥幼苗生長的抑制作用(圖1),這與外源H2O2能夠緩解受旱小麥[23]和Cd脅迫水稻[8]生長受抑的結(jié)果一致。說明外源H2O2可以緩解逆境脅迫對植物生長的抑制作用。其原因可能與H2O2能夠促進植物次生壁的發(fā)育有關(guān)[24]。植物次生壁隨細(xì)胞分化在初生壁內(nèi)側(cè)逐漸形成,次生壁組成中除半纖維素和纖維素外,還含有木質(zhì)素。木質(zhì)素是一種高度交聯(lián)的酚類聚合物,由此增強了植物向上生長所需要的機械支持力,有利于植物生長[25]。另外,H2O2對鹽脅迫燕麥生長的促進作用可能還與滲透調(diào)節(jié)和活性氧代謝有關(guān)。
正常細(xì)胞內(nèi)離子保持平衡穩(wěn)態(tài)。鹽脅迫下會導(dǎo)致胞質(zhì)Na+積累,過多的Na+則通過跨質(zhì)膜轉(zhuǎn)運或跨液泡膜區(qū)域化到液泡中以減輕鹽離子毒害[26]。液泡中Na+的積累,不僅可以減輕對細(xì)胞質(zhì)中酶和膜系統(tǒng)的傷害,而且可作為滲透調(diào)節(jié)劑降低滲透勢,以利于植物吸收水分。胞質(zhì)中則積累可溶性糖、脯氨酸等來維持細(xì)胞的滲透平衡[1]。魏小紅等[27]研究表明,H2O2能夠調(diào)節(jié)煙草(Nicotiana tabacum)脯氨酸、游離氨基酸和可溶性蛋白質(zhì)的含量;張波和張懷剛[11]報道,外源H2O2可提高鹽脅迫下小麥幼苗的可溶性糖和谷胱甘肽含量。本研究結(jié)果顯示,150 mmol/L NaCl脅迫下,燕麥葉片可溶性蛋白質(zhì)含量并沒有明顯改變,但可溶性糖含量明顯下降,游離氨基酸和脯氨酸含量顯著提高(表1)。說明燕麥通過積累游離氨基酸和脯氨酸增強鹽脅迫下的滲透適應(yīng)能力。噴施0.01 mmol/L H2O2提高了150 mmol/L NaCl脅迫下燕麥葉片中的可溶性蛋白質(zhì)、可溶性糖和脯氨酸含量,而游離氨基酸含量明顯降低。可溶性蛋白質(zhì)有較強的持水力,其中大多數(shù)是參與代謝反應(yīng)的酶類;可溶性糖和脯氨酸等是細(xì)胞重要的有機滲透調(diào)節(jié)物質(zhì),它們含量的變化與植物抗逆性密切相關(guān)[11]。說明外源H2O2能夠調(diào)節(jié)可溶性蛋白質(zhì)和有機滲透調(diào)節(jié)物質(zhì)的含量,提高燕麥的耐鹽性。這與H2O2預(yù)處理能夠提高鋁脅迫下黑豆(Ribes nigrum)可溶性蛋白質(zhì)含量[28]及Cd脅迫下水稻谷胱甘肽轉(zhuǎn)硫酶活性[8]的結(jié)果類似。但H2O2提高鹽脅迫下燕麥可溶性蛋白質(zhì)、可溶性糖和脯氨酸含量的分子機制還需進一步探討。
活性氧(reactive oxygen species,ROS)的產(chǎn)生在植物代謝過程中不可避免,本底或自穩(wěn)態(tài)水平的ROS在植物的生長發(fā)育以及對環(huán)境脅迫的適應(yīng)中具有重要作用[3-4],但植物遭受逆境脅迫時O2·-和H2O2等ROS水平明顯提高[1]。植物體內(nèi)ROS代謝能否保持平衡與抗氧化酶的活性和抗氧化劑的含量密切相關(guān)[29]。SOD催化O2·-歧化反應(yīng)生成H2O2,CAT可直接催化H2O2生成H2O和O2[30]。POD催化H2O2與酚類反應(yīng)清除ROS;APX通過ASA-GSH循環(huán)利用ASA、GSH等抗氧化劑將H2O2還原為H2O[31]。本研究結(jié)果顯示,150 mmol/L NaCl脅迫5 d顯著提高了燕麥葉片O2·-的產(chǎn)生速率和H2O2含量(圖2),此時盡管SOD、CAT、POD 和APX活性均提高(表2),但GSH含量的下降(圖3)使抗氧化系統(tǒng)未能及時清除過量的ROS導(dǎo)致其積累。積累的ROS使膜脂不飽和脂肪酸過氧化產(chǎn)生MDA,MDA能與酶蛋白發(fā)生鏈?zhǔn)骄酆戏磻?yīng),使膜系統(tǒng)變性[29]。噴施0.01 mmol/L H2O2顯著提高了150 mmol/L NaCl脅迫下燕麥幼苗葉片的SOD,CAT、POD和APX等抗氧化酶活性(表2)及GSH含量(圖3)。說明鹽脅迫破壞了燕麥ROS清除的ASA-GSH循環(huán)系統(tǒng),外施H2O2有效促進了ASA-GSH循環(huán)系統(tǒng)的有效運轉(zhuǎn),從而加強了植株的ROS清除能力,降低了O2·-和H2O2的積累,減輕了鹽脅迫誘導(dǎo)的氧化損傷(圖2)。這與前人[10,32]的研究結(jié)果一致,可能與H2O2能夠誘導(dǎo)抗氧化酶基因的表達(dá)有關(guān)[33],但具體機制尚待進一步研究。
鹽脅迫下,噴施H2O2能夠增加燕麥幼苗可溶性蛋白質(zhì)、可溶性糖和脯氨酸等滲透調(diào)節(jié)物質(zhì)含量,提高SOD、CAT、POD和APX等抗氧化酶活性及抗氧化劑GSH含量,降低O2·-和H2O2積累,減輕膜脂氧化傷害和幼苗生長受抑程度,從而增強燕麥耐鹽性。
References:
[1]Munns R,Tester M.Mechanisms of salinity tolerance.Annual Review of Plant Biology,2008,59:651-681.
[2]Uchida A,Jagendorf A T,Hibino T,et al.Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice.Plant Science,2002,163(3):515-523.
[3]Dat J F,Vandendede F,Vranova E,et al.Dual action of the active oxygen species during plant stress response.Cellular and Molecular Life Sciences,2000,57(5):779-795.
[4]Hung S H,Yu C W,Lin C H.Hydrogen peroxide functions as a stress signal in plants.Botanical Bulletin of Academia Sinica,2005,46(1):1-10.
[5]Liao W B,Huang G B,Yu J H,et al.Nitric oxide and hydrogen peroxide are involved in indole-3-butyricacid-induced adventitious roots development in marigold.Journal of Horticultural Science&Biotechnology,2011,86(2):159-165.
[6]Wahid A,Perveen M,Gelani S,et al.Pretreatment of seed with H2O2improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress protein.Journal of Plant Physiology,2007,64(3):283-294.
[7]Liu Z J,Guo Y K,Lin S H,et al.Effects of exogenous hydrogen peroxide on ultra-structure of chloroplasts and activities of antioxidant enzymes in greenhouse-ecotype cucumber under drought stress.Acta Horticulturae Sinica,2009,36(8):1140-1146.
[8]Bai X J,Liu L J,Zhang C H,et al.Effect of H2O2pretreatment on Cd tolerance of different rice cultivars.Chinese Journal of Rice Science,2010,24(4):391-397.
[9]Bright J,Desikan R,Hancock J T,et al.ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2synthesis.The Plant Journal,2006,45(1):113-122.
[10]Azevedo N A D,Prisco J T,Eneas-Filho J,et al.Hydrogen peroxide pre-treatment induces salt stress acclimation in maize plants.Journal of Plant Physiology,2005,162(10):1114-1122.
[11]Zhang Bo,Zhang H G.Regulation of exogenous hydrogen peroxide on wheat seedling salinity tolerance.Acta Botanica Boreali-Occidentalia Sinica,2007,27(12):2491-2495.
[12]Gu W Y,Mo P H,Yang JS,et al.Exogenous nitric oxide and hydrogen peroxide regulate the acclimation of chicory(Cichorium intybus)to salt stress.Chinese Journal of Ecology,2014,33(1):89-97.
[13]Delledonne M,Xia Y,Dixon R A,et al.Nitric oxide functions as a signal in plant disease resistance.Nature,1998,394 (6693):585-588.
[14]Lara L,Nello C,Piero P,et al.Nitric oxide and hydrogen peroxide involvement during programmed cell death of Sechium edule nucellus.Physiologia Plantarum,2010,140(1):89-102.
[15]Fan B,Shen L,Liu K L,et al.Interaction between nitric oxide and hydrogen peroxide in postharvest tomato resistance response to Rhizopus nigricans.Journal of the Science of Food and Agriculture,2008,88(7):1238-1244.
[16]Liu F Q,Liu J L,Zhu R F,et al.Physiological responses and tolerance of four oat varieties to salt stress.Acta Prataculturae Sinica,2015,24(1):183-189.
[17]Li H S.Principles and Techniques of Plant Physiological Biochemical Experiment[M].Beijing:Higher Education Press,2000.
[18]Chen J X,Wang X F.Plant Physiology Experimental Guidance[M].Guangzhou:South China University of Technology Press,2002.
[19]Sergiev I,Alexieva V,Karanov E.Effect of spermine,atrazine and combination between them on some endogenous protective systems and stress markers in plants.Comptes Rendus de I'Academie Bulgare des Sciences,1997,51(2):121-124.
[20]Arakawa N,Tsutsumi K,Sanceda N G,et al.A rapid and sensitive method for the determination of ascorbic acid using 4,7-diphenyl-1,10-phenanthroline.Agricultural and Biological Chemistry,1981,45(5):1289-1290.
[21]Ellman G L.Tissue sulfhydryl groups.Archives of Biochemistry and Biophysics,1959,82(1):70-77.
[22]Zhu X J,Liang Y C,Yang J S,et al.Effect of exogenous calcium on antioxidant enzyme activity and lipid peroxidation of rice seedlings under salt stress.Acta Pedologica Sinica,2005,42(3):453-459.
[23]Qiu Z B,Sun L,Li J T,et al.Protecting effect of exogenous hydrogen peroxide on wheat seedlings damage by water stress. Bulletin of Botanical Research,2010,30(3):294-298.
[24]Pnueli L,Liang H,Rozenberg M,et al.Growth suppression,altered stomatal responses,and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase(Apx1)-deficient Arabidopsis plants.The Plant Journal,2003,34(2):187-203.
[25]Song D L,Shen J H,Li L G.Cellulose synthesis in the cell walls of higher plants.Plant Physiology Journal,2008,44(4):791-796.
[26]Bu Q M,Bai X F,Zhu J J,et al.Accumulation and distribution of salt in leaves of Atriplex triangularis under salt stress. Chinese Journal of Applied&Environmental Biology,2007,13(2):192-195.
[27]Wei X H,Wang L M,Long R J,et al.Effects of exogenous nitric oxide,salicylic acid and hydrogen peroxide on free amino acid and soluble protein contents in tobacco leaves.Journal of Plant Physiology and Molecular Biology,2006,32(2):257-260.
[28]Wang L,Chen Q,Wu K H,et al.Physiological mechanisms of pretreatment with hydrogen peroxide enhancing the capacity of the sensitive black soybean resistance to Al stress.Acta Botanica Boreali-Occidentalia Sinica,2013,33(2):336-342.
[29]Agarwal S,Sairam R K,Srivastava G C,et al.Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes.Biologia Plantarum,2005,49(4):541-550.
[30]Vandenabeele S,Vanderauwera S,Vuylsteke M,et al.Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana.The Plant Journal,2004,39(1):45-58.
[31]Asada K.Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plants.Physiologia Plantarum,1992,85(2):235-241.
[32]Abdul W,Mubaraka P,Sadia G,et al.Pretreatment of seed with H2O2improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins.Journal of Plant Physiology,2007,164(3):283-294.
[33]Robert B,David O W.Arabidopsis OXS2 is a transcription factor in the oxidative stress response,Abstract of annual meeting of the American Society of Plant Biologists,July 24-28,2004,Orlando,F(xiàn)L,USA[EB/OL].http://abstracts.aspb. org/pb2004/public/M04/9154.html,2015-03-01.
[7]劉忠靜,郭延奎,林少航,等.外源過氧化氫對干旱脅迫下溫室黃瓜葉綠體超微結(jié)構(gòu)和抗氧化酶的影響.園藝學(xué)報,2009,36(8):1140-1146.
[8]白曉娟,劉麗娟,張春華,等.H2O2預(yù)處理對不同水稻品種Cd耐性的影響.中國水稻科學(xué),2010,24(4):391-397.
[11]張波,張懷剛.外源H2O2對小麥幼苗耐鹽性的調(diào)節(jié)作用.西北植物學(xué)報,2007,27(12):2491-2495.
[12]谷文英,莫平華,楊江山,等.外源一氧化氮和過氧化氫調(diào)節(jié)菊苣鹽適應(yīng)性.生態(tài)學(xué)雜志,2014,33(1):89-97.
[16]劉鳳歧,劉杰淋,朱瑞芬,等.4種燕麥對NaCl脅迫的生理響應(yīng)及耐鹽性評價.草業(yè)學(xué)報,2015,24(1):183-189.
[17]李合生.植物生理生化實驗原理和技術(shù)[M].北京:高等教育出版社,2000.
[18]陳建勛,王曉峰.植物生理學(xué)實驗指導(dǎo)[M].廣州:華南理工大學(xué)出版社,2002.
[22]朱曉軍,梁永超,楊勁松,等.鈣對鹽脅迫下水稻幼苗抗氧化酶和膜脂過氧化作用的影響.土壤學(xué)報,2005,42(3):453-459.
[23]邱宗波,孫立,李金亭,等.外源過氧化氫對小麥水分脅迫傷害的防護作用研究.植物研究,2010,30(3):294-298.
[25]宋東亮,沈君輝,李來庚.高等植物細(xì)胞壁中纖維素的合成.植物生理學(xué)報,2008,44(4):791-796.
[26]卜慶梅,柏新富,朱建軍,等.鹽脅迫條件下三解濱藜葉片中鹽分的積累與分配.應(yīng)用與環(huán)境生物學(xué)報,2007,13(2):192-195.
[27]魏小紅,王利民,龍瑞軍,等.外源一氧化氮、水楊酸和過氧化氫對煙草葉片游離氨基酸和可溶性蛋白含量的影響.植物生理與分子生物學(xué)學(xué)報,2006,32(2):257-260.
[28]王琳,陳奇,武孔煥,等.過氧化氫預(yù)處理增強敏感型黑豆抗鋁能力的生理機制.西北植物學(xué)報,2013,33(2):336-342.
The physiological mechanisms through which exogenous H2O2increases the resistance of Avena nuda to salt stress
LIU Jian-Xin*,WANG Jin-Cheng,WANG Rui-Juan,JIA Hai-Yan
College of Life Science and Technology,Longdong University,University Provincial Key Laboratory for Protection and Utilization of Longdong Bio-resources in Gansu Province,Qingyang 745000,China
Soil salinity is a major limiting factor for plant growth and productivity globally.Hydrogen peroxide (H2O2)is an important signaling molecule in plants that regulates many important physiological and biochemical processes and induces tolerance to different stresses,including salt stress.A study has been undertaken in order to further understand the operation of these regulatory mechanisms in oat seedlings(Avena nuda).A new oat cultivar,‘Dingyou No.6',was selected to investigate,using greenhouse nutrient solution cultivation,the effects of exogenous H2O2on plant growth,osmotic adjustment substances accumulation and active oxygen metabolism in seedlings under salt stress.The results showed that 150 mmol/L NaCl exposure significantly inhibited seedling growth.It enhanced the production of free amino acid and proline and decreased the contents of glutathione(GSH)and soluble sugar in leaves.Foliar spraying of 0.010 mmol/L H2O2significantly alleviated the inhibitory effect of NaCl stress on seedling growth.Exogenous H2O2increased the contents of soluble protein,soluble sugar and proline,and decreased free amino acid content in leaves.Under 150 mmol/L NaCl stress,superoxide dismutase(SOD),catalase(CAT),peroxidase(POD)and ascorbate peroxidase(APX)ac-tivities all increased,along with excessive production of O2·-,H2O2and malondialdehyde(MDA)in seedling leaves.Spraying the stressed seedlings with 0.010 mmol/L H2O2treatments significantly increased the activities of SOD,CAT,POD and APX and GSH content,but decreased O2·-production rate and the contents of H2O2and MDA in leaves.These results indicate that exogenous H2O2could enhance anti-oxidative ability and decrease membrane lipid peroxidation injury in oat seedlings under NaCl stress.Exogenous H2O2enhanced seedlings'salinity tolerance by regulating osmotic adjustment substances accumulation and active oxygen metabolism in plant leaves.
salt stress;H2O2;oat(Avena nuda);reactive oxygen metabolism;osmotic adjustment substances
10.11686/cyxb2015128
2015-03-10;改回日期:2015-05-14
甘肅省慶陽市科技計劃項目(KZ2014-19)資助。
劉建新(1964-),男,甘肅通渭人,教授,本科。
Corresponding author.E-mail:liujx1964@163.com